A note on holographic structures

Koichiro Ikeda *
Faculty of Business Administration
Hosei University

Abstract

We show that there exists a generic structure which is holographic but not ω-categorical.

1 Holographic structures

We assume that a language L is finite and relational.
Definition 1.1 ([1]) Let M be an L-structure, and $n \in \omega$.

1. M is said to be n-oligomorphic, if the number of orbits of $\operatorname{Aut}(M)$ on M^{n} is finite.
2. M is said to be oligomorphic, if it is n-oligomorphic for every n.

Note 1.2 It is known that M is oligomorphic if and only if it is ω categorical.

Definition 1.3 ([2]) An L-structure M is said to be holographic, if it is height (L)-oligomorphic, where height $(L)=\max \{\operatorname{arity}(R): R \in L\}$.

In many cases, holographic structures are ω-categorical. In [2], Kasymkanuly and Morozov construct a holographic structure which is not ω-categorical. Their example is a kind of plane structure. In this short note, we prove that there exists a generic structure which is holographic but not ω-categorical.

[^0]
2 Generic graphs

The basics of generic structures can be found in [3].
In this note, a graph means a simple graph: A structure $A=(A, R)$ with a binary relation R is a graph if and only if R is irreflexive and symmetric. Then A denotes a set of vertices in (A, R), and R^{A} a set of edges in (A, R).

Let A, B, C, \cdots denote graphs. A predimension $\delta(A)$ of a finite graph A is defined by $\delta(A)=|A|-\alpha\left|R^{A}\right|$, where $0<\alpha \leq 1$. For finite A, B, we write $\delta(A / B)=\delta(A \cup B)-\delta(A)$.

For finite A, B with $A \subset B, A$ is said to be closed in B (written $A \leq B)$, if $\delta(X / A) \geq 0$ for any $X \subset B-A$. It is noted that if $A \leq B$ then $A \cap X \leq B \cap X$ for any $X \subset B$.

For (possibly) infinite $A, B, A \leq B$ is defined by $A \cap X \leq B \cap X$ for any finite $X \subset B$.

For $A \subset B$, it can be seen that there is the smallest C with $A \subset$ $C \leq B$. This C is called the closure of A in B, and denoted by $\operatorname{cl}_{B}(A)$.

Let \mathbf{K} be a class of finite graphs. Then a countable graph M is said to be a (\mathbf{K}, \leq)-generic, if it satisfies the following:

- if $A \subset_{\text {fin }} M$ then $A \in \mathbf{K}$;
- if $A \subset M$ and $A \leq B \in \mathbf{K}$, then there is a $B^{\prime} \leq M$ with $B^{\prime} \cong_{A} B$;
- if $A \subset_{\text {fin }} M$ then $\operatorname{cl}_{M}(A)$ is finite.

For A, B, C with $A=B \cap C, B \perp{ }_{A} C$ is defined by $R^{B \cup C}=R^{B} \cup R^{C}$. $D=B \oplus_{A} C$ is a graph with $D=B \cup C$ and $R^{D}=R^{B} \cup R^{C}$.

Note 2.1 $B \perp_{A} C$ implies $\delta(B / C)=\delta(B / A)$.
Proof. Since $B \perp_{A} C$, we have $R^{B \cup C}-R^{C}=\left(R^{B} \cup R^{C}\right)-R^{C}=$ $R^{B}-R^{A}$. Then $\delta(B / C)=\delta(B \cup C)-\delta(C)=|B-C|-\alpha\left|R^{B \cup C}-R^{C}\right|=$ $|B-A|-\alpha\left|R^{B \cup C}-R^{A}\right|=\delta(B / A)$.
(\mathbf{K}, \leq) is said to have the free amalgamation property (FAP), if whenever $A \leq B \in \mathbf{K}, A \leq C \in \mathbf{K}$ and $B \perp_{A} C$, then $B \oplus_{A} C \in K$.

Fact 2.2 If (\mathbf{K}, \leq) has FAP, then there is a (\mathbf{K}, \leq)-generic graph.
Fact 2.3 Let M be a (\mathbf{K}, \leq)-generic graph. If $A, A^{\prime} \leq$ fin M and $A \cong A^{\prime}$ then $\operatorname{tp}(A)=\operatorname{tp}\left(A^{\prime}\right)$.

3 The construction

Let $\alpha=\frac{1}{2}$, i.e., $\delta(A)=|A|-\frac{1}{2}\left|R^{A}\right|$. Let \mathbf{K} be the class of all finite structures A satisfying that

- $\emptyset \in \mathbf{K}$;
- $|A| \leq 2$, or $\delta\left(A^{\prime}\right) \geq 2$ for any $A^{\prime} \subset A$ with $\left|A^{\prime}\right| \geq 3$.

Note that $\emptyset \neq A \in \mathbf{K}$ implies $\delta(A) \geq 1$. Clearly \mathbf{K} is closed under substructures.

Lemma $3.1(\mathbf{K}, \leq)$ has FAP.
Proof. Take A, B, C with $A \leq B \in \mathbf{K}, A \leq C \in \mathbf{K}$ and $B \perp_{A} C$. We want to show that $D=B \oplus_{A} C \in \mathbf{K}$. Take any $X \subset D$ with $|X| \geq 3$. For $Y \subset D$, let X_{Y} denote $X \cap Y$. Since $B \perp_{A} C$, we have $X_{B} \perp_{X_{A}} X_{C}$. We can assume that $X_{B}-X_{A} \neq \emptyset$ and $X_{C}-X_{A} \neq \emptyset$.

First, suppose that $\delta\left(X_{B}\right) \geq 2$. By Note 2.1, $\delta(X)=\delta\left(X_{C} / X_{B}\right)+$ $\delta\left(X_{B}\right)=\delta\left(X_{C} / X_{A}\right)+\delta\left(X_{B}\right) \geq 0+2=2$, and hence $X \in \mathbf{K}$.

Next, suppose that $\delta\left(X_{C}\right) \geq 2$. Then we have $X \in \mathbf{K}$ as in the first case.

So we can suppose that $\delta\left(X_{B}\right)<2$ and $\delta\left(X_{C}\right)<2$. If $X_{A}=\emptyset$, then $\delta(X)=\delta\left(X_{B}\right)+\delta\left(X_{C}\right) \geq 1+1 \geq 2$, and hence $X \in \mathbf{K}$. If $X_{A} \neq \emptyset$, then $\left|X_{B}\right|,\left|X_{C}\right| \geq 2$, and so $\delta\left(X_{B}\right)=\delta\left(X_{C}\right)=\frac{3}{2}$. Then $X_{A}=\{a\}, X_{B}=\{b, a\}$ and $X_{C}=\{c, a\}$ with $D \models R(b, a)$ and $D \models R(c, a)$. So $\delta(X)=3-\frac{1}{2} \cdot 2=2$, and hence $X \in \mathbf{K}$.

By Lemma 3.1, there exists the (\mathbf{K}, \leq)-generic graph M.
Lemma 3.2 M is holographic.
Proof. We want to show that M is 2-oligomorphic. Take any $A, A^{\prime} \subset$ M with $A \cong A^{\prime}$ and $|A|=\left|A^{\prime}\right|=2$. Note that $A, A^{\prime} \leq M$ since $\delta(A), \delta\left(A^{\prime}\right) \leq 2$. By Fact $2.3, \operatorname{tp}(A)=\operatorname{tp}\left(A^{\prime}\right)$. Hence the number of orbits of $\operatorname{Aut}(M)$ on M^{2} is finite.

Lemma 3.3 Let A be a graph of size 3 with no edges. Then, for each $n \in \omega$, there is a $B \in \mathbf{K}$ with $A \subset B, \operatorname{cl}_{B}(A)=B$ and $|B|=3 n+4$.

Proof. Take any $n \in \omega$. Let $A=\left\{a_{0}, a_{0}^{\prime}, a_{0}^{\prime \prime}\right\}$. Take $a_{1}, a_{1}^{\prime}, a_{1}^{\prime \prime}, \cdots$, $a_{n}, a_{n}^{\prime}, a_{n}^{\prime \prime}, b$ satisfying

- $R\left(a_{i}, a_{i+1}\right), R\left(a_{i}^{\prime}, a_{i+1}\right), R\left(a_{i}^{\prime}, a_{i+1}^{\prime}\right), R\left(a_{i}^{\prime \prime}, a_{i+1}^{\prime}\right), R\left(a_{i}, a_{i+1}^{\prime \prime}\right), R\left(a_{i}^{\prime \prime}, a_{i+1}^{\prime \prime}\right)$ for each $i \leq n$;
- $R\left(a_{n}, b\right), R\left(a_{n}^{\prime}, b\right), R\left(a_{n}^{\prime \prime}, b\right)$.

Let $B=\left\{a_{i}, a_{i}^{\prime}, a_{i}^{\prime \prime}: 0 \leq i \leq n\right\} \cup\{b\}$. Then it is easily checked that $B \in \mathbf{K}, \operatorname{cl}_{B}(A)=B$ and $|B|=3 n+4$.

Lemma 3.4 M is not 3-oligomorphic.
Proof. Take any n. Let A_{n} be a graph of size 3 with no relations. By Lemma 3.3, we can take $B_{n} \in \mathbf{K}$ such that $A_{n} \subset B_{n}, \operatorname{cl}_{B_{n}}\left(A_{n}\right)=B_{n}$ and $\left|B_{n}\right|=3 n+4$. Since $B_{n} \in \mathbf{K}$, we can assume that $B_{n} \leq M$. Then $\operatorname{cl}_{M}\left(A_{n}\right)=\operatorname{cl}_{B_{n}}\left(A_{n}\right)=B_{n}$. So if $n \neq m$ then $\operatorname{tp}\left(A_{n}\right) \neq \operatorname{tp}\left(A_{m}\right)$ since $\left|\mathrm{cl}_{M}\left(A_{n}\right)\right| \neq\left|\mathrm{cl}_{M}\left(A_{m}\right)\right|$. Therefore the number of orbits on M^{3} is infinite. Hence M is not 3 -oligomorphic.

Theorem 3.5 There is a countable graph M which is holographic but not ω-categorical.

4 Stable 1-based structures

Let T be a complete theory and \mathcal{M} a big model. T is said to be 1based, if $C b(\bar{e} / A) \subset \operatorname{acl}(\bar{e})$ for any tuple $\bar{e} \in \mathcal{M}$ and any algebraically closed $A \subset \mathcal{M}^{e q} . T$ is said to have weak elimination of imaginaries, if, for any $e \in \mathcal{M}^{e q}$ there is a tuple $\bar{c} \in M$ with $e \in \operatorname{dcl}(\bar{c})$ and $c \in \operatorname{acl}(e)$.

Theorem 4.1 Let M be a holographic structure with the following conditions:

- M is countably saturated,
- $\operatorname{Th}(M)$ is stable 1-based
- $\operatorname{Th}(M)$ has weak elimination of imaginaries.

Then M is ω-categorical.
Proof. Suppose by way of contradiction that M is not ω-categorical. Then there is $n \geq$ height (L) such that M is n-oligomorphic but not $(n+1)$-oligomorphic. For simplicity, we assume that $n=2$. Then there are elements $a, b, c_{1}, c_{2}, \ldots$ in M with $\operatorname{tp}\left(c_{i} / a b\right) \neq \operatorname{tp}\left(c_{j} / a b\right)$ and
$\operatorname{tp}\left(c_{i}\right)=\operatorname{tp}\left(c_{j}\right)$ for each i, j with $i \neq j$. For $i \in \omega$, let $E_{i}=C b\left(c_{i} / a b\right)$. Since M is 1-based, then we have $E_{i} \subset \operatorname{acl}\left(c_{i}\right)$. On the other hand, we have $\operatorname{tp}\left(c_{i} E_{i}\right) \neq \operatorname{tp}\left(c_{j} E_{j}\right)$ since $\operatorname{tp}\left(c_{i} / a b\right) \neq \operatorname{tp}\left(c_{j} / a b\right)$. Since $\operatorname{tp}\left(c_{1}\right)=$ $\operatorname{tp}\left(c_{i}\right)$, for each $i \in \omega$ there is an elementary map σ_{i} with $\sigma\left(c_{j}\right)=c_{1}$. Then we have $\operatorname{tp}\left(\sigma_{i}\left(E_{i}\right) / c_{1}\right) \neq \operatorname{tp}\left(\sigma_{j}\left(E_{j}\right) / c_{1}\right)$. Since $\operatorname{Th}(M)$ has weak elimination of imaginaries, $\operatorname{acl}\left(c_{1}\right)$ is infinite (in $\left.\mathcal{M}\right)$. Hecne M is not 2-oligomorphic. A contradiction.

References

[1] Peter J. Cameron, Oligomorphic permutation groups, London Mathematical Society Lecture Note Series 152, 1990
[2] B. Kasymkanuly and A. S. Morozov, On holographic structures, Sib. Math. J. 60 (2019)
[3] Frank Wagner, Relational structures and dimensions. Automorphisms of first-order structures, Oxford Sci. Publ. 1994.

[^0]: *The author is supported by Grants-in-Aid for Scientific Research (No.20K03725).

