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abstract Locally o-minimal structures are some local adaptation from o-minimal
ones. These structures were treated, e.g.in [1],[2]. O-minimal structures have been
studied extensively, in particular, they are characterized by means of behavior of types.

We try analogous argument in locally o-minimal structures.

1. Introduction

We recall some definitions and fundamental results at first.

Definition 1 A linearly ordered structure M = (M, <,---) is o — minimal if every definable

subset of M! is a finite union of points and intervals.

A linearly ordered structure M = (M, <, ---) is weakly o—minimal if every definable subset

of M is a finite union of convex sets.

Definition 2 Let M = (M, <,---) be a densely linearly ordered structure.

M is locally o — minimal if for any a € M and any definable set A C M, there is an open

interval I 5 a such that I N A is a finite union of points and intervals.

M is strongly locally o —minimal if for any a € M, there is an open interval I 5 a such that

whenever A is a definable subset of M?!, then I N A is a finite union of points and intervals.

M is uni formly locally o —minimal if for any formula ¢(z, %) over () and any a € M, there

is an open interval I 3 a such that I N (M, b) is a finite union of points and intervals for any

b€ M™, where ¢(M,b) is the realization set of p(z,b) in M.

Example 3 The following examples are shown in [1] and [2].

(R,+,<,Z) where Z is the interpretation of a unary predicate, and (R, 4, <,sin) are

(strongly ) locally o-minimal structures.

Let a language L = {<}U{P; : i € w} where P; is a unary predicate. Let M = (Q,<M
, PM. PM .. .) be the structure defined by PM = {a € M : a < 27%/2}. Then M is uniformly
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locally o-minimal, but it is not strongly locally o-minimal.
Theorem 4 [1]  Weakly o-minimal structures are locally o-minimal.

Theorem 5 [1] A structure M = (M, <,...) expanding a dense linear order (M, <) without
endpoints is locally o-minimal if and only if for any a € M and any definable set X C M,
there are ¢,d € M such that ¢ < a < d and either X N (¢,d) or (¢,d) \ X is equal to one of
the following : (1) {a}, (2) (¢,a], (3) [a,d), or (4) the whole interval (c,d).

Corollary 6 [1]  Local o-minimality is preserved under elementary equivalence. But, strongly

local o-minimality is not preserved under elementary equivalence.

2. Types in locally o-minimal structures

From the beginning, o-minimal structures are defined by the property of definable sets of
1—variable formulas. And they are characterized by means of behavior of 1—types. They

consider two kinds of 1—types by the way to cut linear orders of parameter sets, e.g. in [5].

Definition 7 Let M be a densely linearly ordered structure and p(z) € S{" (M), that is, p(z)
is complete over M with respect to the order relation.

We say that p(x) is cut (irrational ) over M if for any a € M, if a < x € p(x), then there
is b € M such that a < b < z € p(x), and similarly, if © < a € p(z), then there is ¢ € M such
that 2 < ¢ < a € p(x).

We say that ¢(x) € S¢"(M) is noncut (rational ) over M if ¢(x) is not a cut type.

Here we consider nonisolated types only.

Definition 8  Let M be locally o-minimal and p(z) € S¢"(M) be noncut.
There are four kinds of noncut types ;
plx)={m <z <a:m<aec M} for some fixed a,
or {fa<z<m:a<meée M} for some fixed a.
Here we call these types bounded noncut types.
plz)={m<z:meM}or{z<m:meM}
We call these types unbounded noncut types.

3. Basic property of types in locally o-minimal structures

We can characterize locally o-minimal structures by means of types defined as above to some
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extent.

At first we recall some basic result from [3].

Theorem 9 [3] Let M be a linearly ordered structure.

Then M is o-minimal
if and only if

Any p(x) € S¢"(M) is complete over M, that is, p(x) is extended to the unique 1—type over
M.

We can show the next lemma.

Lemma 10  Let M be a densely linearly ordered structure.
Then M is locally o-minimal

if and only if
Any bounded noncut type p(x) € S¢"(M) is complete over M.

Proof ;

(=)

Let p(x) € S{"(M) be bounded noncut, that is, p(x) ={m <z <a : m <a € M} for some
fixzed a € M. The other cases are proved similarly.

For any formula ¢(x,m) over M, there is an interval I C M such that a € I and
"I N (M, m) is a union of finite points and intervals”. (We call this property "I has
o — minimal property”, ”OM — property” for short in the following. )

Thus there is b € I such that either for any ¢ € I with b < ¢ < a, M [ ¢(c,m),
or for any ¢ € T with b < ¢ < a, M | —p(e,m). If for any ¢ € T with b < ¢ < a,
M E p(c,m), then p(x) b @(x,m). Suppose that p(x) U {—p(x, M)} is consistent, then the
formula 7b < x < a N —p(x,m)” is satisfied in M. Contradiction.

(=)

We must show that for any formula ¢(xz,m) over M and any a € M, there is an interval
I C M such that a € I and I has OM — property with respect to ¢(x,m).

Suppose that for any b < a, there are convex sets {D; : i < w} in the interval I' = {b < z <
a} such that ;

for any d; € D; and d; € Dj, ifi < j <w, then d; < dj, and
for any dj € Dy; and dy, € Dait1, M = p(d;, m) A ~p(dy, ).

Thus for the noncut type p(x), both p(x) U {p(x,m)} and p(x) U {—~p(x,m)} are consistent.
It contradicts to the hypothesis.

So there is a convex set C such that for any e € C, either if e < g < a, then M = p(g,m) or
if e <g<a, then M |=—p(g,m). If C has no left boundary point in M, then we can take it



in C for the interval 1. The reverse argument holds in the right side of a. Then M is locally

o-minimal. |

For the next argument, we recall some definition.

Definition 11~ Let M be a linearly ordered structure.
M is definably complete if every definable unary set has both a supremum and an infimum

in M U{£oc}.

This condition is equivalent to the fact that every open definable unary set in M is a disjoint

union of open intervals. We can show the next lemma.

Lemma 12 Let M be a locally o-minimal structure and A C M with A # 0. And let M be
definably complete.
Then the isolated types of Th(M,a)aeca are dense.

Next, we refer to results in [6]. We recall some definitions.

Definition 13 Let M be a structure.

A type p(T) € Sy, (M) is definable if for any ¢(Z,7) (over (1), there is a formula dp(y) over
M such that for all @ € M, ¢(Z,a) € p(z) iff M | dy(a).

Let M C N be linearly ordered structures.

M is Dedekind complete in N if no cut in S7 (M) is realized in N (where a cut p(z) € S1(M)
is a complete type over M which contains the cut p(z) [< € S{" (M) ).

Theorem 14 [6] Let M be an o-minimal structure and let p(T) € Sy (M).

Then p(T) is definable if and only if for any realization @ of p(T), M is Dedekind complete
in M (@) where M (a) is the prime model over M U {a}.

In particular, let q(x) € S¢™(M).

Then q(x) is definable if and only if q(x) is noncut.

Non-definability of cut types is easily checked in o-minimal structures. They used the
cell decomposition theorem to prove the theorem above. I can not clearly show that the cell
decomposition theorem holds in locally o-minimal structures on what condition. But the next

fact is easily confirmed.

Fact 15 Let M be a locally o-minimal structure and p(x) € S§" (M) be bounded and noncut.
Then p(x) is definable.

93
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4. Some characterization of strongly locally o-minimal structures
by types

In this section, the property of 1—types is used for characterizing strongly locally o-minimal

structures. It is suggested by the argument in [5] and [6]. First we recall some result from [2].

Theorem 16 [2] Let M be strongly locally o-minimal. And let D be a definable set of M and
f:D — M be a definable function.

Then for any a € D, there are open intervals I C M containing a and J C M containing
f(a) such that, by putting f* = fn (I xJ),

the domain of f* can be broken up into a finite union of points and intervals, on each of

which f* is constant, strictly increasing and continuous, or strictly decreasing and continuous.

We can show the next propositions. In general, there are many examples of locally o-

minimal structures which are not definably complete and have incomplete cut types.

Proposition 17 Let M be a locally o-minimal structure and p(z), q(z) € S¢"(M). And let
p(x) be noncut and q(x) be cut, and q(x) be incomplete over M.

Then there are no realizations a of p(x) and b of q(x) such that a and b have a common
interval I C N such that {a,b} C I and for any formula ¢(z,7) over N, o(N,m) NI is a
finite union of points and intervals in any strongly locally o-minimal structure N = M.

(In the following, we say that the interval I above has 7 strongly locally o —
minimal property”, ”SLOM — property” for short. )

Sketch of proof ;

Suppose not, that is, there are a strongly locally o-minimal structure N = M and realizations
a of p(x) and b of q(x), and an interval I C N such that a,b € I and I has SLOM — property.
Thus we can consider tp°" (b/acl(Ma)) & tp(b/M) where tp°” (b/acl(Ma)) € S{"(acl(Ma)). So
there is a realization ¢ of q(z) such that ¢ € acl(Ma). Thus there is a definable function f(z)
over M such that f(a) = c.

Let p(z) ={m <z < d;me M, m<d} for some firedd € M and a < c. ( The other cases
are proved similarly. ) We may assume that the set I N7z <d” ={ne€l :n<dne N} is
the domain of f(x). By the monotonicity theorem of strongly locally o-minimal structures as
above, we may assume that I N7z < d” is monotone and continuous. Moreover as M < N,
there is e € M such that f(x) is monotone and continuous on the interval (e, d).

Intuitively, it is obvious that the function f(x) deduces a contradiction. But we show details.

W.l.o.g, we assume that f(x) is strictly increasing on (e,d). (Another case is proved sim-
ilarly. ) Let (e, d)NM ={m e M : e <m < d}. As f(z) is monotone and continuous, its
image of (e,d) N M is an interval ( f(e), f(d)) in M ( f(e) may be —co and f(d) may be oo ).
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And as q(x) is cut, for the realization ¢ of q(x), there is g € M such that ¢ < g < f(d). Now
NEVz(fYg)<z<d—g< f(x)). As f1(9) <a<d, g < f(a) = c. Contradiction. 1

Proposition 18 Let M be locally o-minimal and N with M < N be strongly locally o-minimal.
And let p(x) € S1(M) be definable, and a be a realization of p(x) and I C N be an interval
such that a € I and I has SLOM — property.

Then for anyb € I, if tp°" (b/M) € S¢"(M) is incomplete, then tp(b/M) € Sy (M) is definable.

Proposition 19 Let M be a locally o-minimal structure and let p(x), q(z) € SY"(M), and
q(x) be incomplete over M.
Moreover let p(x) be realized in N and q(x) be not realized in N for some N with M < N.
Then no realizations of p(z) and q(z) have a common interval I (C N') with SLOM —

property in any strongly locally o-minimal structure N’ with N < N’.

5. Further problems

As is mentioned above, some results about o-minimal structures are generalized to the
context of locally o-minimal structures. I will continue this attempt hereafter.

I studied about the independence relation in locally o-minimal structures before. I will
investigate whether the difference between two kinds of 1—types has effect on the independence

relation.
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