Note on Jacobi polynomials of binary codes

Nur Hamid, Tsuyoshi Miezaki ${ }^{\dagger}$ and Manabu Oura ${ }^{\ddagger}$

Abstract

We investigate the Jacobi polynomials of binary codes in genus 1 and give the generators of a ring which is related to the Jacobi polynomials.

1 Introduction

The Jacobi polynomial is contained in the invariant ring of a group related to the binary codes. Under this relation, we show that the invariant ring for a group given can be generated by the Jacobi polynomials of the binary codes. We refer to [2] for the basic theory of Jacobi polynomial. The reader can see [1] for the generalization of Jacobi polynomial for the binary case.

Let $\mathbb{F}_{2}=\{0,1\}$. A code C of length n here means a linear subspace of \mathbb{F}_{2}^{n}. For $x, y \in \mathbb{F}_{2}^{n}$, the inner product $x \cdot y$ is defined by

$$
x \cdot y:=x_{1} y_{1}+\cdots+x_{n} y_{n} \in \mathbb{F}_{2}
$$

and we denote by $x * y$ the number of the indices is such that $x_{i} \neq 0$ and $y_{i} \neq 0$.
For $c=\left(c_{1}, \ldots, c_{n}\right) \in C$, the weight $w t(c)$ is the number of nonzero c_{i}. The dual C^{\perp} of C is defined by the set containing all $x \in \mathbb{F}_{2}^{n}$ such that

$$
x \cdot y=0
$$

for all $y \in C$. The code C is called Type II if it satisfies the following conditions.

1. C is self-dual, that is $C=C^{\perp}$.
2. The weight $w t(c)$ of c is the multiple of 4 for all $c \in C$.

In this paper, the code used is d_{n}^{+}whose generator matrix is

$$
\left(\begin{array}{ccccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & \ldots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & & & & \ddots & & & & \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & \ldots & 1 & 0 & 1 & 0
\end{array}\right)
$$

We close this section by giving the definition and the example of Jacobi polynomial.

[^0]Definition 1.1. The Jacobi polynomial $\operatorname{Jac}(C, v)$ of the code C with the reference vector v is defined by

$$
J a c(C, v \mid x, y, z, w):=\sum_{u \in C} x^{n-w t(v)-w t(u)+u * v} y^{w t(u)-u * v} z^{w t(v)-u * v} w^{u * v} .
$$

Example 1.1. Let $C=d_{8}^{+}$and $v=(1,0,0,0,0,0,0,0)$. The Jacobi polynomial of C with the reference vector v is

$$
J a c(C, v)=x^{7} w+7 x^{3} y^{4} w+7 x^{4} y^{3} z+y^{7} z
$$

2 Results

Let G be a group generated by the matrices

$$
\frac{\eta}{2}\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right),\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & i & 0 \\
0 & 0 & 0 & i
\end{array}\right),\left(\begin{array}{llll}
\eta & 0 & 0 & 0 \\
0 & \eta & 0 & 0 \\
0 & 0 & \eta & 0 \\
0 & 0 & 0 & \eta
\end{array}\right)
$$

where η is the 8 -th primitive root of 1 . The group G is of order 192 .
We denote by \Re the invariant ring of G :

$$
\mathbb{C}[x, y, z, w]^{G} .
$$

The dimension formula of \mathfrak{R} is

$$
\sum_{n}(\operatorname{dim} \mathfrak{R}) t^{n}=\frac{1+8 t^{8}+21 t^{16}+58 t^{24}+47 t^{32}+35 t^{40}+21 t^{48}+t^{56}}{\left(1-t^{8}\right)^{2}\left(1-t^{24}\right)^{2}}
$$

From the dimension formula of \mathfrak{R}, we have the following proposition.
Proposition 2.1. The invariant ring \mathfrak{R} can be generated by the Jacobi polynomials of binary codes of length 8, 16, 24, 32, 40, 48, 56 with at most 10, 21, 60, 47, 35, 21, 1 reference vectors, respectively.

Using the Jacobi polynomials of the binary codes of length 8 and 24 , we have the following result.

Theorem 2.1. The ring \mathfrak{R} can be generated by 10 Jacobi polynomials of the binary codes of length 8 and 25 Jacobi polynomials of binary codes of length 24.

References

[1] Honma, K.; Okabe, T.; Oura, M.; Weight enumerators, intersection enumerators, and Jacobi polynomials. Discrete Math. 343 (2020), no. 6, 111815.
[2] Ozeki, M. On the notion of Jacobi polynomials for codes. Math. Proc. Cambridge. Philos. Soc. 121 (1997), no. 1, 15-30.
[3] SageMath, the Sage Mathematics Software System (Version 8.1), The Sage Developers, 2017, https://www.sagemath.org.

[^0]: *(1) Graduate School of Natural Science and Technology, Kanazawa University, Japan, (2) Universitas Nurul Jadid, Paiton, Probolinggo, Indonesia
 ${ }^{\dagger}$ Faculty of Education, University of the Ryukyus, Okinawa 903-0213, Japan miezaki@edu.uryukyu.ac.jp
 ${ }^{\ddagger}$ Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan oura@se.kanazawa-u.ac.jp

