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LIOUVILLE THEOREMS FOR THE STOKES EQUATIONS IN EXTERIOR 

DOMAINS 

K.ABE 

AllsTRAcT. This is a resume of the paper [l]. We study Liouville theorems for the non-stationary 
Stokes equations in exterior domains in配 underdecay conditions for spatial variables. As 
applications, we show boundedness of the Stokes semigroup on窮 forall t > 0 for n ;;,: 3 and 
for n = 2 with zero net force. 

1. INTRODUCTION 

We consider the Stokes equations: 

81v-1-..v + Vq = 0, div v = 0 inn x (0, oo), 

(1.1) V = 0 Oll 8.Q X (0, oo), 

v = v0 on n x {t = O}, 

for exterior domains n c即， n:?: 2. It is known that a solution operator (called the Stokes 
semigroup) S(t): v0← v(・, t) = (v;(・, t))1,;;,;n forms an analytic semigroup on比forp E (1, oo), 
of angle ,r /2 [30], [16], i.e., S (t)v0 is a holomorphic function in the half plane {Re t > 0} on L~. 
Here, L~denotes the L凡closureof C~<T'the space of all smooth solenoidal vector fields with 
compact support in n. 

We say that an analytic semigroup is a bounded analytic semigroup of angle冗/2if the semi— 

group is bounded in the sector~。= {t E C¥{O} 11 arg ti < 0} for each 0 E (0, 冗/2)[6, Definition 
3.7.3]. The boundedness in the sector implies the bounds on the positive real line 

(1.2) 
C' 

IIS (t)II :=; C, IIApS (t)II :=; —, t > 0, 
t 

where II・II denotes the operator norm and AP is the generator. The estimates (1.2) are important 
to study large time behavior of solutions to (1.1). In terms of the resolvent, the boundedness of 

S (t) of angle冗/2is equivalent to the estimate 

(1.3) 
C。

11(1-Ap)—111~- AEI:0+冗/2・
111' 

When n is a half space, S (t) is a bounded analytic semigroup on L: of angle冗/2[26], [33], [8]. 
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The problem becomes more difficult when .Q is an exterior domain. For n~3, the boundedness 
of S(t) on砧isproved in [10] based on the resolvent estimate 

l,llllvllu + 1,11112IIVvllu + IIV2vllu :'.', Cllfllu, 1 < p <ー，
n 

2 
(1.4) 

for v = (,l -AP戸fand ,l E~ 年 12U {O}. The estimate (1.4) implies (1.3) for p E (1,n/2) and 
the case p E [n/2, oo) follows from a duality. Due to the restriction on p, the two-dimensional 
case is more involved. Indeed, the estimate (1.4) is optimal in the sense that 

II応 llv::; CIIAPvllv, v E D(A凸

is not valid for any p E [n/2, oo) [9]. Here, D(Ap) = w2・P n w; ドnL; and w; ドdenotesthe 
space of all f E W1・P vanishing on an. For n = 2, the boundedness of the Stokes semigroup on 
L; is proved in [11] based on layer potentials for the Stokes resolvent (see also [34]). 
We study the case p = oo. When n is a half space, S (t) is a bounded analytic semigroup on 
L;;'of angle冗/2by explicit solution formulas [15], [31]. Here, L;;'is defined by 

L;;'(Q) = {1 E£00(Q) I』f⑳ dx = 0, V<l> E G叩）｝，
andG叩）＝｛▽① EL叩）1① E位(n)}.For a half space and domains with compact boundary, 
L;;'agrees with the space of all f E L 00 satisfying div f = 0 in n and f• N = 0 onぬ Here,
N is the unit outward normal vector field on an. Since S (t) is bounded on L 00, the associated 
generator A00 is defined also for p = oo. For bounded domains [3] and exterior domains [4], 
analyticity of the semigroup onば followsfrom the a priori estimate 

(1.5) llvllL00十t112II▽vllLoo十tllV2vllL00十tll8ivllL00十tll"i/qllL00さ;CllvollL00, 

for v = S (t)v0 and t ::; T. The estimate (1.5) implies (1.2) fort ::; T and that S (t) is analytic 
on L;;:. Moreover, the angle of analyticity is冗/2by the resolvent estimate on L;;: [5]. When 
n is bounded, the sup-norms in (1.5) exponentially decay as t→ oo and S (t) is a bounded 
analytic semigroup on L;;: of angle冗/2.For exterior domains, it is non-trivial whether the 
Stokes semigroup is a bounded analytic semigroup on L;;:. 
For the Laplace operator or general elliptic operators, it is known that corresponding semi— 

groups are analytic on L"" of angle冗/2[25], [32], [22]. Moreover, if the operators are uniformly 
elliptic, by Gaussian upper bounds for complex time heat kernels, the semigroups are bounded 
analytic on L"" of angle冗/2.See [14, Chapter 3]. In particular, the heat semigroup with the 
Dirichlet boundary condition in an exterior domain for n :?: 2 is a bounded analytic semi— 

group on L"" of angle冗/2.For the Stokes equations, the Gaussian upper bound may not hold. 
See [15], [31], [28] for a half space. 
Large time£""-estimates of the Stokes semigroup have been studied for n :?: 3. Maremonti 
[23] proved the estimate 
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(1.6) IIS(t)vollL00~CllvollL00, t > 0, 

for exterior domains and n~3 based on the short time estimate in [3]. Subsequently, Hieber-
Maremonti [19] proved the estimate tllAS(t)vollL00~CllvollL00 fort > 0 and the results are 
extended in [7] for complex time t E~0 and 0 E (0, 冗/2)based on the approach in [23]. Of these 
papers, the case n = 2 is excluded. We are able to observe the difference between n~3 and 
n = 2 from the representation formula of the Stokes flow due to Mizumachi [27]. See below 
(1.9). We shall study large time behavior of Stokes flows for n~2 by a different approach. 
Our approach is by a Liouville theorem. A Liouville theorem is a fund皿 entalproperty 
to study regularity problems. It rules out non-trivial solutions defined in n x (-oo, O], called 
ancient solutions. See [21], [29] for Liouville theorems of the Navier-Stokes equations and [20] 

for the Stokes equations. Liouville theorems are also important to study large time behavior of 
solutions. We prove non-existence of ancient solutions of (1.1) in exterior domains under spatial 

decay conditions. We then apply our Liouville theorems and prove the large time estimate (1.6) 
for complex time t E~。 and0 E (0, 冗/2).

We say that v E½(Q X (,  0]) . 
oc 
-oo 1s an ancient solut10n to the Stokes equations (1.1) if 

div v = 0 in n x (-oo, 0), v・N = 0 onぬ X(-oo, 0) and 

(1.7) f f゚ v・（如+!),.cp)dxdt = 0, 
-00 Q 

for all cp E C~•1(豆 X (-oo, 0]) satisfying div cp = 0 in Q X (-oo, 0) and cp = 0 on 80 X (-oo, 0) U 
n x {t = O}. The conditions div v = 0 and v・N = 0 are understood in the sense that 

Jv・ ⑳ dx = 0 a.e. t E (-oo,O), 
N 

for all <D E C瓜（西

Theorem 1.1 (Liouville theorem). Let Q be an exterior domain with C3 -boundary in ズ， n~2.
Let v be an ancient solution to the Stokes equations (1.1). Assume that 

(1.8) v E L00(-oo,O;Lり forp E (1, oo). 

Then, v = 0. 

If one removes the spatial decay condition (1.8), the assertion of Theorem 1.1 becomes false 

for n~3 due to existence of stationary solutions which are asymptotically constant as lxl→ OO 
[9] (cf. [20] for bounded ancient solutions.) For n = 2, it is known that bounded stationary 
solutions do not exist [13]. See [1] for the proof of Theorem 1.1. 

Theorem 1.1 is useful to study the large time estimate (1.6) fort > 0. We invoke the repre-
sentation formula of the Stokes flow 
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I (1.9) v(x, t) = 0 f(x -y, t)vo(y)dy + l』1V(x -y, t -s)T(y, s)N(y)dH(y)ds. 
Here, T =▽ v+ ▽和— qiis the stress tensor and V = (V;j(x, t))因，j-,;nis the Oseen tensor 

(1.10) V;j(x, t) = f(x, t)的＋卵jI E(x -y)f(y, t)dy, 
R" 

defined by the heat kemelr(x, t) = (4冗t)―n/2e―lxl2/41 and the fundamental solutions of the Laplace 
equation E, i.e., E(x) = (n(n -2)a(n))―1lxl―(n-2) for n~3 and E(x) = -(2冗）―1log lxl for n = 2, 
where a(n) denotes the volume of the unit ball in JR.n. The formula (1.9) is obtained by regarding 
v = S (t)v0 as the Stokes flow in町 witha measure as the external force. It describes the 
asymptotic behavior of bounded Stokes flow as lxl→ oo. We show that if the Stokes flow is 
bounded for all t > 0, the stress tensor is also bounded onぬ Observethat by the pointwise 
estimate of the Oseen tensor 

(1.11) 
C 

IV(x, t)I~x E町， t> 0, 
(lxl + t112Y' 

the remainder term is estimated by 

(1.12) lv(x, t) -l「(x-y, t)v。(y)dyl:=; ~。~.!!~IIIT11£00(ぬ）(s), 

for lxl <". 2R。andt > 0 such that nc c B0(R。)， whereB0(R。)denotes the open ball centered 
at the origin with radius R。>0. The right-hand side is decaying as lxl→ oo uniformly for 
t > 0 if n <". 3. We are able to show that the large time estimate (1.6) is reduced to showing 
non-existence of ancient solutions by a contradiction argument. Since (1.12) yields a spatial 
decay condition for ancient solutions as lxl→ oo, we are able to obtain a contradiction by 
applying the Liouville theorem (Theorem 1.1). We apply a similar argument on the half line 
y = {t E C¥ {0}1 arg t = 0} and prove (1.6) for complex time t E~0 and 0 E (0, 冗/2).

Theorem 1.2. When n~3, the Stokes semigroup is a bounded analytic semigroup on L;;。f
angle冗/2.

For n = 2, the remainder term estimate (1.12) is different. By a simple calculation from the 
formula (1.9), we see an asymptotic profile of the two-dimensional Stokes flow: 

(1.14) v(x, t) -』r(x-y, t)v0(y)dy -『V(x,t -s)F(s)dsl :-=; £sup IITIIL00(ぬ）(s), 
o lxl O<se,t 

for lxl:::: 2R。andt > 0, with the net force 
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F(s) = J乃，s)N(y)dH(y).
an 

Since If V(x, s)dsl ;$ log (1 + t/lxl2), the decay as lxl→ oo of the third term in the left-hand 
side is not uniform fort > 0 in contrast to (1.12) for n~3. If the net force vanishes, the situation 
is the same as n = 3 and we are able to prove (1.6). For example, if initial data is rotationally 
symmetric, the net force vanishes. Following [12], we consider initial data invariant under a 

cyclic group or a dihedral group. For integers m~2, we set the matrices 

Rm=(~~ 悶:j唸—~~~n(~: 冗り勾）， J = (~ ~1) 
Let Cm denote the cyclic group of order m generated by the rotation Rm. Let広 denotethe 
dihedral group of order 2m generated by Rm and the reflection J. Any finite subgroup of the 
orthogonal group 0(2) is either a cyclic group or a dihedral group. See [17, Chapter 2]. Let G 
be a subgroup of 0(2) and nc be a disk centered at the origin. We say that a vector field v is 
G-covariant if v(x) = 1Av(Ax) for all A E G and x E n. It is known that if v。isCm-covariant, 
so is v = S (t)v0 and the net force vanishes, i.e., F三 0[18]. Thus for Cm―covariant vector fields 

v0 E L;;_', the remainder term estimate is the s皿 eas n = 3. 

Theorem 1.3. For n = 2, the estimate (1.6) holds fort E~。 andv0 EL岱forwhich the net force 
vanishes (e.g., Cm―covariant vector fields when gc is a disk.) 

Theorem 1.3 improves the pointwise estimates of the two-dimensional Navier-Stokes flows 
for rotationally symmetric initial data [18], in which (1.6) is noted as an open question together 

with the applications to the nonlinear problem. We are able to apply (1.6) to improve the results 
although initial data is restricted to rotationally symmetric. 
We hope it is possible to extend our approach to study the case with net force, for which 
(1.6) is unknown even if initial data is with finite Dirichlet integral. The estimate (1.6) with 

non-vanishing net force is important to study large time behavior of asymptotically constant so-
lutions as lxl→ oo. We refer to [2] for asymptotically constant solutions of the two-dimensional 
Navier-Stokes equations. See also [24]. 
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