Ideas of proving symmetry of Kim-independence

Hiroaki Mukaigawara Graduate School of Pure and Applied Sciences University of Tsukuba hmukai1124@math.tsukuba.ac.jp

March 13, 2020

1 Introduction and Preliminaries

In [1], the notion of Kim-independence was introduced, and it was shown that $NSOP_1$ theories are characterized as those theories for which Kim-independence has the symmetric property over models. In the proof of this characterization, the authors of [1] used Erdös-Rado theorem, which is a combinatorial set theoretic result on uncountable cardinals. In this article, we try to present a new proof of this fact only using Compactness theorem and Ramsey's theorem. We give an outline of the idea of the proof.

In this article, L is a language and T is a complete L-theory having an infinite model. For simplicity, we assume L is countable. We fix a big saturated model M^* of T and we work in M^* . Small subsets of M^* are denoted by A, B, C, \ldots . Finite tuples in M^* are denoted by a, b, c, \ldots . Variables are denoted by x, y, z, \ldots . Formulas are deoted by φ, ψ, \ldots . Types are denoted by p, q, r, \ldots and S(A) is the set of all complete types over A. We say a and b have the same type over A (in symbol $a \equiv_A b$) if there is a type $p \in S(A)$ for which $a, b \models p$. For any $A \subset B$ and $p \in S(B)$, $p|_A = \{\varphi(x) \in p \mid \varphi(x) : L(A)$ -formula}. Let $\operatorname{Aut}(M^*/A) = \{\sigma : M^* \to M^* \mid \sigma \text{ is an automorphism over } A\}$. A sequence $\langle a_i \mid i < \alpha \rangle$, where α is an ordinal, is called an indiscernible sequence over A, if for any strictly increasing partial function $f : \alpha \to \alpha$, there is an $\sigma \in \operatorname{Aut}(M^*/A)$ with $\sigma \supset \{(a_i, a_{f(i)}) \mid i < \alpha\}$.

2 Kim-independence

A complete type p over the domain M^* will be called a global type. The following definitions are from [1].

Definition 1 (A-invariant global type). We say a global type $p(x) \in S(M^*)$ is A-invariant, if

$$\varphi(x,a) \in q \iff \varphi(x,b) \in q.$$

holds, for any $a, b \in M^*$ with $a \equiv_A b$ and any L-formula $\varphi(x, y)$.

Definition 2 (Morley sequence). Let q be an A-invariant global type. $\langle b_i | i < \omega \rangle$ will be called an A-Morley sequence (defined by q) if $b_i \models q|_{Ab_{<i}}$, for all $i < \omega$.

Remark 3. For any set A, an A-Morley sequence is an indiscernible sequence over A. This can be shown by an induction on the length of the sequence.

Example 4 $(T = \text{Th}(\mathbb{Q}, <))$. Let q(x) be an *M*-invariant global type extending $\{x > a \mid a \in M\}$.

- 1. Suppose that all formulas x < a with a > M belong to q. Then any decreasing sequence $a_0 > a_1 > \cdots > a_i > \cdots > M$ becomes an *M*-Morley sequence defined by q.
- 2. Suppose that all formulas x > a with a > M belong to q. Then any increasing sequence $M < a_0 < a_1 < \cdots < a_i < \ldots$ becomes an *M*-Morley sequence defined by q.

Definition 5 (Kim-divide). We say that a formula $\varphi(x, b)$ Kim-divides over A if there are an A-invariant global type q and an A-Morley sequence $I = \langle b_i \mid i < \omega \rangle$ defined by q such that

- 1. $b_0 = b$,
- 2. $\{\varphi(x, b_i) \mid i < \omega\}$ is inconsistent.

A type $p \in S(B)$ Kim-divides over A if there is a formula $\varphi(x, b) \in p$ that Kim-divides over A.

Example 6 (T=Th($\mathbb{Q}, <$)). Let *M* be a model of *T*. Let us consider the formula $a_0 < x < b_0$.

- 1. Suppose that there is an element $m \in M$ with $a_0 < m < b_0$. Then the formula $a_0 < x < b_0$ does not Kim-divide over M.
- 2. Suppose that $M < a_0 < b_0$. Let q(y, z) be the global type $\{a < y < z : a \in M^*\}$. Then, the formula $a_0 < x < b_0$ Kim-divides over M by this q.

Definition 7 (Kim-fork). $\varphi(x, b)$ Kim-forks over A if there are $n < \omega$ and $\psi_0(x, c), \ldots, \psi_n(x, c)$ such that

- 1. $\psi_i(x,c)$: Kim-divides over A,
- 2. $M^* \models \forall x \left[\varphi(x, b) \to \bigvee_{i \le n} \psi_i(x, c) \right].$

 $p \in S(B)$ Kim-forks over A if there is $\varphi(x, b) \in p$ Kim-forks over A.

By definition, If $\varphi(x, a)$ Kim-divides over A, then $\varphi(x, a)$ Kim-forks over A(but not the converse).

3 $NSOP_1$ theories

Definition 8 (NSOP₁). T has SOP₁ if there exist $\varphi(x, y) \in L$ and a binary tree of tuples $(c_{\eta})_{\eta \in 2^{<\omega}}$ such that

- 1. For all $\beta \in 2^{\omega}$, $\{\varphi(x, c_{\beta \restriction m}) \mid m < \omega\}$ is consistent,
- 2. For all $\gamma \in 2^{<\omega}$ and $\gamma \succeq \eta^{\land} \langle 0 \rangle$, $\{\varphi(x, c_{\alpha^{\land} \langle 1 \rangle}), \varphi(x, c_{\gamma})\}$ is inconsistent.

T is NSOP₁ if T does not have SOP₁.

"T is $NSOP_1$ " characterizes an L-formula and two infinite sequence of tuples.

Fact 9 ([1]). Let T be a complete theory. T.F.A.E.

- 1. T has SOP₁.
- 2. There are $\langle a_i b_i \mid i < \omega \rangle$ and $\varphi(x, y) \in L$ such that
 - $a_i \equiv_{(ab)_{<i}} b_i \ (\forall i < \omega),$
 - $\{\varphi(x, a_i) \mid i < \omega\}$ is consistent,
 - $\{\varphi(x, b_i) \mid i < \omega\}$ is 2-inconsistent.

By Fact 9,

Fact 10 ([1]). Let T be a complete theory. T.F.A.E.

- 1. T is NSOP₁,
- 2. For all $M \models T$, $\varphi(x, b)$ and M-invariant global type $q \supset \operatorname{tp}(b/M)$, if $\varphi(x, b)$ Kimdivides over M by q, then for all M-invariant global type r satisfies $r|_M = q|_M$, $\varphi(x, b)$ Kim-divides over M by r.

By Fact 10,

Fact 11 ([1], T : NSOP₁). If $\varphi(x, b)$ Kim-forks over M, $\varphi(x, b)$ Kim-divides over M.

By Fact 11,

Fact 12 (T : NSOP₁). For any B and $p \in S(B)$,

p Kim-divides over $M \iff p$ Kim-forks over M.

Notation. $a \downarrow_A^K b \iff \operatorname{tp}(a/Ab)$ does not Kim-fork over A.

Fact 13 ([1], T : NSOP₁). \downarrow^{K} satisfies the following conditions :

1. (Extension over models) If $a \downarrow_M^K b$, then for all c, there exists $a' \equiv_{Mb} a$ satisfies $a' \downarrow_M^K bc$.

- 2. (Chain condition) If $a \downarrow_M^K b$ and *M*-Morley sequence $I = \langle b_i \mid i < \omega \rangle$ starts with *b*, there exists $a' \equiv_{Mb} a$ such that
 - $a' \downarrow_M^K I$
 - I: an indiscernible sequence over Ma'
- In [1], Kaplan and Ramsey proved

Fact 14 ([1]). T.F.A.E.

- 1. T is NSOP₁.
- 2. Symmetry : $a \downarrow_{M}^{K} b \iff b \downarrow_{M}^{K} a$.

4 Ideas proving Symmetry of Kim-independence

I want to prove

Theorem 15 ([1]). If T is NSOP₁, \downarrow^K satisfies symmetry over models, i.e. $a \downarrow^K_M b \Rightarrow b \downarrow^K_M a$.

by only using Compactness theorem and Ramsey's theorem. We introduce the notion of finitely satisfiability of types.

Notation. We denote $tp(a/A) = \{\varphi(x) : L(A)\text{-formula}, M^* \models \varphi(a)\}.$

Definition 16. $p(x) \in S(A)$ is finitely satisfiable in B if for any $n < \omega$ and $\varphi_0(x), \ldots, \varphi_n(x) \in p$, there is $b \in B$ satisfies

$$M^* \models \bigwedge_{i \le n} \varphi(b).$$

Let α be an ordinal. $I = \langle a_i \mid i < \alpha \rangle$ is cohheir sequence over A if for any $i < \alpha$, $\operatorname{tp}(a_i/Aa_{< i})$ is finitely satisfiable in A and I is an indiscernible sequence over A.

My main idea proving Theorem 15 is using Fact 9. First, I proved

Lemma 17 $(T : \text{NSOP}_1)$. We put $p(x, a) = \operatorname{tp}(b/Ma)$. If $a \downarrow_M^K b$, then for all $n < \omega$, there is a sequence $(a_i a'_i)_{i < n}$ satisfies the following conditions :

- 1. $a_i \equiv_M a'_i \equiv_M a \; (\forall i < n),$
- 2. $a_i \equiv_{M(aa')_{>i}} a'_i \ (\forall i < n),$
- 3. $\bigcup_{i < n} p(x, a_i)$: consistent,
- 4. $(a'_i)_{i < n}$: For all i < n, $\operatorname{tp}(a'_i/Ma'_{< i})$ is finitely satisfiable in M.

Proof. We confirm only n = 2. But same method is applicable for all $n < \omega$. Let κ be a sufficiently large cardinal. Since $a \downarrow_M^K b$, there is $I_0 = (b_i)_{i < \kappa}$ starts with b satisfies the following conditions,

- $a\downarrow_M^K I_0,$
- I_0 : coheir sequence over M and Ma-indiscernible sequence.

Since $a \downarrow_{\mathcal{M}}^{K} I_{0}$, there is a'' and $I_{1} = (c_{i}I'_{i})_{i < \kappa}$ starts with aI_{0} satisfies the following conditions,

- $a' \equiv_{MI_0} a$,
- $a' \downarrow_M^K I_1,$
- I'_1 : coheir sequence over M and Ma'-indiscernible sequence.

Let $I_2 = (c'_i I''_i)_{i < \kappa}$ be an coheir sequence over M starts with $a'I_1$. Let $a_1 = c'_0$ and $a'_1 = c'_1$. Since $(c_i)_{i < \kappa}$ is sufficiently long, there is $i < j < \kappa$ such that $c_i \equiv_{Ma_1a'_1} c_j$. Let $a_0 = c_i$ and $a'_0 = c_j$.

Question 18. For all $n < \omega$, Can we take $(a_i a'_i)_{i < n}$ satisfies the following condition ? :

- 1. For all $m \leq n$ and $(b_i b'_i)_{i < m}$ are taken by Lemma 17, $(a_i a'_i)_{i < m} \equiv_M (b_i b'_i)_{i < m}$. \implies If m < 2, $(a_i a'_i)_{i < m} \equiv_M (b_i b'_i)_{i < m}$ but the other case can't satisfy this condition.
- 2. $\operatorname{tp}(a'_i/Ma'_{< i}) \subset \operatorname{tp}(a'_{i+1}/Ma'_{< i+1})$ for all i < n 1? \Longrightarrow For all $n < \omega$ and $(a_i a'_i)_{i < n}$, $\operatorname{tp}(a'_0/M) \subset \operatorname{tp}(a'_i/Ma'_{< i})$, but the other case can't satisfy this condition.

We explain another idea.

Lemma 19. Let T be a complete theory. Let $M \subset A$, where $M \models T$ and $p(x) \in S(A)$ be a type finitely satisfiable in M. Let $q(X) \in S(M)$, where X is a set of variables with $x \in X$. Suppose that $p(x) \cup q(X)$ is consistent, in other words, $p|_M \subset q(X)$. Then, there is a type $q^*(X) \in S(A)$ such that

- 1. $q^*(X)$ is finitely satisfiable in M, and
- 2. $q^*(X) \supset p(x) \cup q(X)$.

Proof. Let $\Pi(X) = \{\neg \theta(X) \mid \theta(X) : L(A)$ -formula, θ isn't satisfiable in $M\}$ and $\Gamma(X)$ be $p(x) \cup q(X) \cup \Pi(X)$. We claim that $\Gamma(X)$ is consistent. Suppose otherwise, We can find $\varphi_p(x) \in p, \ \varphi_q(x) \in q, \ n < \omega \text{ and } \psi_0(X), \dots, \psi_n(X) \in \Pi(X)$ such that

$$\varphi_p(x) \land \varphi_q(X) \models \bigvee_{i \le n} \neg \psi_i(X).$$

But this is contradiction since $\exists X \setminus x[\varphi_p(x) \land \varphi_q(X)] \in p$ and p is finitely satisfiable in M. \Box

Proposition 20. Let T be a NSOP₁ theory and $M \models T$. Let r(x, y) = tp(ab/M), where $a \downarrow_M^K b$. Then for any $n < \omega$, there is a tree $(a_\eta)_{\eta \in 2^{\leq n}}$ such that

- 1. $a_{\eta \upharpoonright m} a_{\eta} \models \gamma$, for any $\eta \in \omega^n$ and m < n;
- 2. For any $i < \omega$ and $i \cap \eta \in \omega^{< n}$, $I_{i \cap \eta} = \langle a_{j \cap i \cap \eta} \mid j < \omega \rangle$ is indiscernible sequence over $M \cup \{a_{i \cap \eta}\} \cup \{a_{\nu \cap k \cap \eta} \mid k < i, \nu \in \omega^{< n-1}\}.$
- 3. $a_{0^{n-2}}, a_{0^{n-3}}, \ldots, a_1$ forms a coheir sequence over M.

Proof. Suppose we already defined a desired tree $(a_\eta)_{\eta\in 2^{\leq n}}$ for $n < \omega$. We rename each a_η to $b_{0^{\sim}\eta}$. By assumption, $b_{0^{n-1} \cap 1}, b_{0^{n-2} \cap 1}, \ldots, b_{0^{\sim}1}$ forms a coheir sequence over M. Let $B = \{b_{0^{2} \cap \eta} \mid \eta \in \omega^{\leq n-1}\}$. Since the type $p(x) = \operatorname{tp}(b_{0^{\sim}1}/MB)$ is finitely satisfiable in M, there is a coheir extension $p'(x) \in S(M(a_\eta)_{\eta\in\omega^{\leq n}})$ of p. Let $q(X) = \operatorname{tp}((a_\eta)_{\eta\in\omega^{\leq n}}/M)$, where $X = (x_\eta)_{\eta\in\omega^{\leq n}}$ and the variable corresponds to a_η . By Lemma 19, there is a type $p^*(X) \in S(M(a_\eta)_{\eta\in 2^{\leq n}})$ which is finitely satisfiable in M and extends $p'(x_\emptyset) \cup q(X)$. Choose a realization $B_1 = (b_{1^{\sim}\eta})_{\eta\in\omega^{\leq n}}$ of p^* . Notice that $b_{1^{\sim}\eta}$ corresponds to x_η . Then we choose $B_i(i \geq 2)$ such that B_0, B_1, B_2, \ldots forms a coheir sequence over M. Since $\operatorname{tp}(b_0/M(b_{0^{\sim}\eta})_\eta)$ is does not Kim-fork over M and Fact 13, there is $r(x) \in S(M(B_i)_{i<\omega})$ satisfies $r(x) \supset \operatorname{tp}(b_0/M(b_{0^{\sim}\eta})_\eta)$ and does not Kim-fork over M. we choose a realisation b_\emptyset of r(x). Then $(b_\eta)_{\eta\in\omega^{\leq n+1}}$ satisfies the condition 1-3.

References

- I. Kaplan, N. Ramsey, On Kim-independence, J. Eur. Math. Soc. (JEMS), 2019. Accepted, arXiv:1702.03894.
- [2] K. Tent, M. Ziegler, A Course in Model Theory (Lecture Notes in Logic), Cambridge University Press, 2012.
- [3] A. Chernikov, N. Ramsey, On model-theoretic tree properties, Journal of Mathematical Logic, 2016, World Scientific, arXiv:1505.00454.
- [4] P. Simon, A Guide to NIP theories, in Lecture Notes in Logic, 2014, http://www. normalesup.org/~simon/NIP_lecture_notes.pdf.
- [5] B. Kim, H. Kim, L. Scow, Tree indiscernibilities, revisited, Archive for Mathematical Logic, 2014, Springer, arXiv:1111.0915.
- [6] L. Scow, Characterization of NIP theories by ordered graph-indiscernibles, Annals of Pure and Applied Logic, 2012, Elsevier, arXiv:1106.5153.
- [7] D. Marker, *Model theory: An introduction*, Springer Science & Business Media, 2006.
- [8] C.C. Chang, H. Keisler, *Model Theory*, Dover Publications, 2012.
- [9] J. Dobrowolski, B. Kim, N. Ramsey, Independence over arbitrary sets in NSOP₁ theories, arXiv:1909.08368.

- [10] A. Chernikov, Theories without the tree property of the second kind, arXiv:1204.0832.
- [11] Akito Tsuboi, Lecture note, 2020.
- [12] 坪井 明人著, 田中 一之編, ゲーデルと 20 世紀の論理学 2. 東京大学出版会, 2006.
- [13] 坪井 明人, 授業ノート, http://www.math.tsukuba.ac.jp/~tsuboi/gra/simp(lec) .dvi.