Relative t-designs in Johnson association schemes for P-polynomial structure

Yan Zhu
University of Shanghai for Science and Technology

1 Introduction

Relative t-designs were defined in Q-polynomial and P-polynomial association schemes respectively by Delsarte [6] in 1977 and Bannai-Bannai-Suda-Tanaka [1] in 2015. Actually, relative t-designs in P-polynomial association schemes were first introduced by Delsarte-Seidel [7] in 1998 for binary Hamming association scheme $H(n, 2)$. They called such designs regular t-wise balanced designs which are equivalent to relative t-designs in $H(n, 2)$ for P -polynomial structure with respect to the fixed point $(0,0, \ldots, 0)$. In 2015, Bannai-Bannai-Suda-Tanaka [1] proposed the definition for general P-polynomial association schemes and proved that the concepts of relative t-designs in Hamming association schemes $H(n, q)(q \geq 2)$ for Ppolynomial structure and Q-polynomial structure are equivalent. Using this good property, Bannai-Bannai-Zhu [2] proved a necessary and sufficient condition for relative t-designs on two shells of $H(n, 2)$. In addition, they proved that if (Y, w) is a relative t-design in $H(n, 2)$ on p shells then the subset of (Y, w) on each shell must be a usual (weighted) combinatorial $(t+1-p)$-design. It is an interesting question to ask how the situation is in the case of Johnson association scheme $J(v, k)$. Each nontrivial shell X_{r} of $J(v, k)$ is known to be a commutative association scheme which is the product of two smaller Johnson association schemes. BannaiZhu [4] studied relative t-designs on one shell X_{r} in $J(v, k)$ for Q-polynomial structure and proved that they are \mathcal{T}-designs in X_{r} for $\mathcal{T}=\left\{\left(t_{1}, t_{2}\right) \mid 0 \leq t_{1}+t_{2} \leq t\right\}$. In particular, if the weight is constant, then relative t-designs on one shell in $J(v, k)$ are mixed t-designs in $J\left(k, k_{1}\right) \otimes J\left(v-k, k_{2}\right)$ which were introduced and studied by Martin [8]. It is well known that Johnson association schemes are both P- and Q-polynomial association schemes. Therefore it would be interesting to ask the similar question for P-polynomial structure whether we can expect to regard relative t-designs on one shell of $J(v, k)$ as weighted \mathcal{T}-designs in X_{r} for some set \mathcal{T}.

In this report, we investigate relative t-designs in $J(v, k)$ for P-polynomial structure and give the answer to this question. The main result is that if (Y, w) is a relative t-design supported by one shell X_{r} in $J(v, k)$ for P-polynomial structure, then (Y, w) is a weighted \mathcal{T}-design in X_{r} with $\mathcal{T}=\left\{\left(t_{1}, t_{2}\right) \mid 0 \leq t_{1}, t_{2} \leq t\right\}$. We also discuss the existence problem of tight relative t-designs. We make an algorithm to construct tight relative 2-designs in one shell and obtain many examples. In addition, we can construct some tight relative 3-designs on one shell $X_{2 u}$ in $J(8 u, 4 u)$ for integer $u \geq 1$.

2 Preliminaries

In this section, we will give the definition of t-designs in Q-polynomial association schemes introduced by Delsarte [5], designs in product of Q-polynomial association schemes by Martin [9] and relative t-designs in P-polynomial association schemes by Bannai-Bannai-SudaTanaka [1]. (Please refer to [3] for more information on P-polynomial or Q-polynomial association schemes.)

Throughout this report (Y, w) is assumed to be a weighted subset of X, namely, Y is a non-empty finite subset of X and $w: Y \longrightarrow \mathbb{R}_{>0}$.

2.1 Definition of t-designs

Definition 2.1 ([5, Theorem 3.10]). Let $\mathfrak{X}=\left(X,\left\{R_{r}\right\}_{r=0}^{k}\right)$ be a Q-polynomial association scheme with respect to the ordering $E_{0}, E_{1}, \ldots, E_{k}$. A weighted subset (Y, w) of X is called a weighted t-design in \mathfrak{X} if $E_{j} \chi_{(Y, w)}=0$ for all $1 \leq j \leq t$, where $\chi_{(Y, w)}$ is the weighted characteristic vector of (Y, w) defined by

$$
\chi_{(Y, w)}= \begin{cases}w(y), & \text { if } y \in Y, \\ 0, & \text { if } y \notin Y .\end{cases}
$$

Definition 2.2. Let $X=\binom{V}{k}$ be the set of all k-subsets of V with $|V|=v$. A weighted subset (Y, w) of X is called a weighted $t-\left(v, k, \lambda_{t}\right)$ design if for any $z \in\binom{V}{t}$ the following value

$$
\sum_{y \in Y, z \subset y} w(y)=\lambda_{t}
$$

is a constant depending only on t but not on the choice of z.
Remark 1. Delsarte [5, Theorem 4.7] proved that a t-design in Johnson association scheme $J(v, k)$ for Q-polynomial structure, which is a weighted t-design with constant weight $w=1$, is equivalent to a combinatorial $t-\left(v, k, \lambda_{t}\right)$ design. We should remark that this result is also true for (non-constant) weighted t-designs in $J(v, k)$ and weighted $t-\left(v, k, \lambda_{t}\right)$ designs.

2.2 Designs in product of Q-polynomial association schemes

In this sunsection, we recall the concept of designs in product of Q-polynomial association schemes introduced by Martin [9]. For any positive integer k_{i}, let \mathcal{C}_{i} be the totally ordered chain on $\{0,1, \ldots, k\}$ and set $\mathcal{C}=\mathcal{C}_{1} \times \mathcal{C}_{2}$. Consider the poset (\mathcal{C}, \unlhd) defined by

$$
\mathcal{C}=\left\{\underline{\ell}=\left(\ell_{1}, \ell_{2}\right) \mid 0 \leq \ell_{i} \leq k_{i}, i=1,2\right\}
$$

with partial order $\underline{\ell^{\prime}} \unlhd \underline{\ell}$ if $\ell_{1}^{\prime} \leq \ell_{1}$ and $\ell_{2}^{\prime} \leq \ell_{2}$. A subset \mathcal{T} of \mathcal{C} is called a downset in (\mathcal{C}, \unlhd) if $\underline{\ell} \in \mathcal{T}$ and $\underline{\ell}^{\prime} \unlhd \underline{\ell}$ imply $\underline{\ell^{\prime}} \in \mathcal{T}$. For any set $\mathcal{E} \subset \mathcal{C}$, denote

$$
\mathcal{E}+\mathcal{E}:=\left\{\left(\ell_{1}+\ell_{1}^{\prime}, \ell_{2}+\ell_{2}^{\prime}\right) \mid\left(\ell_{1}, \ell_{2}\right),\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}\right) \in \mathcal{E}\right\} .
$$

Let $\mathfrak{X}^{(i)}=\left(X^{(i)},\left\{R_{r}^{(i)}\right\}_{r=0}^{k_{i}}\right)$ be a Q-polynomial association scheme and $E_{0}^{(i)}, E_{1}^{(i)}, \ldots, E_{k_{i}}^{(i)}$ its Q-polynomial ordering of primitive idempotents for $i=1,2$. For two points $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ from $X^{(1)} \times X^{(2)}$, define a relation $R_{\left(h_{1}, h_{2}\right)}$ on $X^{(1)} \times X^{(2)}$ by

$$
(x, y) \in R_{\left(h_{1}, h_{2}\right)} \quad \text { if } \quad\left(x_{1}, y_{1}\right) \in R_{h_{1}}^{(1)},\left(x_{2}, y_{2}\right) \in R_{h_{2}}^{(2)} .
$$

Define $\mathfrak{X}=\mathfrak{X}^{(1)} \otimes \mathfrak{X}^{(2)}=\left(X^{(1)} \times X^{(2)}, \mathcal{R}\right)$ as the product of these two association schemes, where the relations set \mathcal{R} is

$$
\mathcal{R}=\left\{R_{\left(h_{1}, h_{2}\right)} \mid 0 \leq h_{1} \leq k_{1}, 0 \leq h_{2} \leq k_{2}\right\} .
$$

In particular, if $\mathfrak{X}=J\left(v_{1}, k_{1}\right) \otimes J\left(v_{2}, k_{2}\right)$, then, for $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in\binom{V_{1}}{k_{1}} \times\binom{ V_{2}}{k_{2}}$, $(x, y) \in R_{\left(h_{1}, h_{2}\right)}$ means $\left|x_{1} \cap y_{1}\right|=k_{1}-h_{1}$ and $\left|x_{2} \cap y_{2}\right|=k_{2}-h_{2}$. Moreover, for a set $Y \subset\binom{V_{1}}{k_{1}} \times\binom{ V_{2}}{k_{2}}$, we define the distance set of Y by

$$
A(Y)=\left\{\left(h_{1}, h_{2}\right) \mid(x, y) \in R_{\left(h_{1}, h_{2}\right)}, x, y \in Y, x \neq y\right\} .
$$

Note that $(0,0) \notin A(Y)$.
Definition 2.3 ([9, Theorem 2.3]). Let \mathcal{T} be a downset of \mathcal{C}. The weighted subset (Y, w) of $X=X^{(1)} \times X^{(2)}$ is called a weighted \mathcal{T}-design in $\mathfrak{X}=\mathfrak{X}^{(1)} \otimes \mathfrak{X}^{(2)}$ if

$$
\left(E_{t_{1}}^{(1)} \otimes E_{t_{2}}^{(2)}\right) \chi_{(Y, w)}=0, \quad \text { for all }\left(t_{1}, t_{2}\right) \in \mathcal{T} \backslash\{(0,0)\}
$$

In particular, if $\mathfrak{X}=J\left(v_{1}, k_{1}\right) \otimes J\left(v_{2}, k_{2}\right)$ with points set $X=\binom{V_{1}}{k_{1}} \times\binom{ V_{2}}{k_{2}}$, then we have another equivalent definition of \mathcal{T}-designs given by Martin [9, Lemma 2.2]. Define a partial order \preceq on the set $\tilde{X}=\binom{V_{1}}{\leq k_{1}} \times\binom{ V_{2}}{\leq k_{2}}$ by $z \preceq y$ if $z_{1} \subseteq y_{1}$ and $z_{2} \subseteq y_{2}$ for $z=\left(z_{1}, z_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in \tilde{X}.

Definition 2.4 ([8]). Let (Y, w) be a weighted subset of $\binom{V_{1}}{k_{1}} \times\binom{ V_{2}}{k_{2}}$. The pair (Y, w) is called a weighted $\left(t_{1}, t_{2}\right)-\left(v_{1}, k_{1}, v_{2}, k_{2}, \lambda_{\left(t_{1}, t_{2}\right)}\right)$ design if for any $\left(z_{1}, z_{2}\right) \in\binom{V_{1}}{t_{1}} \times\binom{ V_{2}}{t_{2}}$, the following value

$$
\sum_{\substack{\left(y_{1}, y_{2}\right) \in Y \\\left(z_{1}, z_{2}\right) \leq\left(y_{1}, y_{2}\right)}} w\left(y_{1}, y_{2}\right)=\lambda_{\left(t_{1}, t_{2}\right)}
$$

is a constant depending only on the pair $\left(t_{1}, t_{2}\right)$ but not on the choice of $\left(z_{1}, z_{2}\right)$.
By Definition 2.4, we obtain the following lemma (see also [8]).
Lemma 2.5. Let (Y, w) be a weighted $\left(t_{1}, t_{2}\right)-\left(v_{1}, k_{1}, v_{2}, k_{2}, \lambda_{\left(t_{1}, t_{2}\right)}\right)$ design. Then it is also a weighted $\left(s_{1}, s_{2}\right)-\left(v_{1}, k_{1}, v_{2}, k_{2}, \lambda_{\left(s_{1}, s_{2}\right)}\right)$ design satisfying

$$
\begin{equation*}
\binom{v_{1}-s_{1}}{t_{1}-s_{1}}\binom{v_{2}-s_{2}}{t_{2}-s_{2}} \lambda_{\left(t_{1}, t_{2}\right)}=\binom{k_{1}-s_{1}}{t_{1}-s_{1}}\binom{k_{2}-s_{2}}{t_{2}-s_{2}} \lambda_{\left(s_{1}, s_{2}\right)}, \tag{2.1}
\end{equation*}
$$

whenever $0 \leq s_{1} \leq t_{1}$ and $0 \leq s_{2} \leq t_{2}$. In particular, $\lambda_{(0,0)}=|Y|$.
Lemma 2.5 implies that a weighted $(t, t)-\left(v_{1}, k_{1}, v_{2}, k_{2}, \lambda_{(t, t)}\right)$ design is exactly a weighted \mathcal{T}-design in $J\left(v_{1}, k_{1}\right) \otimes J\left(v_{2}, k_{2}\right)$ with $\mathcal{T}=\left\{\left(t_{1}, t_{2}\right) \mid 0 \leq t_{1}, t_{2} \leq t\right\}$.

2.3 Relative t-designs in P-polynomial association schemes

Now let us give the definition of relative t-designs in P-polynomial association schemes introduced by Bannai-Bannai-Suda-Tanaka [1]. Let $\mathfrak{X}=\left(X,\left\{R_{r}\right\}_{r=0}^{k}\right)$ be a P-polynomial association scheme and u_{0} a fixed point in X. For $0 \leq r \leq k$, we call the subset $X_{r}:=\{x \in$ $\left.X \mid\left(x, u_{0}\right) \in R_{r}\right\}$ the r-th shell of \mathfrak{X}. Let $\mathbb{R}^{|X|}$ be the space consisting of column vectors indexed by the points in X. Given a point $z \in X_{j}$, define a vector $f_{z} \in \mathbb{R}^{|X|}$ whose x-th entry is

$$
f_{z}(x)= \begin{cases}1 & \text { if } x \in X_{i},(x, z) \in R_{i-j}, i \geq j \\ 0 & \text { otherwise }\end{cases}
$$

Let $\operatorname{Hom}_{j}(X):=\operatorname{span}\left\{f_{z} \mid z \in X_{j}\right\}$ for $0 \leq j \leq k$, then

$$
\mathbb{R}^{|X|}=\operatorname{Hom}_{0}(X)+\operatorname{Hom}_{1}(X)+\cdots+\operatorname{Hom}_{k}(X)
$$

We say Y is a subset of X on p shells $X_{r_{1}} \cup \cdots \cup X_{r_{p}}$ if $\left\{r \mid Y \cap X_{r} \neq \emptyset\right\}=\left\{r_{1}, r_{2}, \ldots, r_{p}\right\}$. Denote $Y_{r_{\nu}}=Y \cap X_{r_{\nu}}$ for $1 \leq \nu \leq p$.
Definition 2.6 ([1, Definition 1.1]). Let $\mathfrak{X}=\left(X,\left\{R_{r}\right\}_{r=0}^{k}\right)$ be a P-polynomial association scheme and u_{0} a fixed point in X. A weighted subset (Y, w) is called a relative t-design on p shells $X_{r_{1}} \cup \cdots \cup X_{r_{p}}$ in \mathfrak{X} with respect to u_{0} if the following

$$
\begin{equation*}
\sum_{\nu=1}^{p} \frac{W\left(Y_{r_{\nu}}\right)}{\left|X_{r_{\nu}}\right|} \sum_{x \in X_{r_{\nu}}} f(x)=\sum_{y \in Y} w(y) f(y) \tag{2.2}
\end{equation*}
$$

holds for any $f \in \operatorname{Hom}_{0}(X)+\operatorname{Hom}_{1}(X)+\cdots+\operatorname{Hom}_{t}(X)$, where $W\left(Y_{r_{\nu}}\right)=\sum_{y \in Y_{r_{\nu}}} w(y)$.

3 Relative t-designs in one shell of $J(v, k)$

In this section, we discuss relative t-designs on one shell of Johnson association scheme $J(v, k)$ for P-polynomial structure. We first describe the structure of each nontrivial shell of $J(v, k)$. Let $X=\binom{V}{k}$ be the set of all k-subsets of $V=\{1, \ldots, v\}$ with $v \geq 2 k$ and $J(v, k)=\left(X,\left\{R_{r}\right\}_{r=0}^{k}\right)^{k}$ Johnson association scheme. For any fixed point $u_{0} \in \bar{X}$, denote $X_{r}:=\left\{x \in X| | x \cap u_{0} \mid=k-r\right\}$. Without loss of generality, we may assume $u_{0}=$ $\{1,2, \ldots, k\}$. Let $V_{1}=u_{0}, V_{2}=V \backslash u_{0}$ and denote $v_{i}=\left|V_{i}\right|$ for $i=1,2$.
Proposition 3.1. Each nontrivial shell X_{r} of $J(v, k)$ is identified with the product of two smaller Johnson association schemes $J\left(k, k_{1}\right) \otimes J\left(v-k, k_{2}\right)$. More explicitly,
(1) $\left(X_{r},\left\{R_{h}\right\}_{h=0}^{k}\right) \cong J(k, r) \otimes J(v-k, r)$ if $1 \leq r \leq \frac{k}{2}$.
(2) $\left(X_{r},\left\{R_{h}\right\}_{h=0}^{k}\right) \cong J(k, k-r) \otimes J(v-k, r)$ if $\frac{k}{2}<r \leq \frac{v-k}{2}$.
(3) $\left(X_{r},\left\{R_{h}\right\}_{h=0}^{k}\right) \cong J(k, k-r) \otimes J(v-k, v-k-r)$ if $\frac{v-k}{2}<r \leq k$.

Proof. For cases (1), (2) and (3), define the bijection $\phi: X_{r} \longrightarrow\binom{V_{1}}{k_{1}} \times\binom{ V_{2}}{k_{2}}$ respectively by

$$
\phi(x)=\left(V_{1} \backslash x, V_{2} \cap x\right), \quad\left(V_{1} \cap x, V_{2} \cap x\right), \quad\left(V_{1} \backslash x, V_{2} \backslash x\right) .
$$

We can check that, for $x, y \in X_{r},(x, y) \in R_{h_{1}+h_{2}}$ if and only if $(\phi(x), \phi(y)) \in R_{\left(h_{1}, h_{2}\right)}$. Therefore $\left(X_{r},\left\{R_{h}\right\}_{h=0}^{k}\right) \cong J\left(k, k_{1}\right) \otimes J\left(v-k, k_{2}\right)$.

Remark 2. Without confusion, we identify X_{r} with the product association scheme $J\left(k, k_{1}\right) \otimes$ $J\left(v-k, k_{2}\right)$ whenever we mention designs in X_{r}. In addition, if (Y, w) is a weighted subset of one shell X_{r} of $J(v, k)$, then the above map ϕ preserves the weight as well, namely, $w(y)=w(\phi(y))$ for any $y \in Y$.

Now we are ready to give our main theorem. By definition 2.6, if $p=1$, i.e., $Y \subset X_{r}$, then we have the specific condition for relative t-designs supported by one shell X_{r} as follows.

$$
\begin{equation*}
\frac{W\left(Y_{r}\right)}{\left|X_{r}\right|} \sum_{x \in X_{r}} f_{z}(x)=\sum_{y \in Y} w(y) f_{z}(y), \quad \forall z \in X_{0} \cup X_{1} \cup \cdots \cup X_{t} . \tag{3.1}
\end{equation*}
$$

Theorem 3.2. If (Y, w) is a relative t-design in $J(v, k)$ supported by one shell X_{r}, then (Y, w) is a weighted \mathcal{T}-design in X_{r} with $\mathcal{T}=\left\{\left(t_{1}, t_{2}\right) \mid 0 \leq t_{1}, t_{2} \leq t\right\}$.

Using Lemma 2.5, it is enough to prove that (Y, w) is a $(t, t)-\left(v_{1}, k_{1}, v_{2}, k_{2}, \lambda_{(t, t)}\right)$ design for some constant $\lambda_{(t, t)}$ if $\left(X_{r},\left\{R_{h}\right\}_{h=0}^{k}\right) \cong J\left(v_{1}, k_{1}\right) \otimes J\left(v_{2}, k_{2}\right)$. More precisely, we need to prove that $\sum_{\substack{y \in \phi(Y) \\\left(z_{1}, z_{2}\right) \leq y}} w(y)$ is constant for any $\left(z_{1}, z_{2}\right) \in\binom{V_{1}}{t} \times\binom{ V_{2}}{t}$.

Remark 3. In Theorem 3.2, (Y, w) is a weighted \mathcal{T}-design in X_{r} means $(\phi(Y), w)$ is a weighted \mathcal{T}-design in $J\left(k, k_{1}\right) \otimes J\left(v-k, k_{2}\right)$, where ϕ is the bijection defined in the proof of Proposition 3.1.

4 Lower bound for relative t-designs on one shell

In this section, we give the lower bound for relative t-designs on one shell X_{r} of $J(v, k)$. By Theorem 3.2, it is equivalent to obtain the lower bound for weighted \mathcal{T}-designs in product association scheme $J\left(k, k_{1}\right) \otimes J\left(v-k, k_{2}\right)$ with $\mathcal{T}=\left\{\left(t_{1}, t_{2}\right) \mid 0 \leq t_{1}, t_{2} \leq t\right\}$. The following lower bound of designs in product association schemes was proved by Martin [8].

Lemma 4.1 ([8, Theorem 3.2]). Let \mathcal{T} be a downset in (\mathcal{C}, \unlhd) and \mathcal{E} a set satisfying $(\mathcal{E}+$ $\mathcal{E}) \cap \mathcal{C} \subseteq \mathcal{T}$. If Y is a \mathcal{T}-design in $J\left(v_{1}, k_{1}\right) \otimes J\left(v_{2}, k_{2}\right)$, then

$$
\begin{equation*}
|Y| \geq \sum_{\left(j_{1}, j_{2}\right) \in \mathcal{E}}\left[\binom{v_{1}}{j_{1}}-\binom{v_{1}}{j_{1}-1}\right] \cdot\left[\binom{v_{2}}{j_{2}}-\binom{v_{2}}{j_{2}-1}\right] . \tag{4.1}
\end{equation*}
$$

Moreover, if equality holds, then for any $\left(h_{1}, h_{2}\right) \in A(Y)$ we have

$$
\sum_{\left(j_{1}, j_{2}\right) \in \mathcal{E}} Q_{j_{1}}^{(1)}\left(h_{1}\right) Q_{j_{2}}^{(2)}\left(h_{2}\right)=0,
$$

where $Q_{j_{i}}^{(i)}(x)$ is the following Hahn polynomial corresponding to $J\left(v_{i}, k_{i}\right)$

$$
Q_{j}^{(i)}(x)=\left(\binom{v_{i}}{j}-\binom{v_{i}}{j-1}\right){ }_{3} F_{2}\left(\begin{array}{c}
-x,-j,-v_{i}-1+j \\
-k_{i},-v_{i}+k_{i}
\end{array} ; 1\right) .
$$

From the proof of Theorem 3.2 in [8], one can check that inequality (4.1) also holds for weighted \mathcal{T}-designs in $J\left(v_{1}, k_{1}\right) \otimes J\left(v_{2}, k_{2}\right)$.

Corollary 4.2. If (Y, w) is a relative $2 e$-design in $J(v, k)$ on one shell X_{r} with P-polynomial structure, then

$$
\begin{equation*}
|Y| \geq\binom{ k}{e}\binom{v-k}{e} \tag{4.2}
\end{equation*}
$$

It follows from Theorem 3.2 that (Y, w) is a weighted \mathcal{T}-design for $\mathcal{T}=\left\{\left(t_{1}, t_{2}\right) \mid 0 \leq\right.$ $\left.t_{1}, t_{2} \leq 2 e\right\}$. Take $\mathcal{E}=\left\{\left(j_{1}, j_{2}\right) \mid 0 \leq j_{1}, j_{2} \leq e\right\}$. Using Lemma 4.1, we obtain

$$
|Y| \geq \sum_{j_{1}=0}^{e} \sum_{j_{2}=0}^{e}\left[\binom{k}{j_{1}}-\binom{k}{j_{1}-1}\right] \cdot\left[\binom{v-k}{j_{2}}-\binom{v-k}{j_{2}-1}\right]=\binom{k}{e}\binom{v-k}{e} .
$$

Proposition 4.3. If (Y, w) is a relative $(2 e+1)$-design in $J(v, k)$ on one shell X_{r} with P-polynomial structure, then

$$
\begin{equation*}
|Y| \geq 4\binom{k-1}{e}\binom{v-k-1}{e} \tag{4.3}
\end{equation*}
$$

A relative t-design on one shell of $J(v, k)$ is called tight if equality holds in (4.2) or (4.3).
At the end of this subsection, we introduce the concept of projections for designs which will be used later. Given a $\left(t_{1}, t_{2}\right)-\left(v_{1}, k_{1}, v_{2}, k_{2}, \lambda_{\left(t_{1}, t_{2}\right)}\right)$ design Y, define the left and right projection of Y as follows.

$$
\begin{aligned}
& Y^{(L)}=\left\{y^{(L)} \mid\left(y^{(L)}, y^{(R)}\right) \in Y\right\} . \\
& Y^{(R)}=\left\{y^{(R)} \mid\left(y^{(L)}, y^{(R)}\right) \in Y\right\} .
\end{aligned}
$$

Then $Y^{(L)}$ are $t_{1}-\left(v_{1}, k_{1}, \lambda_{\left(t_{1}, 0\right)}\right)$ designs and $Y^{(R)}$ are $t_{2}-\left(v_{2}, k_{2}, \lambda_{\left(0, t_{2}\right)}\right)$ designs.

5 Tight relative 2-designs

In this section, we give an algorithm to construct tight relative 2-designs (with constant weight) on one shell of $J(v, k)$. We also provide two explicit examples.

Assume the weight function is constant, i.e., $w=1$. Let $(Y, 1)$ be a tight relative 2-design on one shell X_{r} of $J(v, k)$. Using Lemma 4.1, we obtain the distance set $A(Y)$ from the zeros of following equation.

$$
F\left(h_{1}, h_{2}\right)=\sum_{\underline{j} \in \mathcal{E}} Q_{\underline{j}}(\underline{h})=1+Q_{1}^{(1)}\left(h_{1}\right)+Q_{1}^{(2)}\left(h_{2}\right)+Q_{1}^{(1)}\left(h_{1}\right) Q_{1}^{(2)}\left(h_{2}\right),
$$

where $\mathcal{E}=\{(0,0),(0,1),(1,0),(1,1)\}$. More explicitly, we have

$$
\begin{equation*}
F\left(h_{1}, h_{2}\right)=\frac{\left.v_{1} v_{2}\left(v_{1} h_{1}-h_{1}-v_{1} k_{1}+k_{1}^{2}\right)\right)\left(h_{2} v_{2}-h_{2}-k_{2} v_{2}+k_{2}^{2}\right)}{k_{1} k_{2}\left(v_{1}-k_{1}\right)\left(v_{2}-k_{2}\right)} . \tag{5.1}
\end{equation*}
$$

Then we know that
$A(Y) \subseteq\left\{\left(\frac{k_{1}\left(v_{1}-k_{1}\right)}{v_{1}-1}, h_{2}\right), \left.\left(h_{1}, \frac{k_{2}\left(v_{2}-k_{2}\right)}{v_{2}-1}\right) \right\rvert\, 0 \leq h_{1} \leq k_{1}, 0 \leq h_{2} \leq k_{2},\left(h_{1}, h_{2}\right) \neq(0,0)\right\}$
The construction of explicit tight relative 2-designs on one shell X_{r} in $J(v, k)$ (i.e. tight $(2,2)-\left(v_{1}, k_{1}, v_{2}, k_{2}, \lambda_{(2,2)}\right)$ designs) Y is equivalent to the following problem.

Problem. For a point set $X=X^{(L)} \times X^{(R)}=\binom{V_{1}}{k_{1}} \times\binom{ V_{2}}{k_{2}}$, find a pair of 2- $\left(v_{1}, k_{1}, \lambda_{(2,0)}\right)$ design $Y^{(L)}=\left\{y_{1}^{(L)}, \ldots, y_{\lambda_{(0,0)}}^{(L)}\right\} \subset X^{(L)}$ and 2-($\left.v_{2}, k_{2}, \lambda_{(0,2)}\right)$ design $Y^{(R)}=\left\{y_{1}^{(R)}, \ldots, y_{\lambda_{(0,0)}}^{(R)}\right\} \subset X^{(R)}$ with the same cardinality, so that $Y=\left\{\left(y_{i}^{(L)}, y_{i}^{(R)}\right) \mid 1 \leq i \leq \lambda_{(0,0)}\right\} \subset Y^{(L)} \times Y^{(R)}$ satisfies the condition that, for each $\left\{p_{1}, q_{1}\right\} \subset V_{1}$ and $\left\{p_{2}, q_{2}\right\} \subset V_{2}$, there exists exactly $\lambda_{(2,2)}$ element(s) $y \in Y$ such that $\left(\left\{p_{1}, q_{1}\right\},\left\{p_{2}, q_{2}\right\}\right) \preceq y$. The partial order \preceq means $\left\{p_{1}, q_{1}\right\} \subset y^{(L)}$ and $\left\{p_{2}, q_{2}\right\} \subset y^{(R)}$. Moreover, the parameters $\lambda_{(0,0)}, \lambda_{(2,0)}, \lambda_{(0,2)}$ and $\lambda_{(2,2)}$ satisfy the relation given by Eq. (2.1).

5.1 Basic idea for the construction

Now we explain the basic idea of an algorithm to construct $(2,2)-\left(v_{1}, k_{1}, v_{2}, k_{2}, \lambda_{(2,2)}\right)$ designs for a given $2-\left(v_{1}, k_{1}, \lambda_{(2,0)}\right)$ design as the left projection $Y^{(L)}$. The algorithm is applicable for cases when the size of 2- $\left(v_{2}, k_{2}, \lambda_{(2,2)}\right)$ design is equal to $\lambda_{(2,0)}$. Define $\tilde{Y}^{(L)}=$ $\left(y_{1}^{(L)}, y_{2}^{(L)}, \ldots, y_{\left.\lambda_{(0,0)}\right)}^{(L)}\right)$ and $\tilde{Y}^{(R)}=\left(y_{1}^{(R)}, y_{2}^{(R)}, \ldots, y_{\lambda_{(0,0)}}^{(R)}\right)$. We introduce the notation of $\rho(p, q ; z)$ for a given $z=\left(z_{1}, z_{2}, \ldots, z_{\lambda_{(0,0)}}\right)$ and $p, q \in V_{1}(p \neq q)$, defined as

$$
\rho(p, q ; z)=\left(z_{i_{1}}, z_{i_{2}}, \ldots, z_{i_{\lambda_{(2,0)}}}\right) \text { for }\left\{i_{1}, i_{2}, \ldots, i_{\lambda_{(2,0)}}\right\}=\left\{i \mid\{p, q\} \subset y_{i}^{(L)} \in \tilde{Y}^{(L)}\right\} .
$$

We observe that $\rho\left(p, q ; \tilde{Y}^{(R)}\right)$ is a $2-\left(v_{2}, k_{2}, \lambda_{(2,2)}\right)$ design. This will be the key fact in the algorithm. We use this fact as a condition to fix the right (ordered) projection $\tilde{Y}^{(R)}$.

The essential idea of the algorithm is the following. We choose one $2-\left(v_{1}, k_{1}, \lambda_{(2,0)}\right)$ design as the left (ordered) projection $Y^{(L)}$. The right (ordered) projection $\tilde{Y}^{(R)}$ is unknown. Denote $c=(\emptyset, \ldots, \emptyset)$ of length $\lambda_{(0,0)}$. Since $\rho\left(p, q ; \tilde{Y}^{(R)}\right)$ for $\{p, q\} \subset V_{1}$ is a $2-\left(v_{2}, k_{2}, \lambda_{(2,2)}\right)$ design, we assign one 2- $\left(v_{2}, k_{2}, \lambda_{(2,2)}\right)$ design to $\rho(p, q ; c)$. We do this for all choices of $\{p, q\} \subset V_{1}$. If we find a c that is consistent with all conditions from $\rho(p, q ; c)$, then we take it as $\tilde{Y}^{(R)}$.

5.2 Examples for tight relative 2-designs

Example 1. One trivial example for tight relative 2-design (i.e., $(2,2)-\left(v_{1}, k_{1}, v_{2}, k_{2}, \lambda_{(2,2)}\right)$ design) Y is the product of a symmetric 2- $\left(v_{1}, k_{1}, \lambda_{1}\right)$ design $Y^{(L)}$ and a symmetric 2- $\left(v_{2}, k_{2}, \lambda_{2}\right)$ design $Y^{(R)}$ with the same cardinality and $\lambda_{1} \cdot \lambda_{2}=\lambda_{(2,2)}$. Namely,

$$
Y=\left\{\left(y_{i}, y_{j}\right) \mid y_{i} \in Y^{(L)}, y_{j} \in Y^{(R)}, 1 \leq i \leq v_{1}, 1 \leq j \leq v_{2}\right\} .
$$

Example 2. Tight relative 2-designs on X_{3} in $J(14,7)$, i.e., tight (2, 2)-(7, 3, 7, 3, 1) designs.

Using the algorithm, we obtain many tight (2, 2)-(7, 3, 7, 3, 1) designs. Since both the left and right projections of a $(2,2)-(7,3,7,3,1)$ design are $2-(7,3,7)$ designs, take the second $2-(7,3,7)$ design on Spence's homepage [10] as the left projection. We give two examples which is constructed from that 2-($7,3,7$) design. Let

$$
\begin{aligned}
& Y_{1}=\left\{\left(y_{i_{1}}, y_{j_{1}}\right),\left(y_{i_{2}}, y_{j_{2}}\right),\left(y_{10}, y_{j_{1}}\right) \mid i_{\ell} \in I_{\ell}, j_{\ell} \in J_{\ell}, \ell=1,2\right\}, \\
& \left.Y_{2}=\left\{\left(y_{i_{1}}, y_{j_{1}}\right),\left(y_{i_{2}}, y_{j_{2}}\right),\left(y_{10}, y_{j_{3}}\right)\right) \mid i_{\ell} \in I_{\ell}, j_{m} \in J_{m}, \ell=1,2, m=1,1,3 .\right\}
\end{aligned}
$$

where $I_{1}=\{1,2,3,4,7,9\}, I_{2}=\{5,6,8,11\}, J_{1}=\{1,2,3,4,7,9\}, J_{2}=\{10\}, J_{3}=$ $\{1,12,13,14,15,9\}$. Here y_{i} denotes the i-th block of the list given below.

$$
\begin{aligned}
& \{1,2,3\},\{1,4,5\},\{1,6,7\},\{2,4,6\},\{2,4,7\},\{2,5,6\},\{2,5,7\},\{3,4,6\},\{3,4,7\},\{3,5,6\}, \\
& \{3,5,7\},\{1,4,6\},\{1,5,7\},\{2,4,5\},\{2,6,7\} .
\end{aligned}
$$

Then both Y_{1} and Y_{2} are tight $(2,2)-(7,3,7,3,1)$ designs with the following distance sets.

$$
\begin{aligned}
& A\left(Y_{1}\right)=\{(0,2),(2,0),(2,2),(1,2),(3,2)\} \\
& A\left(Y_{2}\right)=\{(0,2),(2,0),(2,2),(2,1),(2,3),(1,2),(3,2)\}
\end{aligned}
$$

Example 3. A tight relative 2-design on X_{4} in $J(26,13)$, i.e., tight $(2,2)-(13,4,13,4,1)$ design.

Both the left and right projections of a $(2,2)-(13,4,13,4,1)$ design are 2-(13, 4, 13) designs. It is known that there is a unique symmetric $2-(13,4,1)$-design \mathcal{D}_{13} up to automorphism. Take twelve copies of \mathcal{D}_{13} and one more design by permuting the points of \mathcal{D}_{13} labelled by 12 and 13 , then we have a $2-(13,4,13)$ design as the left projection $Y^{(L)}$. Using the algorithm, we construct a tight $(2,2)-(13,4,13,4,1)$ design Y in the following.

$$
Y=\left\{\left(y_{i_{1}}, y_{j_{1}}\right),\left(y_{i_{2}}, y_{j_{2}}\right),\left(y_{i_{3}}, y_{18}\right) \mid i_{\ell} \in I_{\ell}, j_{m} \in J_{m}, \ell=1,2,3, m=1,2\right\},
$$

where $I_{1}=\{1,4,7,8,10,22,30\}, I_{2}=\{13,16,20,23,26,29\}, I_{3}=\{14,15,19,24,27,28\}$, $J_{1}=\{1,4,7,8,10,13,16,20,22,23,26,29,30\}, J_{2}=\{2,3,5,6,9,11,12,17,21,25,31,32\}$. Here y_{i} denotes the i-th block of the list given below

$$
\begin{aligned}
& \{1,2,3,4\},\{1,2,3,13\},\{1,4,7,12\},\{1,5,6,7\},\{1,5,9,11\},\{1,6,8,10\},\{1,8,9,10\}, \\
& \{1,11,12,13\},\{2,4,9,10\},\{2,5,8,11\},\{2,5,8,12\},\{2,6,7,11\},\{2,6,9,12\},\{2,6,9,13\}, \\
& \{2,7,10,12\},\{2,7,10,13\},\{3,4,8,11\},\{3,5,7,10\},\{3,5,9,12\},\{3,5,9,13\},\{3,6,9,12\}, \\
& \{3,6,10,11\},\{3,7,8,12\},\{3,7,8,13\},\{4,5,6,13\},\{4,5,10,12\},\{4,5,10,13\},\{4,6,8,12\}, \\
& \{4,6,8,13\},\{4,7,9,11\},\{7,8,9,13\},\{10,11,12,13\} .
\end{aligned}
$$

The distance set of Y equals

$$
A(Y)=\{(0,3),(1,3),(2,3),(3,0),(3,1),(3,2),(3,3),(3,4),(4,3)\} .
$$

5.3 Tight relative 3-designs on one shell of $J(v, k)$

In this subsection, we will discuss the existence problem of tight relative 3-designs (Y, w) in $J(v, k)$ on one shell with constant weight, i.e., $w=1$.

Let $V_{1}=u_{0}, V_{2}=V \backslash u_{0}$. We introduce the notation

$$
Y_{\left(W_{1}, W_{2}\right)}^{\left(U_{1}, U_{2}\right)}=\left\{\left(y_{1}-W_{1}, y_{2}-W_{2}\right) \mid\left(y_{1}, y_{2}\right) \in \phi(Y), W_{i} \subset y_{i} \subset V_{i}-U_{i}\right\},
$$

where W_{i} and U_{i} are subsets of V_{i} such that $W_{i} \cap U_{i}=\emptyset$ for $i=1,2$. Using the proof of Proposition 4.3, if there exists a tight relative 3-design Y on one shell X_{r} of $J(v, k)$, then we have four tight $\{(2,2)\}$-designs $Y_{(\alpha, \beta)}^{(\emptyset, \emptyset)}, Y_{(\alpha, \emptyset)}^{(\emptyset, \beta)}, Y_{(\emptyset, \beta)}^{(\alpha, \emptyset)}$ and $Y_{(\emptyset, \emptyset)}^{(\alpha, \beta)}$ respectively in product association schemes $J\left(v_{1}^{\prime}, k_{1}-1\right) \otimes J\left(v_{2}^{\prime}, k_{2}-1\right), J\left(v_{1}^{\prime}, k_{1}-1\right) \otimes J\left(v_{2}^{\prime}, k_{2}\right), J\left(v_{1}^{\prime}, k_{1}\right) \otimes J\left(v_{2}^{\prime}, k_{2}-1\right)$ and $J\left(v_{1}^{\prime}, k_{1}\right) \otimes J\left(v_{2}^{\prime}, k_{2}\right)$, where $v_{1}^{\prime}=k-1, v_{2}^{\prime}=v-k-1$ and

$$
\left(k_{1}, k_{2}\right)= \begin{cases}(r, r), & \text { if } 1 \leq r \leq \frac{k}{2}, \\ (k-r, r), & \text { if } \frac{k}{2}<r \leq \frac{v-k}{2}, \\ (k-r, v-k-r), & \text { if } \frac{v-k}{2}<r \leq k-1 .\end{cases}
$$

According to the computer search, there is only one family of possible parameters, i.e., $(v, k, r)=(8 u, 4 u, 2 u)$ when $v \leq 3000$.

We can construct a tight relative 3 -design on one shell $X_{2 u}$ in $J(8 u, 4 u)$. Choose any tight relative 2-design on one shell $X_{2 u-1}$ in $J(8 u-2,4 u-1)$ as $Y_{(\alpha, \beta)}^{(\emptyset, \varnothing)}$. Replacing the left (resp. right) projection of $Y_{(\alpha, \beta)}^{(0, \emptyset)}$ by its complementary design, then this new design is $Y_{(\alpha, \emptyset)}^{(\emptyset, \beta)}$ (resp. $\left.Y_{(\emptyset, \beta)}^{(\alpha, \phi)}\right)$. Replace both the left and right projection of $Y_{(\alpha, \beta)}^{(\emptyset, \emptyset)}$ by their complementary designs and denote this new design as $Y_{(0, \emptyset)}^{(\alpha, \beta)}$. Define the sets $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ as follows.

$$
\begin{aligned}
& Y_{1}=\left\{\left(Y^{\prime} \cup\{\alpha\}, Y^{\prime \prime} \cup\{\beta\}\right) \mid\left(Y^{\prime}, Y^{\prime \prime}\right) \in Y_{(\alpha, \beta)}^{(\emptyset, \emptyset)}\right\}, \\
& Y_{2}=\left\{\left(Y^{\prime} \cup\{\alpha\}, Y^{\prime \prime}\right) \mid\left(Y^{\prime}, Y^{\prime \prime}\right) \in Y_{(\alpha, \emptyset)}^{(\emptyset, \beta)}\right\}, \\
& Y_{3}=\left\{\left(Y^{\prime}, Y^{\prime \prime} \cup\{\beta\}\right) \mid\left(Y^{\prime}, Y^{\prime \prime}\right) \in Y_{(\emptyset, \beta)}^{(\alpha, \emptyset)}\right\}, \\
& Y_{4}=Y_{(\varnothing, \emptyset)}^{(\alpha, \beta)} .
\end{aligned}
$$

Then $Y=Y_{1} \cup Y_{2} \cup Y_{3} \cup Y_{4}$ is a tight relative 3-design on the shell $X_{2 u}$ in $J(8 u, 4 u)$.

5.4 Further problem

According to the computer search, if $r \leq \frac{k}{2}$, then we get the following table for the possible parameters of tight relative 2-designs on one shell X_{r} in $J(v, k)$, (i.e., tight (2,2)-(k,r,v$\left.k, r, \lambda_{(2,2)}\right)$ designs).

v	14	22	26	29	30	32	32	37	37	38	\cdots
k	7	11	13	13	15	11	16	15	16	19	\cdots
r	3	5	4	6	7	5	6	7	6	9	\cdots
$\lambda_{(2,2)}$	1	4	1	5	9	2	4	6	3	16	\cdots

There are two interesting two families in the table above, namely, $\left(k, r, \lambda_{(2,2)}\right)=\left(u^{2}+u+\right.$ $1, u+1,1)$ and $\left(k, r, \lambda_{(2,2)}\right)=\left(4 u-1,2 u-1,(u-1)^{2}\right)$ for integer $u \geq 2$. We obtained some non-trivial examples for the first family when $u=2,3,4,5$. Problem one is the general construction for tight relative 2-designs with the possible parameters from the above two families.

According to the computer search for $v \leq 3000$, there is only one family of parameters $(v, k, r)=(8 u, 4 u, 2 u)$ for tight relative 3 -designs and we can construct such designs if the tight relative 2 -designs involved exist. Problem two is whether all the tight relative 3designs on one shell of $J(v, k)$ have the parameter $(v, k, r)=(8 u, 4 u, 2 u)$.

References

[1] Eiichi Bannai, Etsuko Bannai, Sho Suda, and Hajime Tanaka. On relative t-designs in polynomial association schemes. Electronic Journal of Combinatorics, 22(4):4-47, 2015.
[2] Eiichi Bannai, Etsuko Bannai, and Yan Zhu. Relative t-designs in binary Hamming association scheme $H(n, 2)$. Designs, Codes and Cryptography, 84:23-53, 2017.
[3] Eiichi Bannai and Tatsuro Ito. Algebraic combinatorics. Benjamin/Cummings Menlo Park, 1984.
[4] Eiichi Bannai and Yan Zhu. Tight t-designs on one shell of Johnson association schemes. European Journal of Combinatorics, 80:23-36, 2019.
[5] Ph Delsarte. An algebraic approach to the association schemes of coding theory. PhD thesis, Universite Catholique de Louvain., 1973.
[6] Ph Delsarte. Pairs of vectors in the space of an association scheme. Philips Res. Rep, 32(5-6):373-411, 1977.
[7] Ph Delsarte and J J Seidel. Fisher type inequalities for euclidean t-designs. Linear Algebra and its Applications, 114:213-230, 1989.
[8] William J Martin. Mixed block designs. Journal of Combinatorial Designs, 6(2):151163, 1998.
[9] William J Martin. Designs in product association schemes. Designs, Codes and Cryptography, 16(3):271-289, 1999.
[10] Edward Spence. Webpage: http://www.maths.gla.ac.uk/~es/bibd/7-3-7.

College of Science
University of Shanghai for Science and Technology
Shanghai 200093
CHINA
E-mail address: zhuyan@usst.edu.cn

