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Abstract 

We give an example of a class with infinite VC2-dimension which is not PAC2― 

learnable defined in [1] or [2]. We give an improved definition of PAC2-learnability 
for classes on finite or countable sets. 

1 Introduction and Preliminaries 

In model theory, it is well known that a formula cp(x, y) is NIP (in a structure 

M) if and only if a class C = {cp(M, a) : a E M} has finite VG-dimension. 
On the other hand, the恥 itenessof VG-dimension of class C coincides with 
PAC-learnability of C in statistical learning theory. The author has been 

considering a generalization of this correspondence. 

VCn-dimension was introduced in [3] to analyze NIP n-formulas to answer 
Shelah's question about a number of types in NIPn-theories, where n E w. 

In the article, a generalization of Sauer-Shelah lemma was shown and they 
proved that the finiteness of VCn-dimension of a formula is equivalent that 

it has NIP n, hence the definition of VCn-dimension seems good and to work 

well. 

PACn-learning was introduced in [1] or [2] and the correspondence of 
VCn-dimension and PACn-learnability was studied. In that article, they 

conjectured that a class C has finite VCn-dimension if and only if it is PAC町
learnable, and gave a proof of "if" direction. 
However, recently the author of present article found a counter example 

for that result. It is considered that the problem is the definition of PAC町

learnability in [1] is a little strong. In this note we see the counter example 
and how we fix the definition so that the "if" direction will be true. 
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In what follows we focus our discussion on the case n = 2. Let Xi (i < 2) 
be any sets and put X = X。XX1. 
Definition 1. Let C be a subset of 2x := P(X) and Ac  X. 

l. A is said to be a box of height m E w if A has a form of A。xふ with
A c xi and IAI = m for i < 2. 

2. A is said to be shattered by C if A n C := { A n C I C E C} is 2A. 

3. VCrdimension of C is defined as V 02 (C) = sup{ m E w U { oo} I A C 
Xis a box of height m shattered by C}. 

Now we consider each member of C c 2x as a function from X to 2 = 
{O, 1}. The following definitions are basically come from [1] or [2]. 

Definition 2. Let x = (x0, x1) EX. 

l. D(x) = {(ao,a1) EX  I xo = a。orx1 = ai}. We call D(x) a data from 
x. 

2. D(元） = LJxE元D(x)for a finite sequence元EX匹

3. Sample space Sample(C) is the set UnEw, 元EXn{flD(元） I f E C}. Here, 
JID(元） is considered as a restriction of function. 

4. A learning function for C is a function F : Sample(C)→ C. 

Definition 3. C is PACrlearnable if there is a learning function F : 
Sample(C)→ C such that for every E, 8 > 0 there is NE,o,c E w, which is 
called sample complexity, satisfying the following: For every product proba— 

bility measuresμ=μ。xμ1and for every f EC, 
Prov元EXn(μ(F(JID(元））△f) > E) :=忙（｛元 Exn Iμ(F(JID(歪））△j)>E})<6 

where I歪I= n 2: NE,o,C・Here we always assume that every element in C is 
μ-measurable. 

2 The counter example 

In this section we give an example of PACrlearnable C (in the sense of 
Definition 3) with infinite VC2-dimension. 
Let X =記
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Definition 4. Let R be the set of strictly increasing sequences (rn) of positive 
real numbers starting with r0 = 0. 

l. f(rn),a = { X E X I T"2nさd(a,x) < r2n+1 for some n E w }. 

2. Ccircles := {f(rn),a I (rn) ER, a EX}. 

We first see that Ccircles is very complex in the sense of VC2-dimension. 

Proposition 5. Ccircles has infinite VCrdimension. 

Proof. Let Ac  X be any box of height m E w. We show that A is shattered 
byX. 

Claim A. Let B be any finite subset of X. Then there is a E X such that 
for all bヂb'EB, d(a, b)ナd(a,b'). 

Since the set {x E X I d(x, b) = d(x, b')} has a form of a line, we can 
choose a point a E X avoiding finitely many lines on which a has the same 
distance from different points in B. (End of Proof of Claim A) 
Now, let a E X be a point such that d(a, b)ヂd(a,b') for all bヂb'EA.
Let {b1, b2, …，b叩}be an enumeration of A in the ascending order of distance 
from a. For each A。cA, it is easy to find (rn) such that An f(rn),a = A。.
For example if A。={b2, b3, b恥…},then put門=d(a, b1)/2, 乃=(d(a, bリ＋
d(a, 的））/2, 乃=(d(a, 妬）+ d(a, 似））/2, and so on. ロ

Next we study the learnability of Ccircles• 

Lemma 6. Let f,g E Ccircles and x EX. If JID(x) = glD(x), then f and g 
has the same center point a EX, i.e they has a form of fCrn),a for some (八），
and f = g on X ¥ {y EX  I d(y, a) 2:: d(x, a)}. 

Proof. First we find the point a E X which is the center point of f and g. 
Since D(x) is the union of a vertical line and horizontal line, say l。andli 
respectively, f ID(叫cl。U[i. Let see the set JID(x) n l。.It is an infinite 
union of intervals (or a point), and they are half open and half closed intervals 
except one interval l00 (or a point). Then the center of f must be on the 
horizontal bisector of l00. The same argument holds for JID(x) n li, hence 
we can detect the center point a from f ID (x). It is easy to see the remains 
of the lemma. ロ

According the result in [1], Ccircles cannot be PAC2-learnable sinec it has 
infinite VCrdimension. However, in the following, we see that it is PAC2― 
learnable. 
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Proposition 7. Ccircles is PAC2-learnable in the sense of Definition 3. 

Proof. We first choose a learning function F : Sample→ Ccircles. Let f = 
恥），aE Ccircles. By the previous lemma, for every x E X, from JI D (x), 
we can detect the center a and the situation of f outside the disk Dx = 

{y E X I d(y, a) 2 d(x, a)}. Put F(JID(元）） as any g E Ccircles such that 
JID(xo) = glD(xo) for some Xo E元withthe minimum distance from a. 

Then f = g on X ¥ Dxo・ 
Let E, 6 > 0 and take N E w large enough (depending only on E, 6 and 
Ccircles)-Letμbe any product probability measure on X and f = fern),a E 
Ccircles. Take n 2 N and we will prove that 

忙（｛元 Exn Iμ(F(JID(元））△j)>E})<ふ

Consider a largest open disk D ofμ(D) :S E with center a. (D may 
be empty in the caseμ({a}) 2: E. Sinceµis び—additive, we know that 
μ(DU {a}) 2: E. (Here, we add a to the closure for the case that D is empty.) 
Notice that if x ED':= DU {a} thenμ(F(JID(x))△ f) :S E. Therefore, 

忙（｛豆 Exn Iμ(F(JID(元））△f) > E}) < Prov(元nD'::J〇）．

Sinceμ(D') 2: E and I元Iis large enough (depending on E, c5), we have that 
Prob(元nD'ヂ0)< c5. ロ

Remark 8. In the counter example Ccircles, X is uncountable. We can find 
a similar example with countable X = Q乞

In the remains of this section, we see some trial of improving the definition 
of PAC2-learning. From now on, we assume that X is finite or countable. 
Moreover, we assume that every single point in X is measurable (so that 
every set is measurable). 
We first define sample spaces in a new way. 

Definition 9. Letμbe a measure on X and x EX. 

1. Dμ(x) := Suppμ(D(x)) = {y E D(x) Iμ({y}) > O}. 

2. D立） = LJxE元几(x)for a finite sequence元EX匹

3. Sample space Sample* (C) is the set UnEw, 元EXn{flDμ(元） I f E 
C, μis a product probability measure on X}. 

4. A learning function for C is a function F : Sample* (C)→ C. 
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Definition 10 (New definition of PAC2-learnability). C is PAC2-learnable if 
there is a learning function F : Sample* (C)→ C such that for every E, c5 > 0 
there is NE,o,c E w, which is called sample complexity, satisfying the following: 

For every product probability measuresμ=μ。xμ1and for every f EC, 
Prov元EXn(μ(F(JIDμ(元））△f) > E) < (5 

where I元I= n 2': NE,o,C• Here we always assume that every element in C is 
μ-measurable. 

Using the above definition, we can prove that if C is PACrlearnable then 
it has finite VC2-dimension. The proof is the same as in [1], indeed, in the 
article, they prove it by restricting the space X to the support ofμ. It doesn't 

work for their definition, but our new definition works with the proof. 

One may notice that if C is恥 ite,then it is immediate that C is PAC2― 

learnable in our definition. So we leave a conjecture which is true for the 
usual PAC-learnability and VG-dimension. The important point is that the 

sample complexity does not depend on C but only on its VC2-dimension (and 

E, 6). 

Problem 11. Show that there is a function h : 配。 xw→w such that 
every C with VC2(C) = d E w is PAC2-learnable with sample complexity 

NE,0 :s; h(E, <5, d). 

The main idea of the above comes from the following. 

p ropos1tion 12. Let X = 2 w . For each d E w there is a universal class 
Ca C 2x of VC2-dimension d such that if Ca is PAC2-learnable with sample 
complexity NE,o, then every class C (on a且niteor countable product set) with 

dimension at most dis also PAC2-learnable with sample complexity at most 

NE,O・ 

It's not so difficult to show the above proposition by using amalgamation 
method. However we leave it for other opportunity. 
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