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ABSTRACT. The automorphism groups of Hrushovski's pseudoplanes 

associated to rational numbers a with 1 /3 > a 2: 1 / 4 are simple groups. 

1. INTRODUCTION 

D. Evans, Z. Ghadernezhad, and K. Tent have shown that the automor-
phisms groups of certain countable structures obtained by using the Hrushov-
ski amalgamation method are simple groups. Among them, there are generic 
structure of K1 for certain f with coefficient 1 /2 for the predimension func-
tion. They conjectured that the automorphism group of the generic structure 
of K1 is a simple group if the coefficient of the predimension function for 
K f is rational. 
In this paper, we show that the automorphism groups of Hrushovski's 
original "pseudoplanes" associated to a predimension function with ratio-
nal coefficients a with 1 /3 > a~I/ 4 is a simple group. Similar argument 
shows the simplicity of the automorphism groups when 1 /2 > a > 0. The 
statement holds in the case 1 > a> I/2 as well, but we need more argu-
ment. The Method by D. Evans, Z. Ghadernezhad, and K. Tent works in 
the case a = I /2. We are going to treat the general case with 1 > a > 0 in 
another paper [15]. 
We essentially use notation and terminology from Baldwin-Shi [3] and 
Wagner [16]. We also use some terminology from graph theory [4]. 
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For a set X, [X『denotesthe set of all subsets of X of size n, and IX I the 
cardinality of X. 
We recall some of the basic notions in graph theory we use in this pa-
per. These appear in [ 4]. Let G be a graph. V (G) denotes the set of ver-
tices of G. Vertices will be also called points. E(G) is the set of edges 
of G. E(G) is a subset of [V(G)]2. IGI denotes IV(G)I and e(G) denotes 
IE(G)I. The degree of a vertex vis the number of edges at v. A vertex of 
degree 1 is a leaf A vertex of degree 2 or more is a node. G is a path 

xox1 ... xk if V(G) = {xo,x1, ... 汲}and E(G) = {xox1 ,x区2,・ ・ ・,Xk-I秋｝
where the Xi are all distinct. xo and Xk are ends of G. The number of 
edges of a path is its length. A path of length O is a single vertex. G 
is a cycle xox1 ... xk-Ixo if k~3, V(G) = {xoぶ1,... ,xk-d and E(G) = 
{xox1,x直2,... ぷk-2知 1ぶk-I xo} where the Xi are all distinct. The number 
of edges of a cycle is its length. A non-empty graph G is connected if any 
two of its vertices are linked by a path in G. A connected component of 
a graph G is a maximal connected subgraph of G. A forest is a graph not 
containing any cycles. A tree is a connected forest. 
To see a graph G as a structure in the model theoretic sense, it is a struc-
ture in language { E} where E is a binary relation symbol. V (G) will be the 
universe, and E (G) will be the interpretation of E. The language { E} will 
be called the graph language. 
Suppose A is a graph. If XこV(A),AIX denotes the substructure B of A 
such that V(B) = X. If there is no ambiguity, X denotes AIX. We usually 
follow this convention. B~A means that B is a substructure of A. A sub-
structure of a graph is an induced subgraph in graph theory. A IX is the same 
as A[X] in Diestel's book [4]. 
We say that X is connected in A if X is a connected graph in the graph 
theoretical sense [ 4]. A maximal connected substructure of A is a connected 
component of A. 
Let A, B, C be graphs such that AこCandBこC.AB denotes Cl(V(A)しl
V(B)),AnB denotes Cl(V(A) nV(B)), andA-B denotes Cl(V(A)-V(B)). 
If A nB = 0, E(A,B) denotes the set of edges xy such that x EA and y EB. 
We put e(A,B) = IE(A,B) I-E(A,B) and e(A,B) depend on the graph in 
which we are working. 
LetD be a graph and A, B, and C substructures of D. We write D = B叡 C
if D = BC, B n C = A, and E(D) = E(B) U E(C). E(D) = E(B) U E(C) 
means that there are no edges between B-A and C -A. Dis called afree 
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amalgam of B and C over A. If A is empty, we write D = BRC, and D is 
also called a free amalgam of Band C. 

Definition 1.1. Let a be a real number such that O < a < I. 

(1) For a finite graph A, we define a predimension function 8 by 8(A) = 
IAl-e(A)a. 
(2) Let A and B be substructures of a common graph. Put 8(A/B) = 
8(AB) -8(B). 

Definition 1.2. Let A and B be graphs with AこB,and suppose A is finite. 
A~B if whenever AこXこBwith X finite then 8(A)~8(X). 
A< B if whenever A~X こ Bwith X finite then 8(A) < 8(X). 
We say that A is closed in B if A< B. 
A<-B if whenever A~X~B with X finite then 8(A) < 8(X). 

Let Ka be the class of all finite graphs A such that 0 < A. 
Some facts about< appear in [3, 16, 17]. Some proofs are given in [12]. 

Fact 1.3. Let A and B be disjoint substructures of a common graph. Then 
8(A/B) = 8(A) +e(A,B). 

Fact 1.4. If A < B~D and CこDthen An C < B n C. 

Fact 1.5. Let D = BRAC. 
(1) 8(D/A) = 8(B/A) + 8(C/A). 
(2) If A < C then B < D. 
(3) If A< Band A< C then A< D. 

Let B, C be graphs and g: B→ C a graph embedding. g is a closed 
embedding of B into C if g(B) < C. Let A be a graph with AこBandAこC.
g is a closed embedding over A if g is a closed embedding and g(x) = x for 
any x EA. 
In the rest of the paper, K denotes a class of finite graphs closed under 
isomorphisms. 

Definition 1.6. Let K be a subclass of Ka. (K, <) has the amalgama-
tion property if for any finite graphs A,B,C EK, whenever g1 : A→ Band 
g2 :A→ C are closed embeddings then there is a graph D E K and closed 
embeddings h 1 : B→ D andg2: C→ D such that h1 o g1 = h2咽 2・
K has the hereditary property if for any finite graphs A, B, whenever Aこ
B E K then A E K. 
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K is an amalgamation class if 0 E K and K has the hereditary property 
and the amalgamation property. 
A countable graph M is a generic structure of (K, <) if the following 
conditions are satisfied: 

(1) If A S:: Mand A is finite then there exists a finite graph BS:: M such 
thatAこB<M.
(2) If AこMthenAEK. 
(3) For any A, B E K, if A < M and A < B then there is a closed embed-
ding of B into M over A. 

Let A be a finite structure of M. There is a smallest B satisfying AこB<
M, written cl(A). The set cl(A) is called the closure of A in M. 

Fact 1.7 ([3, 16, 17]). Let (K, <)bean amalgamation class. Then there is 
a generic structure of (K, <). Let M be a generic structure of (K, <). Then 
any isomorphism between finite closed substructures of M can be extended 
to an automorphism of M. 

Definition 1.8. Let K be a subclass of Ka. (K, <) has the free amalgama-
tion property if whenever D = B @AC with B, CE K, A <Band A < C then 
DEK. 

By Fact 1.5 (2), we have the following. 

Fact 1.9. Let K be a subclass of Ka. If (K, <) has the free amalgamation 
property then it has the amalgamation property. 

Definition 1.10. Let応 bethe set of non-negative real numbers. Sup-
pose f: 政十→ 艮+is a strictly increasing concave (convex upward) un-
bounded function. Assume that f(O) = 0, and f(l):::; 1. We assume that f 
is piecewise smooth. f~(x) denotes the right-hand derivative at x. We have 
f(x+h)さf(x)+ f~(x)h for h > 0. Define KJ as follows: 

K1= {A E Ka I BこA⇒o(B) 2: f(IBI)}. 
Note that if K1 is an amalgamation class then the generic structure of 
(Kゎ<)has a countably categorical theory [17]. 
A graph Xis normal to f if o(X) 2: f(IXI)-A graph A belongs to K1 if 
and only if U is normal to f for any substructure U of A. 

2. THEOREMS BY EVANS, GHADERNEZHAD, AND TENT 

In this section, we fix a generic structure M of K f. Many of the following 
definitions and facts are by Evans, Ghademezhad, and Tent [5]. 
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Definition 2.1. Let A~M. Aut(M /A) denotes the set of automorphisms of 
M fixing A pointwise. Let b EM. orb(b/A) denotes the Aut(M/A)-orbit of 
b. So, orb(b/A) = {cr(b) I cr E Aut(M/A)}. 

Definition 2.2. Let A~M be finite. The dimension d (A) of A is defined by 
d(A) = 8(cI(A)). Let BC M be also finite. The relative dimension d (A/B) 
is defined by d(A/B) = d(AB) -d(B). 
Replace M by any graph G. Then we represent the corresponding dimen-
sions by叱(A)and叱(A/B).

Definition 2.3. Suppose b E M and A < M with A finite. We say that b is 
basic over A if b (j_ A and whenever AこC<Mand d(b/C) < d(b/A) then 
b EC. In this case, orb(b/A) is called a basic orbit over A. 

Definition 2.4. We say that M is monodimensional if for every finite A < M 
and basic orbit Dover A there is a finite B < M with M = cI(BD) and AこB.

Definition 2.5. Suppose A < M and b E M a single element. b ..1_ A if 
cI(bA) = bA and d(b/A) = d(b). 

Fact 2.6. Suppose A < M and b心 EM be single elements. If b1 ..l_ A and 
b2 ..l_ A then b1 and b2 are conjugate over A in M. 

Proof Suppose b1 ..l_ A and b2 ..l_ A. We have cl(b1A) = b1A by the defini-
tion. So, 8(bi/A) = 8(b1) = 1. This means that there are no edges between 
b1 and A. By the same argument, there are no edges between b2 and A. 
Hence, b1A and b叫 areisomorphic over A and also b』 <Mandb叫 <M.
Therefore, the partial isomorphism between b1A and b叫 overA can be 
extended to an automorphism of M by Fact 1.7. ロ

Fact 2.7. If M = cl(AD) for some finite A <Mand a basic orbit Dover A 
then M is monodimensional. 

Fact 2.8. If M is monodimensional then the automorphism group of M is a 
simple group. 

3. HRUSHOVSKI'S BOUNDARY FUNCTIONS 

Definition 3.1 ([7]). Let a be a positive real number. We define Xn, en, 
kn, 心forintegers n 2:'. 1 by induction as follows: Put x1 = 2 and e1 = 1. 
Assume that Xn and en are defined. Let r n be a smallest rational number r 
such that r = k / d > a with d :S en where k and d are positive integers. Let 
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島/dnbe a reduced fraction with kn/dn = rn. Finally, letxn+l = Xn +kn, and 

en+l = en +dn. 
Let ao = (0, 0), and an= (xnぷn-ena) for n 2 1. Let fa be a function 
from町 to股+whose graph on interval [xnぶn+l]with nミ0is a line seg-
ment connecting an and an+l・We call fa a Hrushovski's boundary function 
associated to a. 

Fact 3.2 ([7]). Let fa be a Hrushovski's boundary function and {均},{ ei}, 
{ki}, {di} sequences in the definition of fa. 
Suppose C is an extension of B by x points and z edges, IBI 2 Xn and 
x/z 2 kn/ dnfor some n, and Bis normal to fa-Then C is normal to fa-

Fact 3.3 ([7]). Let D = B叡 C.If 8(A) < 8(B), 8(A) < 8(C), and A, B, C 

are normal to fa then D is normal to fa• 

Fact 3.4 ([7]). Let a be a real number with O < a<  1. Then fa is strictly 

increasing and concave, aりd(K la, <) has the free amalgamation property. 
Therefore, there is a generic structure of (KJa, <). Any one point structure 

is closed in any structure in Kfa・If a is rational then fa is unbounded. 

Definition 3.5. Two positive rational numbers {3, {3'are called a Farey pair 
if there are positive integers h, k, h', le such that f3 = h/k, /3'= h'/k', and 
hk'-h'k = I. Note that f3 > /3'in this case and h / k and h'/ k'are reduced 
fractions. Let f311 = (h + h') / (k +le). {3" is called a mediant of f3 and /3'. 

The following lemma follows from well-known properties of Farey se-
quences (Farey series) [6]. It is a good exercise to prove it directly. 

Lemma 3.6. Let h/k and h'/k'be reduced fractions which are a Farey pair. 
Let u, v be positive integers. 

(1) lf u/v > h'/k'with v < k+ k'then u/v 2 h/k. 
(2) lfh/k > u/v > h'/le then v 2 k+k'. 
(3) Leth" /k" be the mediant of h/k and h'/le. Then h/k and h" /le'are 
a Farey pair and h" /le'and h'/k'are a Farey pair. 
(4) Suppose f3 and {3'are a Farey pair, and y and y are a Farey pair. 
lfthe mediant of f3 and {3'and the mediant ofy and y are the same 
then f3 = y and {3'= y. 

The following is easy. 

Lemma 3.7. (1) Let C = ARpB where pis a single vertex and A,B E 

K1. Then CE K1・
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(2) Any finite forests belong to K1. 

Lemma 3.8. Suppose I /3 > a = c / d~I/ 4 where c / d is a reduced frac-
tion. Let k~0 be an integer satisfying (k+ 2) / (3k+ 7) > a~(k+ 1) / (3k+ 
4). 

(1) The first several terms of the sequences defining fa are given by the 
following chart: 

ロ
k+4 
3k+4 
1 
3 

k+5 
3k+7 

k+2 
3k+7 

(2) Suppose C is an extension of B by x points and z edges, IBI 2 4, 
(3/4)IBI 2 z, x/z > a, and Bis normal to fa-Then C is normal to 
fa-
(3) Let /3 = a/b be a reduce fraction such that /3 and a are a Farey 

pair with O < b < a. Let f3k = (a + kc)/ (b + kd) with integers k 2 1. 
Then there are io < i1 with ki。/di。=/3 and ki1/di1 = /31. /f iミi1
then Xi+2 -Xi+ 1 -aミ2(xi+I-xi-a) and fa(xi+1)-fa(ふ） = l/d. 

Proof (1) Starting from x1 = 2, e1 = 1, the value is obvious up to x3 = 4 

and e3 = 4. Since 1/3 > aミ1/4,d3 cannot be 4. Hence, k3/d3 = 1/3. 1/3 
and (k+ 1)/(3k+4) are a Farey pairs. So, for any u/v with u/v > a 2 (k+ 
1)/(3k+4) and v < 3k+ 7 we have u/vミ1/3.Hence, we have xi= k+5 
and ei = 3k+ 7 for some i. Since (k+ 2)/(3k+ 7) and (k+ 1)/(3k+ 4) are 
Farey pairs, (k + 2) / (3k + 7) is the best approximation of a strictly from 
above with a denominator at most 3k + 7. 

(2) Choose i satisfying Xi~IBI < Xi+l• Since x3 = 4~IBI, 4~Xi- Then 
Xi~ei and ki/di~1/3. Also, we have di~ei. So, IBI < Xi+l =Xi+ ki~ 
eけ (l/3)ei= (4/3)ei. Hence, z~(3/4)IBI < ei. By the choice of ki/di, 
we have x/z 2 ki/di. Since Xi~IBI, C is normal to fa by Fact 3.2. 
(3) Consider Farey pairs among f3k's and a. Proof is left to the readers. 

ロ

4. SPECIAL STRUCTURES 

We associate sequences of vectors to rational numbers. Let S and S'be a 
sequence of vectors of a same size. SS'denotes the concatenation of S and 
S'. sk denotes the concatenation of k copies of S. ES denotes the sum of all 
terms in S. 〈vi,v2, ... 〉denotesa sequence with explicit terms. 
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Definition 4.1. We define a special sequence for a with 1 /3~a~l / 4 
inductively as follows: 
〈(1,3)〉.1s a umque special sequence for 1/3. 〈(1,4)〉isa unique special 
sequence for 1 / 4. 
Let /3 and y be a Farey pair, and a the mediant of /3 and y. Suppose S 1 and 
ふarespecial sequences for /3 and y respectively. Then the concatenation 
of S1 and S2 is a special sequence for a. 

p roposit10n 4.2. Let /3 and y be a Farey pair with l /3~/3 > y~1 / 4 and 
suppose special sequences S 1 and S2 exists for /3 and y respectively. Let a 
be a rational number with /3 > a > y. Then there exists uniquely a special 
sequence for a. Moreover, the special sequence for a is a concatenation of 
copies of S1 and S2. 

Proof. Represent these rational numbers in reduced fraction forms, say a = 
u/v, /3 =x/y, r= z/w. We prove the statement by induction on v-(y+w). 
Let 0 = (x+z)/(y+w). 0 is the mediant of /3 and y. Then a> 0, a= 0, 
or 0 >a.Letふbethe concatenation of S1 and S2. 
Case 1: a= 0. In this case, S3 is a special sequence for a. Uniqueness 
follows from Lemma 3.6 (4). 
Case 2: a > 0. Then /3 > a > 0, f3 and 0 are a Farey pair. We have 
v > y+ (y+w) > y+w. By induction hypothesis, there is a unique special 
sequence for a which can be obtained by concatenating S 1 and S3. Since S3 
is a concatenation of S1 and S2, the statement holds. 
Case 3: 0 > a. Similar to Case 2. ロ

Lemma 4.3. Let a= c/d be a reduced fraction with 1/3~a > 1/4. Let S 
be the special sequence for a. 

(1) ES= (c,d). 
(2) Let S'be a non-empty proper prefix of S. Let (u, v) = [S. Then 

u/v > a. 
(3) Let S'be a non-empty consecutive subsequence of S. Let (u, v) = 
[S. Then u/(v-l) > a. 

Proof. The statements are true for a = l /3, 1 / 4. Let /3 and y be a Farey 
pair such that a is their mediant. Let h / k = /3 and h'/ k'= y be reduced 
fractions. Let S1 and S2 be special sequences for /3, y respectively. By 
induction hypothesis, S1 and S2 satisfies (1) -(3). S = S1S2 is the special 
sequence for a. 
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(1) is clear. We show (2). Let S'be a non-empty prefix of S, and put 
(u, v) = ES'. If S'is a proper prefix of S1, then u/v > f3 > a. Otherwise, 
we can write S'= S芯 wheres; is a non-empty proper prefix of S2. Put 
(u', v') = ES;. Then u'/v'> y. Together with h/k = f3 > y, we have u/v = 
(h+ u')/(k+v') > y. Also, we have v < k+k'= d. a and rare a Farey 
pair. Hence u/v > a by Lemma 3.6 (1). 
We can show (3) similarly. ロ

Lemma 4.4. Let a= c/d be a reduced fraction with 1/3 2 a 2 1/4, and S 
the special sequence for a. Let S'be a consecutive subsequence of sn with 
n 2 1, and put (u, v) = ES'. Then u/(v-1) > a. 

Proof We prove by induction on n. The statement holds if n = 1 by Lemma 
4.3 (3). 
Suppose n > 1. Then sn = sn-Is. If S'is a subsequence of sn-, then 
u / (v -1) > a by the induction hypothesis. 
Suppose S'= S芯 withSi is a subsequence of Si ands; is a non-empty 
prefix of S. Put (u1, v1) = ESi and (u□ 2) = ES;. We have ui/(v1 -1) > a 
by induction hypothesis, and u2/v2 > a by Lemma 4.3 (2). Since u = 
釘十u2and v-1 = (v1 -1) +v2, we have u/(v-1) > a. ロ

Definition 4.5. Let S be a special sequence of a with 1 /3 2 a 2 1 / 4. We 
can assume that S =〈(1,fo),(l,f1), ... , (l,fn-1)〉．
A graph W is called a twig for a if W = LF, L is a path POPI ... Pn-l 
where n is a length of S, F is the set of all leaves of W where each leaf in F 
is adjacent to some Pi, the number of leaves in F adjacent to po is fo, and the 
number of leaves in F adjacent to Pi is f;, -1 for each i with 1さiさn-1.
Lis called the main path of W. Note that L consists of the nodes of W. Po 
is called the left most node of W. 
A graph Wis called a wreath for a if W =CF, C is a cycle POPI ... Pm-IPO 
where m is a multiple of n, F is the set of all leaves of W where each leaf 
in Fis adjacent to some Pi, and the number of leaves in F adjacent to Pi is 
f;, mod n -1 for each i with O :s; i < m. 
A substructure B of W is full if a node p of W belongs to B then any 
leaves q of W adjacent top belongs to B. 

Lemma 4.6. Let W be a twig or a wreath for a, F the set of leaves ofW. 

(1) oa(W /F) = 0. 
(2) Let B be a proper substructure of W. If B -F is non-empty then 
Oa(B/BnF) > 0. 
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Proof. Let W be a twig for a. Let S be the special sequence for a, n the 
length of S, L the main path of W, and F the set of leaves of W. Let B be a 
substructure of W. Let B 1, ... , B£be the list of connected components of B. 

Then o(B/F) = Ll=I o(Bi/F). 
So, we can assume that B is connected. Hence, B n L is a path in L. Let 

B n L = PI・ ・ ・Pm respecting the order of S. Let B'be the full substructure of 
W with B'n L = B n L. B'= B or B'can be obtained by adding some edges 
to B. Hence, o(B)~o(B'). 
Let S'be the subsequence of S corresponding to Pl• • • Pm・Let (u, v) = 
[S'. Then o(B'/F) = u-va if p1 is the leftmost node ofW, and o(B'/F) = 
u-(v-l)a otherwise. By Lemma 4.3, we have (1) and (2). 

If W is a wreath for a, we can argue similarly using sk for some k instead 
of S. ロ

Lemma 4.7. Let /3 =a/band a= c/d be two reduced fractions which are 
a Farey pair. Let W be a twig for /3, and F the set of leaves of W. 
(1)ふ(W/F) = l/d. 
(2) Let B be a proper substructure of W. If B -F is non-empty then 
oa(B/BnF) > l/d. 
(3) Suppose W is a closed substructure of a generic structure. Then a 
node ofW is basic over F. 

Proof. (1) W has a nodes and b edges. Since ad -bc = l, we have a -

b(c/d) = l/d. 
(2) Let x be the number of nodes of W in B and z be the number of edges 

in B. By Lemma 4.6 (2), we have x/ z > /3 > a. Since b < d, x/ z and a 
cannot be a Farey pair by Fact 3.6 (2). We have xd -zc > 0 and xd -zc-/= 1. 
Hence, x -zc / d > l / d. 
(3) Cl ear from the defimt10n of basic elements. ロ

5. MONODIMENSIONALITY 

Proposition 5.1. Suppose I /3 > a = c / d~I/ 4 and c, d are positive inte-
gers. Let f3 = a/b where b < d, ad-be= I, and a, bare positive integers. 
Let G be a graph such that G = B釦 Wwhere W is a wreath for a, F is the 
set of leaves of W, B =叡{BqI q E F}, each Bq is a twig for /3, A the set of 
common leaves of Bq, q is the left most node of Bq, and F n Bq = { q}. Let 
C be the cycle in W. 
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(1) Let G'be a substructure of G. If G'n C is a path in C then G'is 
normal to fa. 
(2) IJC is sufficiently large then G belongs to Kta・ 

Proof (1) Since 1/3 and 1/4 are a Farey pair and 1/3 > c/d 2 1/4, d = 4 
or 3 + 7 S d. Hence, 3 < d. Since a/band c/d are a Farey pair and b < 
d, We have 1/3 2 a/b by Lemma 3.6 (1). Let k 2 0 be an integer with 
(k+2)/(3k+7) > a 2 (k+ 1)/(3k+4). 

Case A: a= c/d = (k+ 1)/(3k+4). 
In this case, a/b = 1/3. 〈(1,3)〉只(1,4)〉isa special sequence for a. 
If POPI・・・PkPk+l is a path in C with e(po,F) = 3, then e(pi,F) = 2 for 
i = 1, ... , k, and e(Pk+1,F) = 3. 
Since a/b = 1/3, IAI = 3 and each Bq for q E Fis isomorphic to K1,3 (a 
star with 3 leaves in A and a single node in F). For each p E C, e(p, F) is 2 
or 3. 
Let C'= G'nC, F'= G'nF, B'= G'nB, and A'= G'nA. Note that 
B'= A'F'. We can assume C'= Pl・ ・ ・pg respecting the order of the special 
sequence for a. 

Subcase Al: e(pi,F') = 2 for any i < f, and e(pe,F') 2 2. 
Assume 1 <£.We have IG'I -IB'I =£.There are 2 edges from Pl to F'. 
For i with 1 < i S f, -1, there is 1 edge from Pi to Pi-1, and 2 edges from 
Pi to F'. There is 1 edge from pg to P£-1, and at most 3 edges from pg to 
F'. Hence, we have e(G') -e(B') S 2+ 3(£-2) +4 = 3£. We have IB'I 2 4 
because Pl # pg and e(p1,F') = 2 and e(pe,F') 2 2, and by the structure 
of G. So, G'is normal to fa by Fact 3.2 and Lemma 3.8. 
Assume f, = 1. If e(pe,F') = 3, then IB'I 2 3. G'is an extension of B'by 
1 point and 3 edges. If IB'I = 3 then G'must be a tree. Hence, G'is normal 
to fa-If IB'I 2 4, then G'is normal to fa by Fact 3.2 and Lemma 3.8. 

Subcase A2: e(pi, F') 2 2 for any i S£. 
Let Ff be the set of points in F'adjacent to Pi・Let G~= A'F{・・・Ff Pl・・・Pi・ 
We have G£= G'. 
If there are no i with 1 Si Sf, and e(pi,F') = 3 then G'is normal to fa 
by Subcase Al. 
Otherwise, let i1 be a smallest i satisfying e(pi,F') = 3 and 1 S iさf.
Then G~1 is normal to fa by Subcase Al. 

Claim 1. Suppose G1 is normal to fa with e(pj,F') = 3. Then G'is normal 

to fa-
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We prove the claim by induction on the number of Pi satisfying e(pi, F') = 
3 and j < i :S£. 
Suppose there are no i with e(pi, F') = 3 and j < i :S£. Then e(pi, F') = 2 
and there is 1 edge from Pi to Pi-I for any i with j < i :S£. We have G'= 
G1F'Pj+I・・・pg. So, IG'I -IG1F'I =£-j, and e(G') -e(G'-F') = 3(£-j). 

We can assume that j <£. Hence, IB'I 2: 4. Therefore, G'is normal to fa 
by Fact 3.2 and Lemma 3.8. 
Suppose there is i with e(pi,F') = 3 and j < i :S£. Let J'be a smallest i 
with e(pi,F') = 3 and j < i :S£. Since e(pj,F') = 3 and e(pj',F') = 3, we 

have J'2: j + k + I. 
Suppose J'= j + k + I. Let q1, q2, q3 be points in F'adjacent top j• Put 
G'(, = G'-Fj+ 1・ ・ ・Fj+k徊 2.We have G'., = G'(,Pj+l・ ・ ・Pj+kPj+k+1q3. Note 

that e(pi, Gい=3 for}+ 1 :Si :S J+k, e(Pj+k+1,G夕） =4, ande(q3,GJ') = 
IA'I. So, IG'.,1-IGJ'I = k+2, and e(G'.,)-e(GJ')さ3k+4+IA'I. If IA'Iさ;2

then e(G1,) -e(G1,)ご3(k+ 2). Since e(pj,FJ) = 3, we have IG11 ミ~4.
Hence, IGJ'I 2: IG11 2: 4. Therefore, G1, is is normal to fa by Fact 3.2 

and Lemma 3.8. If IA'I = 3 then e(G1,) -e(GJ') = 3k + 7. In this case, 

叩=2k+2+ IG1I 2: 2k+6 > 2k + 5. Therefore, G ., IS IS normal to a f 
by Fact 3.2 and Lemma 3.8. 

Suppose J'> j +k+ 1. Let J'= j + (k+2+k') with k'2: 0. Put Gり＝
G1Fj+1•··Fj'. Putz=e(G')-e(Gり）andx = IG'l-1ar1. Thenx = k+k'+ 
2, andz = 3(k+ 1 +k') +4 = 3(k+lc) + 7. We havex/z 2: (k+2)/(3k+ 7). 
On the other hand, I ar I 2: I Gj I + 2k + 2k'+ 2 + 3 2: k + 5. Therefore, G'is 
normal to fa by Fact 3.2 and Lemma 3.8. 

Subcase A3: C'= PI・・・Pc is a path in C. 
By induction on the number of i with e(pi,F') :S 1, we can reduce this 
subcase to Subcase A2. 
If there is no i with e(pi, F') = 1, and 1 :S i :S£, then the case is Subcase 
A2. 

IS an extens10n of G'-Pi Suppose e(pi,F') = 1, and 1 < i <£. Then G'・ 
with 1 point and 3 edges. If A'is empty then G'is a tree. Hence, G'belongs 
to Kfa・We can assume A'is non-empty. So, we have IG'-Pil 2: 4. Hence, 
it is enough to show that G'-Pi is normal to fa. G'-Pi is a free amalgam 
over B'of two substructures satisfying the condition of Subcase A3. 
There are several other cases to consider, but they can be handled simi-
larly. 
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We have proved (1) for Case A. 

CaseB: (k+2)/(3k+7) > a=c/d> (k+l)/(3k+4). 
(k + 2)/(3k + 7) and (k + I)/(3k + 4) are a Farey pair. So, we have 
3k+7 < d by Lemma 3.6 (2). /3 and a are also a Farey pair. Hence (k+ 
2)/(3k+ 7) 2: /3 by Lemma 3.6 (1). 
Note that〈(1,3)〉k+I〈(1,4)〉and〈(1,3)〉K〈(14 ,）〉 arespecial sequences 
for (k + 2) / (3k + 7) and (k + I)/ (3k + 4) respectively. By Proposition 4.2, 
special sequences for /3 and a are concatenations of copies of these se-
quences. 
Put C'= GnC, F'= G'nF, A'= G'nA, B'= G'nB, B~= G'nBq for 
each q E F. Let F; be the set of points in F'adjacent to p E C'. 
Note that there are three points in A which are adjacent to any points in 
F. LetA1 = {a1,a研 3}be the set of such three points. 

Subcase Bl: C'=PI・・・Pc, e(pi,F') 2: 2 for each Pi= I, ... , f, and B' q 
has at least 2 nodes (i.e. IB~-A I 2: 2) for any q in F'adjacent to some point 
in C'. 
We have 

e(C'B') -e(B') e(C') +e(C',B') 

£ 

(£-1) + L e(pi,F') 
i=l 

£ 

e(p1,F') + 1:(1 +e(pi,F')). 
i=2 

Suppose e(pi,F') = 2. Let q and q'be 2 points adjacent to Pi• Then 
IB~B~,-A'I ミ~4. Hence, (1 +e(pi,F'))/IB~B~, -A'Iさ;3/4. 
Suppose e(pi,F') = 3. Let q, q'and q" be 3 points adjacent to Pi• Then 

IB~B~,B~,, -A'I ミ~6. Hence, (1 +e(pi,F'))/IB~B~, -A'Iさ;4/6 = 2/3 < 3/4. 
Therefore, (e(C'B')-e(B'))/IB'I S 3/4. So, (e(C'B')-e(B')) S (3/4)IB'I-
We also have B'< B'C'by Lemma 4.6. Thus, R/(e(C'B') -e(B')) > a. 
Hence, G'= B'C'is normal to fa by Lemma 3.8 (2). 

Subcase B2: C'=PI・・・Pc and e(pi,F')~2 for each Pi= l, ... , R. 
Note that normality of G'to fa depends only on IG'I and e(G'). Sup-
pose Piq and p N'are edges between C'and F'. Removing these edges 
and put Piq'and pjq as new edges will not change IG'I, e(G'), e(pi,F'), 
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and e(pj,F1). So, we can assume that if Pi is adjacent to q E F'with 
IB'-q A'I~2 and p j is adjacent to q E F'with IB', -A' q 

Put G~=B~ ・・・B伽・・・Pi・
I = 1 then i~j. 

Let io be a largest i~ £satisfying e(pi, F') = 3 and IBq -A'I~2 for any 
three q in F'adjacent to Pi• 
Suppose such io exists. Then G~。 isnormal to fa by Subcase B 1. 
If there is no such io, let i1 be a smallest i satisfying e(pi,F') = 3. Sup-
pose such i1 exists. Then G~1 is normal to fa by the argument in Subcase 
A2 of Case A. If there are no such io and i 1 then G'is normal to to fa by 
the argument in Subcase Al of Case A. 
Now, we can show the following claim as in Subcase A2 of Case A. Note 
that q E F'and IB~-A'I = 1 then B'is a star with at most 3 edges. q 

Claim 2. Suppose G1 is normal to fa with e(pj,F') = 3. Then G'is normal 

to fa-

Therefore, G'is normal to fa in Subcase B2 also. 

Subcase B3: C'= Pl・・・pg is a path in C. 
Same way as in Subcase A3 in Case A. 

(2) Let G'be any substructure of G. 
Case 1: G'nc-/ C. 
Let C1, ... , Cm be the connected components of G'nc. For each i, B'Ci 
is normal to fa by (1), and B'< B'Ci also. Hence, G is normal to fa・
Case 2: G'nc = C. 
Suppose that G'n F is a proper substructure of F. By exchanging two 
edges between C and F if necessary, we can assume that e(p, F') = I for 
some p EC with e(p,F) = 2. G'-pis normal to fa by Case 1. Then G'is 
an extension of G'-p by 1 point and 3 edges. Since C is sufficiently large, 
we can assume that IG'-Pl~4. Hence, G'is normal to fa・
Now, we can assume that W C G'. 

B=叡 {BqI qEF} is amemberofKta・We have IBI =A+alFI, and 
8(B) = IAI + (1/d)IFI because Da(Bq/A) = l/d for each q E F. 
Let B'be a substructure of B'. Then IB'I~IBI. By Lemma 4.6, 8(B')~ 
IAI + (1/d)IFI if A'= B'nA = A. Suppose IA'I < IAI. Then any substruc-
tures B~of Bq with BぃnA = A'is a proper substructure of Bq. So, we 
have Da(B~/A') こ： 2/d by Lemma 4.7. Hence, 8(B') こ~IA'I + (2/d)IFI-
Comparing IA'I + (2/d)IFI and IAI + (1/d)IFI, for sufficiently large F, we 
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have IA'I + (2 / d) IF I > IA I + (1 / d) IF I-Therefore, for sufficiently large F, 
we have D (B') 2:: IA I + (1 / d) IF I for any substructures B'of B with FこB'.
On the other hand IAI + (1/d)IFI・ 1s a lmear funct10n of IBI = IAI + alFI. 
Therefore, there is a linear function Ji (x) with positive coefficient such that 
Ji (IBI) = D(B), and D(B')ミD(B) for any substructures B'of B with FこB'
if IBI is sufficiently large. 
Since, B is normal to fa, we have f1 (x) 2:: fa(x). By Lemma 3.8 (3), 
犀 (y)behave like exponential function. So, for sufficiently large x, we 
have !1 (x) > f a(2x). 
Let F be sufficiently large. Suppose FこB'こB.Then 8(B') 2:: 8(B) = 
fi(IBI) 2:: fa(2IBI) 2:: fa(2IB'I). Since ICI~IFI~IB'I, D(B'C) = D(B') 2:: 
fa(2IB'I) 2:: fa(IB'CI) . Therefore, G = B'C is normal to fa・ロ

Definition 5.2. Let f3 and a be a Farey pair with 1 /3 2:: /3 > a 2:: 1 / 4. Let 
B be a twig for /3, b a node of B and A the leaves of B. 
(G, c) is called a basic tower for a over A if A < G, c E G and c has dis-
tance at least 2 from A, FこG,and Bq for each q E F such that da(c / F) = 0, 
A< Bq < G, q E Bq and (Bq,q) is isomorphic to (B,b) over A. 
Note that if G is a closed substructure of a generic structure, then the 
elements in F are basic over A and are pairwise conjugate over A. 

Proposition 5.3. (1) Let G be the structure in Proposition 5.1. Let c be 
a point in the cycle ofW. Then (G, c) is a basic tower for a over A. 
(2) Let (G, c) be a basic tower for a over A. Let H = D釦 WwhereW
is a wreath for a, Fis the set of leaves ofW, D =叡{GqI q E F}, 
each Gq is isomorphic to Gover A, and FnGq = {q}. 
けWis sufficiently large then choosing c'from the main cycle of 
W, (H, c') is a basic tower for a over A. Moreover, 初 (c'/A)> 
心(c/A).

The proof is easier than that for Proposition 5.1. We can use Lemma 3.8 
(2). 

Using this proposition many times, we can show that there is a basic 
tower (G", c") over A such that dG" (c" /A) > 1. This means that Ac" < G". 
Embed G" in the generic structure as a closed substructure. Then c" is in 
the closure of a basic orbit over A, and c"」_A. As in [14], we can prove the 
following theorem. 
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Theorem 5.4. Let a be a rational number with 1 /3 > a~1 / 4. Then the 

generic structure M of Kta is monodimensional. Therefore, the automor-

phism group of M is a simple group. 
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