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ON THE AUTOMORPHISM GROUPS OF HRUSHOVSKI’S
PSEUDOPLANES ASSOCIATED TO SMALL RATIONAL
NUMBERS
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GRADUATE SCHOOL OF SYSTEM INFORMATICS
KOBE UNIVERSITY

ABSTRACT. The automorphism groups of Hrushovski’s pseudoplanes
associated to rational numbers @ with 1/3 > o > 1/4 are simple groups.

1. INTRODUCTION

D. Evans, Z. Ghadernezhad, and K. Tent have shown that the automor-
phisms groups of certain countable structures obtained by using the Hrushov-
ski amalgamation method are simple groups. Among them, there are generic
structure of K for certain f with coefficient 1 /2 for the predimension func-
tion. They conjectured that the automorphism group of the generic structure
of Ky is a simple group if the coefficient of the predimension function for
K is rational.

In this paper, we show that the automorphism groups of Hrushovski’s
original “pseudoplanes” associated to a predimension function with ratio-
nal coefficients @ with 1/3 > o > 1/4 is a simple group. Similar argument
shows the simplicity of the automorphism groups when 1/2 > o > 0. The
statement holds in the case 1 > o > 1/2 as well, but we need more argu-
ment. The Method by D. Evans, Z. Ghadernezhad, and K. Tent works in
the case a = 1/2. We are going to treat the general case with 1 > a > 0 in
another paper [15].

We essentially use notation and terminology from Baldwin-Shi [3] and
Wagner [16]. We also use some terminology from graph theory [4].
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For a set X, [X]" denotes the set of all subsets of X of size n, and |X| the
cardinality of X.

We recall some of the basic notions in graph theory we use in this pa-
per. These appear in [4]. Let G be a graph. V(G) denotes the set of ver-
tices of G. Vertices will be also called points. E(G) is the set of edges
of G. E(G) is a subset of [V(G)]%. |G| denotes |V(G)| and e(G) denotes
|E(G)|. The degree of a vertex v is the number of edges at v. A vertex of
degree 1 is a leaf. A vertex of degree 2 or more is a node. G is a path
X0X1 - .- Xk if V(G) = {)Co,)q g ,xk} and E(G) = {xo)q ZX1X2, .0 ,xk_lxk}
where the x; are all distinct. xp and x; are ends of G. The number of
edges of a path is its length. A path of length O is a single vertex. G
is a cycle xpxy ...x;_1xo if kK >3, V(G) = {x0,x1,...,x%_1} and E(G) =
{x0x1,X1X2, .., Xk 2Xk_1,Xk_1X0 } Where the x; are all distinct. The number
of edges of a cycle is its length. A non-empty graph G is connected if any
two of its vertices are linked by a path in G. A connected component of
a graph G is a maximal connected subgraph of G. A forest is a graph not
containing any cycles. A tree is a connected forest.

To see a graph G as a structure in the model theoretic sense, it is a struc-
ture in language {E'} where E is a binary relation symbol. V(G) will be the
universe, and E(G) will be the interpretation of E. The language {E} will
be called the graph language.

Suppose A is a graph. If X C V(A), A|X denotes the substructure B of A
such that V(B) = X. If there is no ambiguity, X denotes A|X. We usually
follow this convention. B C A means that B is a substructure of A. A sub-
structure of a graph is an induced subgraph in graph theory. A|X is the same
as A[X] in Diestel’s book [4].

We say that X is connected in A if X 1s a connected graph in the graph
theoretical sense [4]. A maximal connected substructure of A is a connected
component of A.

Let A, B, C be graphs such that A C C and B C C. AB denotes C|(V(A)U
V(B)),ANBdenotes C|(V(A)NV(B)), and A — B denotes C|(V(A) —V(B)).
If ANB =0, E(A,B) denotes the set of edges xy such that x € A and y € B.
We put e(A,B) = |E(A,B)|. E(A,B) and e(A,B) depend on the graph in
which we are working.

Let D be a graph and A, B, and C substructures of D. We write D = B&4 C
if D=BC, BNC=A, and E(D) =E(B)UE(C). E(D)=E(B)UE(C)
means that there are no edges between B—A and C —A. D is called a free

217



28

amalgam of B and C over A. If A is empty, we write D = B&C, and D is
also called a free amalgam of B and C.

Definition 1.1. Let o be a real number such that 0 < o < 1.

(1) For a finite graph A, we define a predimension function § by §(A) =
Al —e(A)c.

(2) Let A and B be substructures of a common graph. Put 6(A/B) =
O0(AB) — 6(B).

Definition 1.2. Let A and B be graphs with A C B, and suppose A is finite.
A < B if whenever A C X C B with X finite then 6(A) < §(X).
A < B if whenever A C X C B with X finite then §(A) < §(X).
We say that A is closed in Bif A < B.
A <~ Bif whenever A C X C B with X finite then §(A) < 6(X).

Let Ky be the class of all finite graphs A such that 0 < A.
Some facts about < appear in [3, 16, 17]. Some proofs are given in [12].

Fact 1.3. Let A and B be disjoint substructures of a common graph. Then
O0(A/B)=6(A)+e(A,B).

Fact14. fA<BCDand CC DthenANC < BNC.

Fact 1.5. Let D =B®4C.
(1) 6(D/A) =8(B/A)+6(C/A).
(2) IfA < C then B < D.
3) IfA<Band A < C then A < D.

Let B, C be graphs and g : B — C a graph embedding. g is a closed
embedding of B into C if g(B) < C. Let A be a graph with A C Band A C C.
g is a closed embedding over A if g is a closed embedding and g(x) = x for
any x € A.

In the rest of the paper, K denotes a class of finite graphs closed under
isomorphisms.

Definition 1.6. Let K be a subclass of Ky. (K, <) has the amalgama-
tion property if for any finite graphs A, B,C € K, whenever g; : A — B and
g2 1A — C are closed embeddings then there is a graph D € K and closed
embeddings /1 : B— D and g> : C — D such that hj o gy = hy 0 go.

K has the hereditary property if for any finite graphs A, B, whenever A C
B cKthenA € K.



K is an amalgamation class if @ € K and K has the hereditary property
and the amalgamation property.

A countable graph M is a generic structure of (K, <) if the following
conditions are satisfied:

(1) If A € M and A is finite then there exists a finite graph B C M such
that A C B < M.

(2) If AC M then A € K.

(3) Forany A, B€ K, if A <M and A < B then there is a closed embed-
ding of B into M over A.

Let A be a finite structure of M. There is a smallest B satisfying A C B <
M, written cl(A). The set cl(A) is called the closure of A in M.

Fact 1.7 ([3, 16, 17]). Let (K, <) be an amalgamation class. Then there is
a generic structure of (K, <). Let M be a generic structure of (K, <). Then
any isomorphism between finite closed substructures of M can be extended
to an automorphism of M.

Definition 1.8. Let K be a subclass of K. (K, <) has the free amalgama-
tion property if whenever D = B4 C with B,C € K, A < B and A < C then
D e K.

By Fact 1.5 (2), we have the following.

Fact 1.9. Let K be a subclass of Ko. If (K, <) has the free amalgamation
property then it has the amalgamation property.

Definition 1.10. Let R" be the set of non-negative real numbers. Sup-
pose f: Rt — RT is a strictly increasing concave (convex upward) un-
bounded function. Assume that £(0) =0, and f(1) < 1. We assume that f
is piecewise smooth. f7 (x) denotes the right-hand derivative at x. We have
fx+h) < f(x)+ fi(x)h for h > 0. Define Ky as follows:

K,={AcKy|BCA=5B)>f(B|)}

Note that if Ky is an amalgamation class then the generic structure of
(K¢, <) has a countably categorical theory [17].

A graph X is normal to f if §(X) > f(|X|). A graph A belongs to K if
and only if U is normal to f for any substructure U of A.

2. THEOREMS BY EVANS, GHADERNEZHAD, AND TENT

In this section, we fix a generic structure M of K. Many of the following
definitions and facts are by Evans, Ghadernezhad, and Tent [5].
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Definition 2.1. Let A C M. Aut(M/A) denotes the set of automorphisms of
M fixing A pointwise. Let b € M. orb(b/A) denotes the Aut(M /A)-orbit of
b. So, orb(b/A) ={o(b)| o € Aut(M/A)}.

Definition 2.2. Let A C M be finite. The dimension d(A) of A is defined by
d(A) = 8(cl(A)). Let BC M be also finite. The relative dimension d(A/B)
is defined by d(A/B) = d(AB) — d(B).

Replace M by any graph G. Then we represent the corresponding dimen-
sions by dg(A) and dg(A/B).

Definition 2.3. Suppose b € M and A < M with A finite. We say that b is
basic over A if b ¢ A and whenever A C C < M and d(b/C) < d(b/A) then
b € C. In this case, orb(b/A) is called a basic orbit over A.

Definition 2.4. We say that M is monodimensional if for every finite A < M
and basic orbit D over A there is a finite B < M with M = cl(BD) and A C B.

Definition 2.5. Suppose A < M and b € M a single element. b L A if
cl(bA) = bA and d(b/A) = d(b).

Fact 2.6. Suppose A < M and by,by, € M be single elements. If by 1. A and
by 1 A then by and by are conjugate over A in M.

Proof. Suppose by 1. A and by 1. A. We have cl(b1A) = b 1A by the defini-
tion. So, 6(b1/A) = 8(b) = 1. This means that there are no edges between
by and A. By the same argument, there are no edges between b, and A.
Hence, 1A and byA are isomorphic over A and also b|A < M and b,A < M.
Therefore, the partial isomorphism between b1A and byA over A can be
extended to an automorphism of M by Fact 1.7. U

Fact 2.7. If M = cl(AD) for some finite A < M and a basic orbit D over A
then M is monodimensional.

Fact 2.8. If M is monodimensional then the automorphism group of M is a
simple group.

3. HRUSHOVSKI’S BOUNDARY FUNCTIONS

Definition 3.1 ([7]). Let a be a positive real number. We define x,, e,
ky, d, for integers n > 1 by induction as follows: Put x; =2 and e; = 1.
Assume that x, and ¢, are defined. Let r,, be a smallest rational number r
such that r = k/d > a with d < e, where k and d are positive integers. Let



kn/d, be a reduced fraction with k, /d,, = r,. Finally, let x, 1 = x,, + ky,, and
ent1 = en+dy.

Let ap = (0,0), and a, = (x,,x, — en&) for n > 1. Let f be a function
from R to R whose graph on interval [x,,x,+1] with n > 0 is a line seg-
ment connecting a, and a,1. We call fo a Hrushovski’s boundary function
associated to .

Fact 3.2 ([7]). Let fy be a Hrushovski’s boundary function and {x;}, {e;},
{ki}, {d;} sequences in the definition of fq.

Suppose C is an extension of B by x points and z edges, |B| > x, and
x/z > kn/dy for some n, and B is normal to fy. Then C is normal to fg.

Fact 3.3 ([7]). Let D=B®4C. If 6(A) < 8(B), 6(A) < 6(C), and A, B, C
are normal to fy then D is normal to f.

Fact 3.4 ([7]). Let & be a real number with 0 < o« < 1. Then f is strictly
increasing and concave, and (K, , <) has the free amalgamation property.
Therefore, there is a generic structure of (Ky,,<). Any one point structure
is closed in any structure in Ky, . If & is rational then fq is unbounded.

Definition 3.5. Two positive rational numbers 3, B are called a Farey pair
if there are positive integers h, k, ', k' such that B = h/k, B’ = W' /k', and
hk" — W'k = 1. Note that B > B’ in this case and h/k and /' /k" are reduced
fractions. Let B” = (h+h')/(k+ k). B” is called a mediant of  and B’.

The following lemma follows from well-known properties of Farey se-
quences (Farey series) [6]. It is a good exercise to prove it directly.

Lemma 3.6. Let h/k and i’ /k' be reduced fractions which are a Farey pair.
Let u, v be positive integers.
(1) Ifu/v>Hn/k withv <k+k thenu/v> h/k.
(2) If h/k > u/v >N /K thenv > k+K.
(3) Let W' /K" be the mediant of h/k and W' /k'. Then h/k and h" /K" are
a Farey pair and h" /K" and I /K’ are a Farey pair.
(4) Suppose B and B’ are a Farey pair, and 'y and Y are a Farey pair.
If the mediant of B and B’ and the mediant of Y and Y are the same

then B =yand B’ =Y.
The following is easy.

Lemma 3.7. (1) Let C = A®), B where p is a single vertex and A,B €
Kf. Then C € Kf.
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(2) Any finite forests belong to Ky.

Lemma 3.8. Suppose 1/3 > o« =c/d > 1/4 where c/d is a reduced frac-
tion. Let k > 0 be an integer satisfying (k+2)/(3k+7) > a > (k+1)/(3k+
4).
(1) The first several terms of the sequences defining fq are given by the
following chart:

xi|2 3 45 k+4 k+5
ei|1 2 4 7 -+ 3k+4 3k+7
kK11 111 - 1 k+2
di|l 2 3 3 ... 3 3k+7

(2) Suppose C is an extension of B by x points and 7z edges, |B| > 4,
(3/4)|B| > z, x/z > a, and B is normal to fy. Then C is normal to
fa-

(3) Let B = a/b be a reduce fraction such that B and o are a Farey
pair with 0 < b < a. Let By = (a+kc) /(b+ kd) with integers k > 1.
Then there are ig < iy with k;,/d;, = B and ki, /d;, = B1. If i > i
then xi1p —xiy1—a > 2(xjr1 —xi—a) and fo(xiv1) — fo(xi) =1/d.

Proof. (1) Starting from x; = 2, e; = 1, the value is obvious up to x3 =4
and e3 =4. Since 1/3 > a > 1/4, d3 cannot be 4. Hence, k3/d3 =1/3. 1/3
and (k+ 1)/(3k+4) are a Farey pairs. So, for any u/v with u/v > ot > (k+
1)/(3k+4) and v < 3k+ 7 we have u/v > 1/3. Hence, we have x; = k+5
and e¢; = 3k + 7 for some i. Since (k+2)/(3k+7) and (k+1)/(3k+4) are
Farey pairs, (k+2)/(3k+7) is the best approximation of ¢ strictly from
above with a denominator at most 3k + 7.

(2) Choose i satisfying x; < |B| < xij1+1. Since x3 =4 < |B|, 4 < x;. Then
xi < ejand k;/d; < 1/3. Also, we have d; < e;. So, |B| < xjiy1 =xi+k <
ei+(1/3)e; = (4/3)e;. Hence, z < (3/4)|B| < e;. By the choice of k;/d;,
we have x/z > k;/d;. Since x; < |B|, C is normal to f, by Fact 3.2.

(3) Consider Farey pairs among f3;’s and «. Proof is left to the readers.

U

4. SPECIAL STRUCTURES

We associate sequences of vectors to rational numbers. Let S and S’ be a
sequence of vectors of a same size. SS’ denotes the concatenation of S and
S’. Sk denotes the concatenation of k copies of S. ¥ S denotes the sum of all
terms in S. (vy,vo,---) denotes a sequence with explicit terms.



Definition 4.1. We define a special sequence for oo with 1/3 > a > 1/4
inductively as follows:

((1,3)) is a unique special sequence for 1/3. ((1,4)) is a unique special
sequence for 1/4.

Let B and y be a Farey pair, and & the mediant of 8 and y. Suppose S| and
S, are special sequences for 8 and y respectively. Then the concatenation
of §1 and S is a special sequence for «.

Proposition 4.2. Let B and y be a Farey pair with 1/3 > 3 > v > 1/4 and
suppose special sequences S1 and Sy exists for B and v respectively. Let o
be a rational number with B > o > Y. Then there exists uniquely a special
sequence for o.. Moreover, the special sequence for o is a concatenation of
copies of S| and S5.

Proof. Represent these rational numbers in reduced fraction forms, say o =
u/v, B =x/y, y=_z/w. We prove the statement by induction on v— (y+w).

Let 0 = (x+2z)/(y+w). 0 is the mediant of  and y. Then & > 0, o0 = 6,
or 6 > . Let S3 be the concatenation of S| and S5.

Case 1: a = 0. In this case, S3 is a special sequence for o¢. Uniqueness
follows from Lemma 3.6 (4).

Case 2: o > 6. Then B > a > 6, B and O are a Farey pair. We have
v > y+ (y+w) > y+w. By induction hypothesis, there is a unique special
sequence for o which can be obtained by concatenating S; and S3. Since S3
is a concatenation of S; and S,, the statement holds.

Case 3: 6 > «. Similar to Case 2. U

Lemma 4.3. Let oo = c¢/d be a reduced fraction with 1/3 > o > 1 /4. Let S
be the special sequence for C.

(1) £ = (c,d).

(2) Let S’ be a non-empty proper prefix of S. Let (u,v) =Y.S. Then
ulv> .

(3) Let S' be a non-empty consecutive subsequence of S. Let (u,v) =
Y'S. Thenu/(v—1) > a.

Proof. The statements are true for &« = 1/3, 1/4. Let B and 7y be a Farey
pair such that ¢ is their mediant. Let 2/k = 8 and /' /K’ = y be reduced
fractions. Let S; and S, be special sequences for 3, y respectively. By
induction hypothesis, S; and $; satisfies (1) — (3). § = 515> is the special
sequence for .
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(1) is clear. We show (2). Let S’ be a non-empty prefix of S, and put
(u,v) =Y.8". If & is a proper prefix of S1, then u/v > B > a. Otherwise,
we can write §' = §155 where S} is a non-empty proper prefix of S,. Put
(W' V') =Y S, Thenu'/v' > 7. Together with h/k = B > v, we have u/v =
(h+u")/(k+V') > 7. Also, we have v < k+k’ = d. o and 7 are a Farey
pair. Hence u/v > a by Lemma 3.6 (1).

We can show (3) similarly. UJ

Lemma 4.4. Let oo = ¢/d be a reduced fraction with 1 /3 > a0 > 1/4, and S
the special sequence for . Let S’ be a consecutive subsequence of S" with
n>1, and put (u,v) =Y.8". Thenu/(v—1) > a.

Proof. We prove by induction on n. The statement holds if n = 1 by Lemma
4.3 (3).

Suppose 1 > 1. Then " = §"~1S. If §’ is a subsequence of " !, then
u/(v—1) > a by the induction hypothesis.

Suppose ' = S8, with §) is a subsequence of S| and S, is a non-empty
prefix of S. Put (uy,v;) =Y. 5] and (uz,v2) =Y. S5. Wehaveu; /(vi—1) >«
by induction hypothesis, and uy /v, > o by Lemma 4.3 (2). Since u =
upt+upandv—1=(vi—1)+vy, wehaveu/(v—1) > a. O

Definition 4.5. Let S be a special sequence of o with 1/3 > a > 1/4. We
can assume that S = ((1, fo), (1, f1),---, (1, fn_1)).

A graph W is called a twig for o if W = LF, L is a path pop;...pn—1
where 7 is a length of S, F is the set of all leaves of W where each leaf in F
is adjacent to some p;, the number of leaves in F' adjacent to pg is fo, and the
number of leaves in F adjacent to p; is fi— 1 foreachiwith 1 <i<n—1.
L is called the main path of W. Note that L consists of the nodes of W. pg
is called the left most node of W.

A graph W is called a wreath for o if W = CF, Cisacycle pop1 ... pm—1P0
where m is a multiple of n, F is the set of all leaves of W where each leaf
in F is adjacent to some p;, and the number of leaves in F' adjacent to p; is
fimodn — 1 foreach i with 0 <i < m.

A substructure B of W is full if a node p of W belongs to B then any
leaves g of W adjacent to p belongs to B.

Lemma 4.6. Let W be a twig or a wreath for ., F the set of leaves of W.
(1) 8(W/F) =0.
(2) Let B be a proper substructure of W. If B— F is non-empty then
0o (B/BNF) > 0.



Proof. Let W be a twig for a. Let S be the special sequence for , n the
length of S, L the main path of W, and F the set of leaves of W. Let B be a
substructure of W. Let By, ..., By be the list of connected components of B.
Then §(B/F) =Y.', 8(B;/F).

So, we can assume that B is connected. Hence, BN L is a path in L. Let
BNL = py--- py respecting the order of S. Let B be the full substructure of
W with B NL=BNL. B = B or B’ can be obtained by adding some edges
to B. Hence, 6(B) > 6(B').

Let " be the subsequence of S corresponding to py--- p,. Let (u,v) =
Y S'. Then 8§(B'/F) =u—vo if py is the left most node of W, and 8 (B’ /F) =
u— (v—1)a otherwise. By Lemma 4.3, we have (1) and (2).

If W is a wreath for o, we can argue similarly using S¥ for some k instead
of S. Ul

Lemma 4.7. Let B = a/b and a. = c/d be two reduced fractions which are
a Farey pair. Let W be a twig for B, and F the set of leaves of W.

(1) 0q(W/F)=1/d.

(2) Let B be a proper substructure of W. If B— F is non-empty then
O0u(B/BNF) > 1/d.

(3) Suppose W is a closed substructure of a generic structure. Then a
node of W is basic over F.

Proof. (1) W has a nodes and b edges. Since ad — bc = 1, we have a —
b(c/d)=1/d.

(2) Let x be the number of nodes of W in B and z be the number of edges
in B. By Lemma 4.6 (2), we have x/z > 3 > a. Since b < d, x/z and
cannot be a Farey pair by Fact 3.6 (2). We have xd — z¢ > 0 and xd — zc # 1.
Hence, x —zc/d > 1/d.

(3) Clear from the definition of basic elements. L]

5. MONODIMENSIONALITY

Proposition 5.1. Suppose 1/3 > a=c/d > 1/4 and c, d are positive inte-
gers. Let B = a/b where b < d, ad —bc = 1, and a, b are positive integers.
Let G be a graph such that G = B&r W where W is a wreath for o, F is the
set of leaves of W, B= ®4{By | q € F}, each B is a twig for B, A the set of
common leaves of By, q is the left most node of By, and F N\ By = {q}. Let
C be the cyclein W.
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(1) Let G' be a substructure of G. If G'NC is a path in C then G’ is
normal to fy.
(2) If C is sufficiently large then G belongs to Ky,,.

Proof. (1) Since 1/3 and 1/4 are a Farey pairand 1/3 >c¢/d > 1/4,d =4
or 34+ 7 <d. Hence, 3 <d. Since a/b and c/d are a Farey pair and b <
d, We have 1/3 > a/b by Lemma 3.6 (1). Let k > 0 be an integer with
(k+2)/(Bk+7) >0 > (k+1)/(3k+4).

Case A:a=c/d = (k+1)/(3k+4).

In this case, a/b = 1/3. ((1,3))((1,4)) is a special sequence for a.

If pop1--- pxPrs1 is a path in C with e(po,F) = 3, then e(p;, F) = 2 for
i= 1, ceey k, and e(pk+1,F) =3.

Since a/b =1/3, |A| = 3 and each B, for g € F is isomorphic to K 3 (a
star with 3 leaves in A and a single node in F). For each p € C, e(p,F) is 2
or 3.

LetC'=G'NC, F'=G'NF,B =G NB, and A’ = G’ NA. Note that
B' = A’F’. We can assume C’' = py - -- py respecting the order of the special
sequence for a.

Subcase Al: e(p;, F') =2 forany i < £, and e(py,F') > 2.

Assume 1 < ¢. We have |G'| — |B| = £. There are 2 edges from p; to F’.
For i with 1 <i < /¢ —1, there is 1 edge from p; to p;_1, and 2 edges from
pi to F'. There is 1 edge from p; to py_1, and at most 3 edges from p, to
F'. Hence, we have e(G') —e(B') <2+3(¢—2)+4 =3(. We have |B'| > 4
because py # py and e(p1,F') =2 and e(py, F') > 2, and by the structure
of G. So, G’ is normal to f, by Fact 3.2 and Lemma 3.8.

Assume ¢ = 1. If e(py, F') = 3, then |B'| > 3. G’ is an extension of B’ by
1 point and 3 edges. If |B’| = 3 then G’ must be a tree. Hence, G’ is normal
to fo. If |B'| > 4, then G’ is normal to fy by Fact 3.2 and Lemma 3.8.

Subcase A2: e(p;, F') > 2 forany i < /.

Let F/ be the set of points in F’ adjacent to p;. Let G =A'F{---F/p,--- p;.
We have G = G'.

If there are no i with 1 <i < ¢ and e(p;,F') = 3 then G’ is normal to fy
by Subcase Al.

Otherwise, let i; be a smallest i satisfying e(p;,F') =3 and 1 <i <.
Then G, is normal to fo by Subcase Al,

Claim 1. Suppose G'; is normal to fo with e(p;,F') = 3. Then G' is normal
to fq.



We prove the claim by induction on the number of p; satisfying e(p;, F') =
3and j<i< /.

Suppose there are no i with e(p;, F') =3 and j <i < {. Thene(p;, F') =2
and there is 1 edge from p; to p;_1 for any i with j <i < £. We have G =
GiF'pjt1-+pe. S0, |G| |GF'| =L~ j,and e(G') — e(G}F') = 3(£ — j).
We can assume that j < ¢. Hence, |B’| > 4. Therefore, G’ is normal to fy
by Fact 3.2 and Lemma 3.8.

Suppose there is i with e(p;, F') =3 and j < i < {. Let j’ be a smallest i
with e(p;, F') =3 and j <i < (. Since e(p;,F') =3 and e(p;,F') = 3, we
have j/ > j+k+1.

Suppose j' = j+k+ 1. Let g1, g2, g3 be points in F" adjacent to p;. Put
Gy = GiFj1- Fiq1q2. We have G, = G'ypjy1-+ pjikpjir193. Note
that e(p;,G) =3 for j+1<i< j+k e(pjiit1,G}) =4, and e(q3,G) =
|A'[. So, |G| = |G| =k+2,and e(G')) — e(G}) < 3k+4+|A']. If [A'| <2
then e(G';) —e(G')) < 3(k+2). Slnce e(pj, Fj) =3, we have |G}| > 4.
Hence, |G| > |G| > 4. Therefore, G/, is is normal to fy by Fact 3.2
and Lemma 3.8. If |A| = 3 then ¢(G;) —e(G')) = 3k+7. In this case,
|G| =2k +2+|G)| > 2k+6 > 2k +5. Therefore, G/, is is normal to fg
by Fact 3.2 and Lemma 3.8.

Suppose j/ > j+k+1. Let j/ = j+ (k+2+k") with ¥ > 0. Put G’j”:
G)Fjy1-Fy. Putz=e(G') —e(G/) and x = |G'| = |G/|. Thenx=k+k'+
2,and z=3(k+1+k)+4=3(k+k')+7. Wehave x/z> (k+2)/(3k+7).
, G;.’,’| > |G/J| +2k+2k' +2 43 > k+5. Therefore, G’ is
normal to fy by Fact 3.2 and Lemma 3.8.

Subcase A3: C' = py---pyis apathin C.

By induction on the number of i with e(p;, F') < 1, we can reduce this
subcase to Subcase A2.

If there is no i with e(p;, F') = 1, and 1 < i </, then the case is Subcase
A2.

Suppose e(p;,F') =1, and 1 < i < £. Then G’ is an extension of G’ — p;
with 1 point and 3 edges. If A" is empty then G’ is a tree. Hence, G’ belongs
to K. We can assume A’ is non-empty. So, we have |G’ — p;| > 4. Hence,
it is enough to show that G’ — p; is normal to fy. G’ — p; is a free amalgam
over B’ of two substructures satisfying the condition of Subcase A3.

There are several other cases to consider, but they can be handled simi-
larly.
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We have proved (1) for Case A.

CaseB: (k+2)/(3k+7)>a=c/d > (k+1)/(3k+4).

(k+2)/(3k+7) and (k+1)/(3k+4) are a Farey pair. So, we have
3k+7 < d by Lemma 3.6 (2). B and « are also a Farey pair. Hence (k +
2)/(3k+7) > 3 by Lemma 3.6 (1).

Note that ((1,3))**1((1,4)) and {(1,3))¥((1,4)) are special sequences
for (k+2)/(3k+7) and (k+1)/(3k+4) respectively. By Proposition 4.2,
special sequences for B and o are concatenations of copies of these se-
quences.

PutC'=GNC,F =G nNF,A =G nNA,B =G nNB, B' G' N B, for
each g € F. Let F), be the set of points in F' adjacent to p € C’

Note that there are three points in A which are adjacent to any points in
F.Let A ={aj,as,a3} be the set of such three points.

Subcase B1: C' = py--- py, €(pi,F') > 2 foreach p;=1, ..., ¢, and BZI
has at least 2 nodes (i.e. \B; —A| > 2) for any ¢ in F’ adjacent to some point
inC'.

We have

e(C'B')y—e(B) = (C’)+e(C’ B

- (_1+Zepla

i=
4
= p17 Z 1+ep17

Suppose e(p;, F') = 2. Let g and ¢’ be 2 points adjacent to p;. Then
|B,B,, —A’| > 4. Hence, (1+e(p;,F"))/|B,B, —A'| < 3/4.

Suppose e(p;,F') = 3. Let q, ¢’ and ¢” be 3 points adjacent to p;. Then

Therefore, (e (C’B’) —e(B))/|B'| <3/4. So, (e(C'B")—e(B')) < (3/4)|B'|.
We also have B’ < B'C’ by Lemma 4.6. Thus, ¢/(e(C'B') —e(B')) > a
Hence, G’ = B'C’ is normal to f, by Lemma 3.8 (2).

Subcase B2: C' = py---p; and e(p;, F') > 2 foreach p; =1, ..., L.

Note that normality of G’ to f, depends only on |G| and e(G’). Sup-
pose pig and p;q’ are edges between C’ and F’. Removing these edges
and put p;q’ and p;q as new edges will not change |G'|, e(G'), e(pi, F'),



and e(p;,F’). So, we can assume that if p; is adjacent to ¢ € F" with
|B; —A’| =2 and p; is adjacent to ¢’ € F' with |B), —A’| = 1 then i < j.

Put Gi =B} ---Bip1--- pi.

Let ip be a largest i < ¢ satisfying e(p;,F’) = 3 and |B, — A’| > 2 for any
three ¢ in F’ adjacent to p;.

Suppose such ip exists. Then Ggo is normal to fy by Subcase B1.

If there is no such iy, let i; be a smallest i satisfying e(p;,F’) = 3. Sup-
pose such 7 exists. Then G;l is normal to fy by the argument in Subcase
A2 of Case A. If there are no such ip and i; then G’ is normal to to f, by
the argument in Subcase Al of Case A.

Now, we can show the following claim as in Subcase A2 of Case A. Note
that g € F" and |B;, —A’| = 1 then By is a star with at most 3 edges.

Claim 2. Suppose G'; is normal to fo with e(p;,F') = 3. Then G' is normal
to fq.

Therefore, G’ is normal to f, in Subcase B2 also.

Subcase B3: C' = p;--- py is a path in C.
Same way as in Subcase A3 in Case A.

(2) Let G’ be any substructure of G.

Case 1: G NC #C.

Let Cy, ..., C,, be the connected components of G' N C. For each i, B'C;
is normal to fy by (1), and B’ < B'C; also. Hence, G is normal to fj,.

Case2: GNC=C.

Suppose that G’ N F is a proper substructure of F. By exchanging two
edges between C and F if necessary, we can assume that e(p,F’) = 1 for
some p € C with e(p,F) =2. G’ — p is normal to fy by Case 1. Then G’ is
an extension of G’ — p by 1 point and 3 edges. Since C is sufficiently large,
we can assume that |G’ — p| > 4. Hence, G’ is normal to f.

Now, we can assume that W C G'.

B = ®a{B, | g € F} is a member of K;,. We have |B| = A +a|F
0(B) =|A|+(1/d)|F| because 84 (B;/A) =1/d foreach g € F.

Let B’ be a substructure of B’. Then |B’| < |B|. By Lemma 4.6, §(B’) >
|A|+ (1/d)|F|if A" = B'NA = A. Suppose |A’| < |A|. Then any substruc-
tures B, of B, with B, NA = A’ is a proper substructure of B;. So, we
have 0q(B;/A") > 2/d by Lemma 4.7. Hence, 6(B') > |A'| + (2/d)|F]|.
Comparing |A'| 4 (2/d)|F| and |A|+ (1/d)|F|, for sufficiently large F, we

, and
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have |A’| + (2/d)|F| > |A| + (1/d)|F|. Therefore, for sufficiently large F,
we have 8(B') > |A|+ (1/d)|F| for any substructures B’ of B with F C B'.
On the other hand, |A|+ (1/d)|F]| is a linear function of |B| = |A| + a|F]|.
Therefore, there is a linear function f(x) with positive coefficient such that
f1(|B]) = 6(B), and 8(B') > 8(B) for any substructures B’ of B with F C B’
if | B| is sufficiently large.

Since, B is normal to fy, we have fj(x) > fo(x). By Lemma 3.8 (3),
fa I(y) behave like exponential function. So, for sufficiently large x, we
have fi(x) > fo(2x).

Let F be sufficiently large. Suppose F C B’ C B. Then 6(B') > &(B)
F1(BD) > fu(21B]) > fu(2IB')). Since |C| < |F| < |B'|, 5(B'C) = 5(B
fa(2|B'|) > fo(|B'C|). Therefore, G’ = B'C is normal to fy.

IV

Definition 5.2. Let 8 and « be a Farey pair with 1/3 > 8 > a > 1/4. Let
B be a twig for B, b a node of B and A the leaves of B.

(G,c) is called a basic tower for o over A if A < G, ¢ € G and c¢ has dis-
tance at least 2 from A, F C G, and B, for each ¢ € F such that dg(c/F) =0,
A < B, <G, q€ B, and (By,q) is isomorphic to (B,b) over A.

Note that if G is a closed substructure of a generic structure, then the
elements in F are basic over A and are pairwise conjugate over A.

Proposition 5.3. (1) Let G be the structure in Proposition 5.1. Let ¢ be
a point in the cycle of W. Then (G,c¢) is a basic tower for o over A.
(2) Let (G,c) be a basic tower for @ over A. Let H =D Qp W where W
is a wreath for o, F is the set of leaves of W, D = ®4{G, | g € F},
each G is isomorphic to G over A, and FN G, = {q}.
If W is sufficiently large then choosing ¢’ from the main cycle of
W, (H,c") is a basic tower for a over A. Moreover, dp(c'/A) >

dg(c/A).

The proof is easier than that for Proposition 5.1. We can use Lemma 3.8
(2).

Using this proposition many times, we can show that there is a basic
tower (G”,¢") over A such that dgv(c” /A) > 1. This means that Ac” < G”.
Embed G” in the generic structure as a closed substructure. Then ¢” is in
the closure of a basic orbit over A, and ¢” 1. A. As in [14], we can prove the
following theorem.



Theorem 5.4. Let o be a rational number with 1/3 > o > 1/4. Then the
generic structure M of Ky, is monodimensional. Therefore, the automor-
phism group of M is a simple group.
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