On the number of independent strict orders

Akito Tsuboi University of Tsukuba

1 Motivation and Aim

Let me start with a simple example. In a given structure \mathcal{M} , there might be several different definable orders in \mathcal{M} . For example if \leq is a definable order in \mathcal{M} , its reverse order \leq^* is also definable, and of course \leq and \leq^* are different. However, they are not independent in the sense of the present article. Now we consider the two (pre)orders \leq_i (i = 1, 2) on \mathbb{N} : For $M = 2^{m_0} 3^{m_1} \dots$ and $N = 2^{n_0} 3^{n_1} \dots$ (prime factorizations), let

- 1. $M \leq_1 N$ iff $m_0 \leq n_0$,
- 2. $M \leq_2 N$ iff $m_1 \leq n_1$

Then we have the following:

- Both \leq_1 and \leq_2 are definable in $\mathbb{N} = (\mathbb{N}, +, \cdot);$
- By letting $a_i = 2^{2i}$, $b_i = 3^{2i}$ $(i \in \omega)$, we have:
 - $(a_i)_{i\in\omega}$ is strictly increasing in the sense of \leq_1 ;
 - $(b_i)_{i\in\omega}$ is strictly increasing in the sense of \leq_2 ;
 - Two intervals (a_i, a_{i+1}) and (b_j, b_{j+1}) always have a nonempty intersection. $2^{2i+1}3^{3j+1}$ belongs to the intersection.

Such two orders will be called independent in this article. We want to discuss how many independent orders exist in \mathcal{M} .

Shelah [2] defined two invariants $\kappa_{srd}^m(T)$ and $\kappa_{ird}^m(T)$, both are concerning the number of independent orders. $\kappa_{ird}^m(T)$ measures the number of possible independent orders by *m*-formulas, and $\kappa_{srd}^m(T)$ measures the number of independent strict orders. In [2], it was shown that if T is NIP, then the two invariants are equal. In [1], $\kappa_{srd}^m(T)$ was studied from the point of view of indiscernibility, also under the assumption of NIP.

2 Definitions

T is a complete countable theory. We work in a very big saturated model \mathcal{M} of T. a, b, \ldots are finite tuples in \mathcal{M} , and x, y, \ldots are finite tuples of variables. We want to investigate $\kappa_{srd}^m(T)$ when m varies.

Now we recall the following basic definition:

Definition 1. • A formula $\varphi(x, y)$ has the strict order property if there is a formula $\varphi(x, y)$ and a sequence $(a_i)_i$ such that

$$\varphi(\mathcal{M}, a_0) \subsetneq \varphi(\mathcal{M}, a_1) \subsetneq \ldots,$$

where $\varphi(\mathcal{M}, a)$ denotes the set of all elements (in \mathcal{M}) satisfying the formula $\varphi(x, a)$.

• T has the strict order property if some formula has the strict order property.

The invariant $\kappa_{srd}^m(T)$ is defined as follows:

Definition 2. Let $m \in \omega$. $\kappa_{\text{srd}}^m(T)$ is the minimum cardinal κ such that there is no set $\{\varphi_i(x, y_i) : i < \kappa\}$ of formulas with |x| = m and a set $B = \{b_{ij} : (i, j) \in \kappa \times \omega\}$ of parameters satisfying:

- 1. For each $i < \kappa$, $\{\varphi_i(\mathcal{M}, b_{ij}) : j \in \omega\}$ forms an increasing sequence of definable sets;
- 2. $\{\varphi_i(x, b_{i,j})^{\text{if } (j \ge \eta(i))} : i \in \omega\}$ is consistent, for all $\eta \in \omega^{\kappa}$. $(\varphi^{\text{ if } (*)} = \varphi$ if (*) holds, otherwise $\varphi^{\text{ if } (*)} = \neg \varphi$)

We write $\kappa_{\rm srd}^m(T) = \infty$, if there is no such κ .

3 Results

Our main results are the following:

Theorem 3 (A). Suppose $\kappa_{\rm srd}^m(T) = \infty$. Then $\kappa_{\rm srd}^1(T) = \infty$.

Theorem 4 (B). Suppose $\kappa_{\text{srd}}^m(T) = \omega$. Then $\kappa_{\text{srd}}^1(T) = \omega$.

We do not prove the statements here. The details of proofs will be given in our forthcoming paper. But, the important facts to be used are summarized in the following remark.

- **Remark 5.** 1. For $\kappa < \kappa_{\rm srd}^m(T)$, there are formulas φ_i $(i < \kappa)$ and a set B witnessing the conditions 1 and 2 in the definition. By replacing B with a new one, the following additional conditions can be assumed.
 - (a) The column size of B can be chosen arbitrarily large. Moreover, B can be assumed to have the form $B = (b_{ij})_{(i,j)\in\kappa\times J}$, where J is an arbitrary infinite order.
 - (b) By letting $B_i = (b_{ij})_{j \in J}$ $(i \in \kappa)$, B_i is assumed to be indiscernible over $\bigcup_{k \neq i} B_k$.

Both can be justified by an easy compactness argument.

Remark 6. 1. Suppose $\kappa_{\mathrm{srd}}^m(T) = \infty$. There is an uncountable set $\{\varphi_i(x, y_i) : i < \omega_1\}$ and $B = (b_{ij})_{(i,j) \in \omega_1 \times I}$ witnessing the conditions 1 and 2 in the definition. So, by choosing an uncountable subset of ω_1 , we can assume $\varphi_i = \varphi$ for all $i < \omega_1$ (fixed). By compactness, in addition to conditions (a) and (b) above, it can be further assumed that $(B_i)_{i \in I}$ is an indiscernible sequence.

References

- Vincent Guingona, Cameron Donnay Hill, Lynn Scow, Characterizing Model-Theoretic Dividing Lines via Collapse of Generalized Indiscernibles, Volume 168, Issue 5, May 2017, Pages 1091-1111
- [2] S. Shelah, 'Classification Theory,' North Holland; 2 edition (December 20, 1990)