TREE-INDISCERNIBILITY IN SOP1 AND ANTICHAIN TREES

JOONHEE KIM YONSEI UNIVERSITY

ABSTRACT. We study some tree properties and related indiscernibilities. First, we show that there is a tree-indiscernibility which preserves witnesses of SOP_1 . Secondly we introduce notions of antichain tree property and show that every SOP_1 -NSOP₂ theory (having SOP_1 but not SOP_2) has an antichain tree by using that tree-indiscernibility. And we construct a structure witnessing SOP_1 -NSOP₂ in the formula level, *i.e.* there is a formula having SOP_1 but any finite conjunction of it does not have SOP_2 . (This work is joint work with JinHoo Ahn at Yonsei University.)

1. INTRODUCTION

The notion of SOP_1 and SOP_2 were introduced by Džamonja and Shelah in [1]. It is known that the implication $SOP_2 \Rightarrow SOP_1$ holds but it is still unknown whether the converse is true or not. We focus on the problem of equality of SOP_1 and SOP_2 , and discuss some related topics.

2. Tree indiscernibility for witnesses of SOP_1

Let us recall a notion of SOP_1 in [1].

Definition 2.1. Let $\varphi(x, y)$ be a formula in *T*. We say $\varphi(x, y)$ has 1-strong order property (SOP₁) if there is a tree $\langle a_n \rangle_{n \in {}^{<\omega_2}}$ such that

- (1) For all $\eta \in {}^{\omega}2$, $\{\varphi(x, a_n \restriction \alpha) \mid \alpha < \omega\}$ is consistent, and
- (2) For all $\eta, \nu \in {}^{<\omega}2$, $\{\varphi(x, a_{\eta \frown \langle 1 \rangle}), \varphi(x, a_{\eta \frown \langle 0 \rangle \frown \nu})\}$ is inconsistent.

We say T has SOP_1 if it has a SOP_1 formula. We say T is $NSOP_1$ if it does not have SOP_1 .

In this section, we develop a tree-indiscernibility which can be applied to witnesses of SOP_1 . The outline of proof came from [1]. But the proof in [1] omits some important step. We leave sketch of proof here, explain what proof of [1] omits, and how we complement it.

Definition 2.2. For $\bar{\eta} = \langle \eta_0, ..., \eta_n \rangle$, $\bar{\nu} = \langle \nu_0, ..., \nu_n \rangle$ $(\eta_i, \nu_i \in \omega^{>2} \text{ for each } i \leq n)$, we say $\bar{\eta} \approx_{\alpha} \bar{\nu}$ if they satisfies

- (i) $\bar{\eta}$ and $\bar{\nu}$ are \wedge -closed,
- (ii) $\eta_i \leq \eta_j$ if and only if $\nu_i \leq \nu_j$ for all $i, j \leq n$,
- (iii) $\eta_i \cap d \leq \eta_j$ if and only if $\nu_i \cap d \leq \nu_j$ for all $i, j \leq n$ and $d \leq 1$.

We say $\bar{\eta} \approx_{\beta} \bar{\nu}$ if they satisfy (i), (ii), (iii), and

(iv) $\eta_i (1) = \eta_j$ if and only if $\nu_i (1) = \nu_j$ for all $i, j \leq n$.

JOONHEE KIM

We say $\bar{\eta} \approx_{\gamma} \bar{\nu}$ if they satisfy (i), (ii), (iii), (iv), and

- (v) $\eta_i \stackrel{\frown}{} \langle 0 \rangle = \eta_j$ if and only if $\nu_i \stackrel{\frown}{} \langle 0 \rangle = \nu_j$ for all $i, j \leq n$.
- (vi) $\eta_i = \sigma^{(0)}$ for some $\sigma \in {}^{\omega>2}$ if and only if $\nu_i = \tau^{(0)}$ for some $\tau \in {}^{\omega>2}$, for all $i \leq n$.
- (vii) $\eta_i = \sigma^{(1)}$ for some $\sigma \in {}^{\omega>2}$ if and only if $\nu_i = \tau^{(1)}$ for some $\tau \in {}^{\omega>2}$, for all $i \leq n$.

We say $\langle a_{\eta} \rangle_{\eta \in \omega > 2}$ is α -indiscernible (β , γ -indiscernible, resp.) if $\bar{\eta} \approx_{\alpha} \bar{\nu}$ ($\bar{\eta} \approx_{\beta} \bar{\nu}$, $\bar{\eta} \approx_{\gamma} \bar{\nu}$, resp.) implies $a_{\bar{\eta}} \equiv a_{\bar{\nu}}$.

Recall the modeling property of α -indiscernibility in [2].

Fact 2.3. [2, Proposition 2.3] For any $\langle a_{\eta} \rangle_{\eta \in \omega > 2}$, there exists $\langle b_{\eta} \rangle_{\eta \in \omega > 2}$ such that

- (i) $\langle b_{\eta} \rangle_{\eta \in \omega > 2}$ is α -indiscernible,
- (ii) for any finite set Δ of \mathcal{L} -formulas and \wedge -closed $\bar{\eta} = \langle \eta_0, ..., \eta_n \rangle$, there exists $\bar{\nu} \approx_{\alpha} \bar{\eta}$ such that $\bar{b}_{\bar{\eta}} \equiv_{\Delta} \bar{a}_{\bar{\nu}}$.

In order to make the proof shorter we introduce some notation.

Notation 2.4. (i) For each $\eta \in {}^{\omega>2}$, $l(\eta)$ denotes the domain of η .

- (ii) For each $\eta \in {}^{\omega>2}$ with $l(\eta) > 0$, η^- denotes $\eta_{\lceil l(\eta)-1}$ and $t(\eta)$ denotes $\eta(l(\eta)-1)$.
- (iii) For $\bar{\eta} = \langle \eta_0, ..., \eta_n \rangle$, $cl(\bar{\eta})$ denotes $\langle \eta_0 \wedge \eta_0, ..., \eta_0 \wedge \eta_n \rangle^{\frown} ...^{\frown} \langle \eta_n \wedge \eta_0, ..., \eta_n \wedge \eta_n \rangle$.
- (iv) η and ν are said to be incomparable (denoted by $\eta \perp \nu$) if $\eta \not \leq \nu$ and $\nu \not \leq \eta$.

Note that $\eta = \eta^- (\eta)$ for all η with $l(\eta) > 0$. The following remarks will also be useful.

Remark 2.5. Suppose $\langle \eta_0, ..., \eta_n \rangle \approx_{\gamma} \langle \nu_0, ..., \nu_n \rangle$. Then it follows that

- (i) $\eta_i \wedge \eta_j = \eta_k$ if and only if $\nu_i \wedge \nu_j = \nu_k$ for all $i.j.k \leq n$,
- (ii) $\eta_i^- \leq \eta_i^-$ if and only if $\nu_i^- \leq \nu_i^-$ for all $i, j \leq n$,
- (iii) for all $i, j \leq n$, if $\eta_i \perp \eta_j$ then $\eta_i^- \wedge \eta_j^- = \eta_i \wedge \eta_j$,
- (iv) $\eta_i^{\frown}\langle d \rangle \leq \eta_j^{\frown}$ if and only if $\nu_i^{\frown}\langle d \rangle \leq \nu_j^{\frown}$ for all $i, j \leq n$ and $d \leq 1$,
- (v) $\eta_i^- \langle d \rangle \leq \eta_i^-$ if and only if $\nu_i^- \langle d \rangle \leq \nu_i^-$ for all $i, j \leq n$ and $d \leq 1$,

Lemma 2.6. Suppose $\varphi(x, \bar{y})$ witnesses SOP₁. Then there exists a γ -indiscernible tree $\langle d_{\eta} \rangle_{\eta \in \omega \geq 2}$ which witnesses SOP₁ with φ .

Sketch of Proof. Suppose $\varphi(x, \bar{y})$ witnesses SOP₁ with $\langle a_{\eta} \rangle_{\eta \in \omega > 2}$. For each $\eta \in \omega > 2$, put $b_{\eta} = a_{\eta \frown \langle 0 \rangle} \frown a_{\eta \frown \langle 1 \rangle}$. By Fact 2.3, there exists an α -indiscernible $\langle c_{\eta} \rangle_{\eta \in \omega > 2}$ such that for any $\bar{\eta}$ and finite subset Δ of \mathcal{L} -formulas, $\bar{\nu} \approx_{\alpha} \bar{\eta}$ and $\bar{b}_{\bar{\nu}} \equiv_{\Delta} \bar{c}_{\bar{\eta}}$ for some $\bar{\nu}$. Note that c_{η} is of the form $c_{\eta}^{0} \frown c_{\eta}^{1}$ where $|c_{\eta}^{0}| = |c_{\eta}^{1}| = |\bar{y}|$ for each $\eta \in \omega > 2$. For each $\eta \in \omega > 2$ with $l(\eta) \ge 1$, we define d'_{η} by

$$d'_{\eta} = \begin{cases} c_{\eta^{-}}^{0} & \text{if } t(\eta) = 0\\ c_{\eta^{-}}^{1} & \text{if } t(\eta) = 1 \end{cases}$$

and put $d_{\eta} = d'_{\langle 0 \rangle \frown \eta}$ for each $\eta \in {}^{\omega>2}$. We show that φ witnesses SOP₁ with $\langle d_{\eta} \rangle_{\eta \in {}^{\omega>2}}$ and $\langle d_{\eta} \rangle_{\eta \in {}^{\omega>2}}$ is γ -indiscernible. Then $\langle \varphi(x, y), \langle d_{\eta} \rangle_{\eta \in {}^{\omega>2}} \rangle$ witnesses SOP₁. One can show this by using the fact that $\langle c_{\eta} \rangle_{\eta \in {}^{\omega>2}}$ is based on $\langle b_{\eta} \rangle_{\eta \in {}^{\omega>2}}$.

To show that $\langle d_{\eta} \rangle_{\eta \in \omega > 2}$ is γ -indiscernible, suppose that $\langle \eta_0, ..., \eta_n \rangle \approx_{\gamma} \langle \nu_0, ..., \nu_n \rangle$. For each $i \leq n$, let $\sigma_i = \langle 0 \rangle \widehat{} \eta_i$ and $\tau_i = \langle 0 \rangle \widehat{} \nu_i$. By definition of $\langle d_{\eta} \rangle_{\eta \in \omega > 2}$, it is enough to show that $d'_{\sigma_0}...d'_{\sigma_n} \equiv d'_{\tau_0}...d'_{\tau_n}$. Clearly $\langle \sigma_0, ..., \sigma_n \rangle \approx_{\gamma} \langle \tau_0, ..., \tau_n \rangle$. It's not difficult, but after a rather laborious calculation, one can show that

$$\operatorname{cl}(\langle \sigma_0^-, ..., \sigma_n^- \rangle) \approx_{\alpha} \operatorname{cl}(\langle \tau_0^-, ..., \tau_n^- \rangle).$$

By α -indiscernibility of $\langle c_{\eta} \rangle_{\eta \in \omega > 2}$, we have $\overline{c}_{\operatorname{cl}(\langle \sigma_{0}^{-}, ..., \sigma_{n}^{-} \rangle)} \equiv \overline{c}_{\operatorname{cl}(\langle \tau_{0}^{-}, ..., \tau_{n}^{-} \rangle)}$. In particular, we have $c_{\sigma_{0}^{-}} ... c_{\sigma_{n}^{-}} \equiv c_{\tau_{0}^{-}} ... c_{\tau_{n}^{-}}$. By definition of $\langle d'_{\eta} \rangle_{\eta \in \omega > 2}$,

$$d'_{\sigma_0^- \frown \langle 0 \rangle} d'_{\sigma_0^- \frown \langle 1 \rangle} \dots d'_{\sigma_n^- \frown \langle 0 \rangle} d'_{\sigma_n^- \frown \langle 1 \rangle} \equiv d'_{\tau_0^- \frown \langle 0 \rangle} d'_{\tau_0^- \frown \langle 1 \rangle} \dots d'_{\tau_n^- \frown \langle 0 \rangle} d'_{\tau_n^- \frown \langle 1 \rangle}.$$

Note that in general, if $m_{\xi_0}...m_{\xi_k} \equiv n_{\zeta_0}...n_{\zeta_k}$ and $i_0 < ... < i_e \leq k$, then $m_{\xi_{i_0}}...m_{\xi_{i_e}} \equiv n_{\zeta_{i_0}}...n_{\zeta_{i_e}}$ Since we assume $\langle \eta_0, ..., \eta_n \rangle \approx_{\gamma} \langle \nu_0, ..., \nu_n \rangle$, we have $t(\sigma_i) = t(\tau_i)$ for each $i \leq n$. Thus

$$d'_{\sigma_0}...d'_{\sigma_n} \equiv d'_{\tau_0}...d'_{\tau_n}$$

as desired. This shows that $\langle d_{\eta} \rangle_{\eta \in \omega > 2}$ is γ -indiscernible, and completes the proof.

Note that even if $i_0 < ... < i_e \leq k$, $j_0 < ... < j_e \leq k$ and $m_{\xi_0} ... m_{\xi_k} \equiv n_{\zeta_0} ... n_{\zeta_k}$, it is not sure that $m_{\xi_{i_0}} ... m_{\xi_{i_e}} \equiv n_{\zeta_{j_0}} ... n_{\zeta_{j_e}}$. So if we want to say $d'_{\sigma_0} ... d'_{\sigma_n} \equiv d'_{\tau_0} ... d'_{\tau_n}$ from the fact that

$$d'_{\sigma_0^- \frown \langle 0 \rangle} d'_{\sigma_0^- \frown \langle 1 \rangle} \dots d'_{\sigma_n^- \frown \langle 0 \rangle} d'_{\sigma_n^- \frown \langle 1 \rangle} \equiv d'_{\tau_0^- \frown \langle 0 \rangle} d'_{\tau_0^- \frown \langle 1 \rangle} \dots d'_{\tau_n^- \frown \langle 0 \rangle} d'_{\tau_n^- \frown \langle 1 \rangle}$$

in the last paragraph of proof of Lemma 2.6, it must be guaranteed that $t(\sigma_i) = t(\tau_i)$ for each $i \leq n$. This is why we introduce \approx_{γ} and find a γ -indiscernible witness of SOP₁ first, not directly find β -indiscernible one as in [1]. The proof in [1] uses the similar argument in this note, tries to show directly that there exists a β indiscernible tree witnessing SOP₁ without using γ -indiscernibility. So, by the problem mentioned above, the proof ends incomplete.

Theorem 2.7. If $\varphi(x, y)$ witnesses SOP₁, then there exists a β -indiscernible tree $\langle e_{\eta} \rangle_{\eta \in \omega \geq 2}$ which witnesses SOP₁ with φ .

Proof. By Lemma 2.6, there exists a γ -indiscernible tree $\langle d_{\eta} \rangle_{\eta \in \omega > 2}$ which witnesses SOP₁ with φ . Define a map $h : {}^{\omega > 2} \rightarrow {}^{\omega > 2}$ by

$$h(\eta) = \begin{cases} \langle \rangle & \text{if } \eta = \langle \rangle \\ h(\eta^-)^{\frown} \langle 01 \rangle & \text{if } t(\eta) = 0 \\ h(\eta^-)^{\frown} \langle 1 \rangle & \text{if } t(\eta) = 1 \end{cases}$$

and put $e_{\eta} = d_{h(\eta)}$ for each $\eta \in {}^{\omega>2}$. Then $\langle e_{\eta} \rangle_{\eta \in {}^{\omega>2}}$ is β -indiscernible, and φ witnesses SOP₁ with $\langle e_{\eta} \rangle_{\eta \in {}^{\omega>2}}$.

3. ANTICHAIN TREE PROPERTY

In this section, we introduce a notion of tree property which is called *antichain* tree property (ATP) and explain how to construct an antichain tree in a SOP₁-NSOP₂ theory. Simply the concept of antichain trees is opposite to the concept of SOP₂ in the following sense.

Definition 3.1. (i) A subset X of ${}^{\omega>2}$ is called an antichain if it is pairwisely incomparable (*i.e.* for all $\eta, \nu \in X, \eta \not\leq \nu$ and $\nu \not\leq \eta$. We denote it $\eta \perp \nu$).

JOONHEE KIM

- (ii) A tuple $\langle \varphi(x, y), \langle a_{\eta} \rangle_{\eta \in \omega > 2} \rangle$ is called an *antichain tree* if for all $X \subseteq \omega > 2$, $\{\varphi(x, a_{\eta}) \mid \eta \in X\}$ is consistent if and only if X is pairwisely incomparable.
- (iii) We say φ has antichain tree property (ATP) if φ forms an antichain tree with some $\langle a_{\eta} \rangle_{\eta \in \omega > 2}$, T has ATP if it has an ATP formula, and T is NATP (non-ATP) if it does not have ATP.

And the definition of SOP_2 can be written as follows. Notice the difference between (ii) of Definition 3.1 above and Definition 3.2 below.

Definition 3.2. We say $\langle \varphi(x, y), \langle a_\eta \rangle_{\eta \in \omega > 2} \rangle$ witnesses SOP₂ if for all $X \subseteq \omega > 2$, $\{\varphi(x, a_\eta) : \eta \in X\}$ is consistent if and only if X is pairwisely 'comparable'.

In this sense we can consider ATP to have the opposite nature of SOP_2 .

If an antichain tree $\langle \varphi, \langle a_{\eta} \rangle_{\eta \in \omega > 2} \rangle$ is given, we can find a witness of SOP₁ and a witness of TP₂ by restricting the parameter set $\langle a_{\eta} \rangle_{\eta \in \omega > 2}$ as follows.

Proposition 3.3. If $\langle \varphi(x,y), \langle a_\eta \rangle_{\eta \in \omega \geq 2} \rangle$ is an antichain tree, then $\varphi(x,y)$ witnesses SOP₁.

Proof. By companents, it is enough to show that for each $n \in \omega$, there exists $h_n: {n \geq 2} \to {\omega > 2}$ such that

- (i) $\{\varphi(x, b_{\eta \restriction i}) : i \leq n\}$ is consistent for all $\eta \in {}^{n}2$,
- (ii) $\{\varphi(x, b_{\eta \frown \langle 0 \rangle \frown \nu}), \varphi(x, b_{\eta \frown \langle 1 \rangle})\}$ is inconsistent for all $\eta, \nu \in {}^{n>2}$ with $\eta \frown \langle 0 \rangle$ $\neg \nu, \eta \frown \langle 1 \rangle \in {}^{n\geq 2}$,

where $b_{\eta} = a_{h_n(\eta)}$ for each $\eta \in \mathbb{N}^{\geq 2}$. We use induction. Define $h_0: \mathbb{N}^{\geq 2} \to \mathbb{N}^{\geq 2}$ by $h_0(\langle \rangle) = \langle 1 \rangle, h_0(\langle 0 \rangle) = \langle 011 \rangle$, and $h_0(\langle 1 \rangle) = \langle 0 \rangle$. For $n \in \omega$, assume such h_n exists. Define $h_{n+1}: \mathbb{N}^{n+1 \geq 2} \to \mathbb{N}^{\geq 2}$ by

$$h_{n+1}(\eta) = \begin{cases} \langle 1 \rangle & \text{if } \eta = \langle \rangle \\ \langle 011 \rangle^\frown h_n(\nu) & \text{if } \eta = \langle 0 \rangle^\frown \nu \text{ for some } \nu \in n \ge 2 \\ \langle 0 \rangle^\frown h_n(\nu) & \text{if } \eta = \langle 1 \rangle^\frown \nu \text{ for some } \nu \in n \ge 2. \end{cases}$$

It is easy to show that $\langle \varphi, \langle b_\eta \rangle_{\eta \in n \geq 2} \rangle$ witnesses SOP₁ for each $n \in \omega$ where $b_\eta = a_{h_n(\eta)}$.

Definition 3.4. We say a formula $\varphi(x, y)$ has TP₂ if there exists an array $\langle a_{i,j} \rangle_{i,j \in \omega}$ such that $\{\varphi(x, a_{i,j_0}), \varphi(x, a_{i,j_1}\}$ is inconsistent for all $i, j_0, j_1 \in \omega$ with $j_0 \neq j_1$, and $\{\varphi(x, a_{i,f(i)})\}_{i \in \omega}$ is consistent for all $f : \omega \to \omega$. We say a theory T has TP₂ if there exists a formula having TP₂ modulo T.

Proposition 3.5. If $\langle \varphi(x,y), \langle a_\eta \rangle_{\eta \in \omega \geq 2} \rangle$ is an antichain tree, then $\varphi(x,y)$ witnesses TP_2 .

Proof. For each $n \in \omega$, choose any antichain $\{\eta_0, ..., \eta_{n-1}\}$ in ${}^{\omega>2}$. Define $h_n : n \times n \to {}^{\omega>2}$ by

$$h_n(i,j) = \eta_i \widehat{\ } \langle 0 \rangle^j.$$

Then $\{\varphi(x, a_{h_n(i, f(i))})\}_{i < n}$ is consistent for all $f : n \to n$ and $\{\varphi(x, a_{h_n(i, j)})\}_{j < n}$ is 2-inconsistent for all i < n. By compactness, there exists $h : \omega \times \omega \to \omega^{>} 2$ such that $\langle \varphi, \langle b_{i,j} \rangle_{i,j < \omega} \rangle$ witnesses TP₂ where $b_{i,j} = a_{h(i,j)}$.

Now we show Theorem 3.7 which claims that an antichain tree exists in any SOP_1 -NSOP₂ theory. Before we begin the construction, we need a lemma.

Lemma 3.6. For any $c: {}^{\omega_1>}2 \to \omega$, one can find $g: {}^{\omega>}2 \to {}^{\omega_1>}2$ and $i \in \omega$ such that

- (i) $g(\eta) \frown \langle l \rangle \leq g(\eta \frown \langle l \rangle)$ for all $\eta \in {}^{\omega>2}$ and $l \leq 1$,
- (ii) $c(g(\eta)) = i \text{ for all } \eta \in {}^{\omega_1 > 2}.$

Theorem 3.7. Suppose there exists $\varphi(x, y)$ which witnesses SOP_1 and there is no $n \in \omega$ such that $\bigwedge_{i=0}^{n} \varphi(x, y_i)$ witnesses SOP_2 . Then there exists $\langle b_\eta \rangle_{\eta \in \omega > 2}$ such that $\langle \varphi(x, y), \langle b_\eta \rangle_{\eta \in \omega > 2} \rangle$ forms an antichain tree.

Sketch of Proof. By Theorem 2.7 and compactness, there exists an β -indiscernible $\langle a_{\eta} \rangle_{\eta \in \omega^{1} \geq 2}$ which witnesses SOP₁ with φ . Define a map $h : {}^{\omega > 2} \rightarrow {}^{\omega > 2}$ by

$$h(\eta) = \begin{cases} \langle 1 \rangle & \text{if } \eta = \langle \rangle \\ h(\eta^{-})^{\frown} \langle 001 \rangle & \text{if } t(\eta) = 0 \\ h(\eta^{-})^{\frown} \langle 011 \rangle & \text{if } t(\eta) = 1. \end{cases}$$

For each $i, k \in \omega$ and $\eta, \xi \in {}^{\omega_1 > 2}$, put

$$\begin{split} L_{i} &= \{h(\nu') : l(\nu') = i\}, \quad L_{i}(\eta) = \{\eta^{\frown}\nu : \nu \in L_{i}\} \\ 1_{\xi} &= \{\xi^{\frown}\langle 1^{d}\rangle : d \in \omega\}, \quad 1_{\xi}(\eta) = \{\eta^{\frown}\nu : \nu \in 1_{\xi}\} \\ 1_{\xi}^{k} &= \{\xi^{\frown}\langle 1^{0}\rangle, \dots, \xi^{\frown}\langle 1^{k}\rangle\}, \quad 1_{\xi}^{k}(\eta) = \{\eta^{\frown}\nu : \nu \in 1_{\xi}^{k}\} \\ M_{i} &= L_{i} \cup 1_{h(\langle 0^{i}\rangle)}, \quad M_{i}(\eta) = \{\eta^{\frown}\nu : \nu \in M_{i}\} \\ M_{i}^{k} &= L_{i} \cup 1_{h(\langle 0^{i}\rangle)}^{k}, \quad M_{i}^{k}(\eta) = \{\eta^{\frown}\nu : \nu \in M_{i}^{k}\} \\ m_{i}^{k} &= h(\langle 0^{i}\rangle)^{\frown}\langle 1^{k}\rangle, \quad m_{i}^{k}(\eta) = \eta^{\frown}m_{i}^{k}. \end{split}$$

For each $X \subseteq {}^{\omega_1 > 2}$, let Φ_X denote $\{\varphi(x, a_\eta) : \eta \in X\}$.

Then one can show that here exists $\eta \in {}^{\omega_1>2}$ such that $\Phi_{M_i(\eta)}$ is consistent for all $i \in \omega$. By β -indiscernibility, we may assume $\eta = \langle \rangle$. For each $\eta \in {}^{\omega>2}$, put $b_\eta = a_{h(\eta)}$. Then $\langle \varphi(x, b_\eta) \rangle_{\eta \in {}^{\omega>2}}$ is an antichain tree. \Box

Corollary 3.8. If T is SOP_1 and $NSOP_2$, then T has ATP. The witness of ATP can be selected to be strong indiscernible.

Proof. If a theory has SOP_1 and does not have SOP_2 , then the theory has a formula which witnesses SOP_1 and any finite conjunction of the formula does not witness SOP_2 . So we can apply Theorem 3.7. The theory has a witness of ATP. Furthermore, we can obtain a strong indiscernible witness of ATP by using compactness and the modeling property in [3].

As we observed in the beginning of this section, one can find witnesses of SOP_1 and TP_2 from a witness of an antichain tree by restricting the set of parameters. But we can not use the same method for finding a witness of SOP_2 .

Remark 3.9. The following are true.

- (i) Suppose $\langle \varphi(x,y), \langle a_\eta \rangle_{\eta \in \omega > 2} \rangle$ is an antichain tree. Then there is no $h : 2^{\geq}2 \to \omega > 2$ such that $\langle \varphi(x,y), \langle b_\eta \rangle_{\eta \in 2^{\geq}2} \rangle$ satisfies the conditions of SOP₂, where $b_\eta = a_{h(\eta)}$ for each $\eta \in 2^{\geq}2$.
- (ii) Suppose $\langle \varphi(x,y), \langle a_{\eta} \rangle_{\eta \in \omega > 2} \rangle$ witnesses SOP₂. Then there is no $h : {}^{2 \geq 2} \rightarrow {}^{\omega > 2}$ such that $\langle \varphi(x,y), \langle b_{\eta} \rangle_{\eta \in {}^{2 \geq 2}} \rangle$ forms an antichain tree with height 2, where $b_{\eta} = a_{h(\eta)}$ for each $\eta \in {}^{2 \geq 2}$.

JOONHEE KIM

Proof. (i) To get a contradiction, suppose there exists such h. Then $h(\langle 00 \rangle)$, $h(\langle 01 \rangle)$, $h(\langle 10 \rangle)$, and $h(\langle 11 \rangle)$ are pairwisely comparable in ${}^{\omega>}2$, so they are linearly ordered. We may assume $h(\langle 00 \rangle)$ is the smallest. Since $h(\langle 0 \rangle)$ and $h(\langle 00 \rangle)$ are incomparable, $h(\langle 0 \rangle)$ and $h(\langle 11 \rangle)$ are incomparable. Thus $\{\varphi(x, b_{\langle 0 \rangle}), \varphi(x, b_{\langle 11 \rangle})\}$ is consistent. This is a contradiction.

(ii) To get a contradiction, suppose there exists such h. Then $h(\langle 00 \rangle)$, $h(\langle 01 \rangle)$, $h(\langle 10 \rangle)$, and $h(\langle 11 \rangle)$ are pairwisely comparable in $\omega > 2$, so they are linearly ordered. We may assume $h(\langle 00 \rangle)$ is the smallest. Since $h(\langle 0 \rangle)$ and $h(\langle 00 \rangle)$ are incomparable, $h(\langle 0 \rangle)$ and $h(\langle 11 \rangle)$ are incomparable. Thus $\{\varphi(x, b_{\langle 0 \rangle}), \varphi(x, b_{\langle 11 \rangle})\}$ is inconsistent. This is a contradiction.

But it does not mean the existence of an antichain tree prevents the theory having a witness of SOP₂. We will see in Section 4 that there exists an example of a structure whose theory has a formula $\varphi(x, y)$ which forms an antichain tree (so it witnesses SOP₁) and $\bigwedge_{i < n} \varphi(x, y_i)$ do not witness SOP₂ for all $n \in \omega$. But our example has SOP₂.

We end this section with the following remarks. They discuss the possibility of that the concept of ATP can be helpful for solving the problem of equality of SOP_1 and SOP_2 .

Remark 3.10. If the existence of an antichain tree always implies the existence of a witness of SOP_2 , then $SOP_1 = SOP_2$ by Corollary 3.8.

Remark 3.11. If there exists a NSOP₂ theory having an antichain tree, then $SOP_1 \supseteq SOP_2$ by Proposition 3.3.

4. An example of antichain tree

In the last section, we showed the existence of an antichain tree in SOP₁-NSOP₂ context. It is natural to ask if an antichain tree exists without classification theoretical hypothesis. We construct a structure of relational language whose theory has a formula $\varphi(x, y)$ which forms an antichain tree and $\bigwedge_{i < n} \varphi(x, y_i)$ do not witness SOP₂ for all $n \in \omega$. Note that φ also witnesses SOP₁ by Proposition 3.3.

We begin the construction with language $\mathcal{L} = \{R\}$ where R is a binary relation symbol. For each $n \in \omega$, let $\alpha_n \in \omega$ be the number of all maximal antichains in n>2, and β_n be the set of all maximal antichains in n>2. We can choose a bijection from α_n to β_n for each $n \in \omega$, say μ_n . For each $n \in \omega$, let A_n and B_n be finite sets such that $|A_n| = \alpha_n$ and $|B_n| = |n>2|$. We denote their elements by

$$A_n = \{a_l^n : l < \alpha_n\},\B_n = \{b_n^n : \eta \in {}^{n>2}\}$$

And let N_n be the disjoint union of A_n and B_n for each $n \in \omega$.

For each $n \in \omega$, let \mathcal{C}_n be an \mathcal{L} -structure such that $\mathcal{C}_n = \langle C_n; \mathbb{R}^{\mathcal{C}_n} \rangle$, where $\mathbb{R}^{\mathcal{C}_n} = \{ \langle a_l^n, b_\eta^n \rangle \in A_n \times B_n : \eta \in \mu_n(l) \}$. For each $n \in \omega$, let ι_n be a map from $\alpha_n \cup {}^{n>2}$ to $\alpha_{n+1} \cup {}^{n+1>2}$ which maps $c \mapsto c$ for all $c \in \alpha_n \cup {}^{n>2}$, and define $\iota_n^* : C_n \to C_{n+1}$ by $a_l^n \mapsto a_{\iota_n(l)}^{n+1}$ and $b_\eta^n \mapsto b_{\iota_n(\eta)}^{n+1}$. Then ι_n^* is an embedding. So we can regard \mathcal{C}_n as a substructure of \mathcal{C}_{n+1} with respect to ι_n^* . Let \mathcal{C} be $\bigcup_{n < \omega} \mathcal{C}_n$, A and B denote $\bigcup_{n < \omega} A_n$ and $\bigcup_{n < \omega} B_n$ respectively.

Then we have the following observations.

Proposition 4.1. R(x, y) forms an antichain tree in $Th(\mathcal{C})$.

Proposition 4.2. $\bigwedge_{i < n} R(x, y_i)$ does not witness SOP₂ for all $n \in \omega$.

But Th(\mathcal{C}) has a witness of SOP₂. Let $\varphi(x, y) = \neg \exists w(R(w, x) \land R(w, y)) \land \exists z(x \neq z \neq y \neq x \land \exists w(R(w, x) \land R(w, z)) \land \neg \exists w(R(w, y) \land R(w, z)))$. Then φ says "y is a predecessor of x in the set of parameters." (*i.e.*, $y \triangleleft x$) So, $\langle \varphi(x, y), \langle b_{\eta} \rangle_{\eta \in \omega > 2} \rangle$ witnesses SOP₂, where $b_{\eta} = b_{\eta}^{n}$ for some $n \in \omega$. b_{η} is well-defined by the constructions of \mathcal{C} .

References

- M. Džamonja and S. Shelah, On ≤*-maximality, Annals of Pure and Applied Logic 125 (2004), 119-158.
- [2] B. Kim and H. Kim, Notions around tree property 1, Annals of Pure and Applied Logic 162 (2011), 698-709.
- [3] K. Takeuchi and A. Tsuboi, On the existence of indiscernible trees. Annals of Pure and Applied Logic 163 (2012), 1891-1902.

Joonhee Kim,

DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY, SEOUL 03722, SOUTH KOREA *E-mail address*: kimjoonhee@yonsei.ac.kr