Note on Jacobi polynomials of binary codes

Nur Hamid^{*}, Tsuyoshi Miezaki[†]and Manabu Oura[‡]

Abstract

We investigate the Jacobi polynomials of binary codes in genus 1 and give the generators of a ring which is related to the Jacobi polynomials.

1 Introduction

The Jacobi polynomial is contained in the invariant ring of a group related to the binary codes. Under this relation, we show that the invariant ring for a group given can be generated by the Jacobi polynomials of the binary codes. We refer to [2] for the basic theory of Jacobi polynomial. The reader can see [1] for the generalization of Jacobi polynomial for the binary case.

Let $\mathbb{F}_2 = \{0, 1\}$. A code *C* of length *n* here means a linear subspace of \mathbb{F}_2^n . For $x, y \in \mathbb{F}_2^n$, the inner product $x \cdot y$ is defined by

$$x \cdot y := x_1 y_1 + \dots + x_n y_n \in \mathbb{F}_2$$

and we denote by x * y the number of the indices is such that $x_i \neq 0$ and $y_i \neq 0$.

For $c = (c_1, ..., c_n) \in C$, the weight wt(c) is the number of nonzero c_i . The dual C^{\perp} of C is defined by the set containing all $x \in \mathbb{F}_2^n$ such that

$$x \cdot y = 0$$

for all $y \in C$. The code C is called Type II if it satisfies the following conditions.

1. C is self-dual, that is $C = C^{\perp}$.

2. The weight wt(c) of c is the multiple of 4 for all $c \in C$.

In this paper, the code used is d_n^+ whose generator matrix is

1	1	1	1	1	0	0		0	0	0	$0 \rangle$	
	0	0	1	1	1	1		0	0	0	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$	
	÷	÷	۰.				۰.					•
	0	0	0	0	0	0		1	1	1	1	
	1	0	1	0	1	0		1	0	1	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	

We close this section by giving the definition and the example of Jacobi polynomial.

^{*(1)} Graduate School of Natural Science and Technology, Kanazawa University, Japan, (2) Universitas Nurul Jadid, Paiton, Probolinggo, Indonesia

 ^{†&}lt;br/>Faculty of Education, University of the Ryukyus, Okinawa 903–0213, Japan miezaki
@edu.uryukyu.ac.jp

 $^{^{\}ddagger}$ Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa 920–1192, Japan oura@se.kanazawa-u.ac.jp

Definition 1.1. The Jacobi polynomial Jac(C, v) of the code C with the reference vector v is defined by

$$Jac(C, v|x, y, z, w) := \sum_{u \in C} x^{n - wt(v) - wt(u) + u * v} y^{wt(u) - u * v} z^{wt(v) - u * v} w^{u * v}.$$

Example 1.1. Let $C = d_8^+$ and v = (1, 0, 0, 0, 0, 0, 0, 0). The Jacobi polynomial of C with the reference vector v is

$$Jac(C, v) = x^{7}w + 7x^{3}y^{4}w + 7x^{4}y^{3}z + y^{7}z.$$

2 Results

Let G be a group generated by the matrices

	/1	0	1	0 \		/1	0	0	0)		$(\eta$	0	0	0
η	0	1	0	1	,	0	1	0	0	,	0	η	0	0
$\overline{2}$	1	0	-1	0		0	0	i	0		0	0	η	0
	$\left(0 \right)$	1	0	-1/		0	0	0	i		$\left(0 \right)$	0	0	η

where η is the 8-th primitive root of 1. The group G is of order 192.

We denote by \mathfrak{R} the invariant ring of G:

$$\mathbb{C}[x, y, z, w]^G$$
.

The dimension formula of $\mathfrak R$ is

$$\sum_{n} (\dim \mathfrak{R})t^{n} = \frac{1 + 8t^{8} + 21t^{16} + 58t^{24} + 47t^{32} + 35t^{40} + 21t^{48} + t^{56}}{(1 - t^{8})^{2} (1 - t^{24})^{2}}$$

From the dimension formula of \mathfrak{R} , we have the following proposition.

Proposition 2.1. The invariant ring \Re can be generated by the Jacobi polynomials of binary codes of length 8, 16, 24, 32, 40, 48, 56 with at most 10, 21, 60, 47, 35, 21, 1 reference vectors, respectively.

Using the Jacobi polynomials of the binary codes of length 8 and 24, we have the following result.

Theorem 2.1. The ring \Re can be generated by 10 Jacobi polynomials of the binary codes of length 8 and 25 Jacobi polynomials of binary codes of length 24.

References

- Honma, K.; Okabe, T.; Oura, M.; Weight enumerators, intersection enumerators, and Jacobi polynomials. Discrete Math. 343 (2020), no. 6, 111815.
- [2] Ozeki, M. On the notion of Jacobi polynomials for codes. Math. Proc. Cambridge. Philos. Soc. 121 (1997), no. 1, 15-30.
- [3] SageMath, the Sage Mathematics Software System (Version 8.1), The Sage Developers, 2017, https://www.sagemath.org.