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1 Introduction

This contribution is a summary of the results in A. and T. [AT18]. We consider here
a two-phase flow for incompressible fluids of different densities and different viscosities.
The two fluids are assumed to be macroscopically immiscible and to be miscible in a thin
interface region, i.e., we consider a diffuse interface model (also called phase field model)
for the two-phase flow. In contrast to sharp interface models, where the interface between
the two fluids is a sufficiently smooth hypersurface, diffuse interface model can describe
topological changes due to pinch off and droplet collision.

There are several diffuse interface models for such two-phase flows. Firstly, in the case
of matched densities, i.e., the densities of both fluids are assumed to be identical. there
is a well-known model H, cf. Hohenberg and Halperin or Gurtin et al. [HH77, GPV96).
In the case that the fluid densities do not coincide there are different models. On one
hand Lowengrub and Truskinovsky [LT98] derived a quasi-incompressible model, where
the mean velocity field of the mixture is in general not divergence free. On the other hand,
Ding et al. [DSS07] proposed a model with a divergence free mean fluid velocities. But
this model is not known to be thermodynamically consistent. In A., Garcke and Griin
[AGG11] a thermodynamically consistent diffuse interface model for two-phase flow with
different densities and a divergence free mean velocity field was derived, which we call
AGG model for short. The existence of weak solutions of the AGG model was shown in
[ADG13]. For analytic result in the case of matched densities, i.e., the model H, we refer
to [Abe09b] and the reference given there. Existence of weak and strong solutions for the
model by Lowengrub and Truskinovsky was proven in [Abe09a, Abell].

Concerning the Cahn-Hilliard equation, Giacomin and Lebowitz [GL97, GLIS8] ob-
served that a physically more rigorous derivation leads to a nonlocal equation, which we
call a nonlocal Cahn-Hilliard equation. There are two types of nonlocal Cahn-Hilliard
cquations. One is the equation where the second order differential operator in the equa-
tion for the chemical potential is replaced by a convolution operator with a sufficiently
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smooth even function. We call it a nonlocal Cahn-Hilliard equation with a regular ker-
nel in the following. The other is one where the second order differential operator is
replaced by a regional fractional Laplacian. We call it a nonlocal Cahn-Hilliard equation
with a singular kernel, since the regional fractional Laplacian is defined by using singu-
lar kernel. The nonlocal Cahn-Hilliard equation with a regular kernel was analyzed in
[GZ03, G14, GL98, LP11a, LP11b]. On the other hand, the nonlocal Cahn-Hilliard equa-
tion with a singular kernel was first analyzed in A., Bosia and Grasselli [ABG15], where
they proved the existence and uniqueness of a weak solution of the nonlocal Cahn-Hilliard
equation, its regularity properties and the existence of a (connected) global attractor.
Concerning corresponding fractional Allen-Cahn equation, there is an earlier study by
[NNGOS].

Concerning the nonlocal model H with a regular kernel, where the convective Cahn-
Hilliard equation is replaced by the convective nonlocal Cahn-Hilliard equation with a
regular kernel, first studies were done by [CFG12, FG12a, FG12b]. More recently, the
nonlocal AGG model with a regular kernel, where the convective Cahn-Hilliard equation
is replaced by the convective nonlocal Cahn-Hilliard equation with a regular kernel, was
studied by Frigeri [F15] and he showed the existence of a weak solution for that model.
The method of the proof in [F15] is based on the Faedo-Galerkin method of a suitably
mollified system and the method of passing to the limit with two parameters tending to
zero. The method is different from [ADG13] which is based on implicit time discretization
and a Leray-Schauder fixed point argument.

In this contribution, we consider a nonlocal AGG model with a singular kernel, where a
convective Cahn-Hilliard equation in the AGG model is replaced by a convective nonlocal
Cahn-Hilliard equation with a singular kernel. Our aim is to prove the existence of a weak
solution of such a system.

We consider the existence of weak solutions of the following system, which couples a
nonhomogeneous Navier-Stokes equation system with a nonlocal Cahn-Hilliard equation:

O(pv) + div(v @ (pv + J)) — div(2n()Dv) + Vp = uVe in Q, (11
divv=0 in Q, (1.2

Ohp+v-Vo=div(im(p)Vy) in Q, (1.3)

p="(p)+ Ly in @, (14)

where p = p(ip) 1= Bi2 4 L2201 J= — 2P (p) Vi, Q = Q% (0,00). We assume that
Q C R4 d =23, is a bounded domain with C*boundary. Here and in the following v,
p, and p are the (mean) velocity, the pressure and the density of the mixture of the two
fluids, respectively. Furthermore p;, j = 1,2, are the specific densities of the unmixed
fluids, ¢ is the difference of the volume fractions of the two fluids, and pu is the chemical
potential related to ¢. Moreover, Dv = (Vv + Vv”), n(p) > 0 is the viscosity of the
fluid mixture, and m(g) > 0 is a mobility coeflicient.



Finally, £ is defined as
Lu(x) = p.v. /(U(I) —u(y)k(z,y,x —y)dy (1.5)
Q

= lim (u(z) —uly))k(z,y,x — y)dy for x €
0 JanB.(2)

for suitable u: 2 — R. Here the kernel k: R? x R? x (R?\ {0}) — R is assumed to be
(d + 2)-times continuously differentiable and to satisfy the conditions

k(x,y,2) = k(y, z,—2),
|358;85k2(x, v, 2)| < 057%5|Z‘*d7a7\6\ 7

~
colz| 7 < k(x,y, 2) < Colz| 472

for all 7,y,2 € R? 2 # 0 and 8,7,d € N¢ with |3| + |y| + |§] < d + 2 and some constants
Cs.6,¢0,Co > 0. Here « is the order of the operator, cf. [AKO07]). We restrict ourselves
to the case a € (1,2). If w € CJ?(RY x RY) is symmetric, then k(z,y, 2) = w(z,y)|z| 74~
is an example of a kernel satisfying the previous assumptions.

We add to our system the boundary and initial conditions

V|gn =0 on 99 x (0, 0), (1.9)
Onptloa =0 on 99 x (0, ), (1.10)
(v, ) li=0 = (Vo, ¥0) in Q. (1.11)

Here 0, = n-V and n denotes the exterior normal at 9. We note that (1.9) is the usual
no-slip boundary condition for the velocity field and Jyulsn = 0 describes that there is
no mass flux of the fluid components through the boundary. Furthermore we complete
the system above by an additional boundary condition for ¢, which will be part of the
weak formulation, cf. Definition 3.2 below. If ¢ is smooth enough (e.g. ¢(t) € CY9(Q)
for every t > 0) and k fulfills suitable assumptions, then

n,, - Ve(rg) =0 for all zo € 02

where n,, depends on the interaction kernel k, cf. [ABG15, Theorem 6.1], and zo € 9.
The total energy of the system at time ¢ > 0 is given by

Etot(@v V) = Ekin(‘Pv V) + Efree(/sp) (1"12)

where 2 .
A%
Ekin("pav) = / pT dl’7 Efree(‘P) = / \I/((p) dx + 550107 L,D)
Q Q

are the kinetic energy and the free energy of the mixture, respectively, and

E(u,v) = / / (u(z) — u(®))(0(z) — o(g))k(z,y,7 — y) d dy (1.13)
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for all u,v € H?(Q) is the natural bilinear form associated to £, which will also be used
to formulate the natural boundary condition for ¢ weakly. Every sufficiently smooth
solution of the system above satisfies the energy identity

d
d—Emt(gp,V) = —/ 2n(p)| Dv|? dx — / m(p)|Vu|* de
/t Q Q

for all ¢ > 0. This can be shown by testing (1.1) with v, (1.3) with x and (1.4) with dyp,
where the product of Ly and 0,¢ coincides with

E(p(t), (1))

under the natural boundary condition for ¢(t).

In order to guarantee that ¢(z,t) € [—1,1] almost everywhere, we consider a class of
singular free energies, which will be specified below and which includes the homogeneous
free energy of the so-called regular solution models used by Cahn and Hilliard [CH58]:

W) = 5 (1) +¢) + (- )1~ )~ 2, pel-11]  (114)

2
where 0 < ¢ < 6.. In order to deal with these terms we apply techniques, which were
developed in Abels and Wilke [AWO07] and extended to the present nonlocal Cahn-Hilliard
equation in [ABG15].

Our proof of existence of a weak solution of (1.1)-(1.4) together with a suitable initial
and boundary condition follows closely the proof of the main result of [ADG13]. The
following are the main differences and difficulties of our paper compared with [ADG13].
Since we do not expect H'-regularity in space for the volume fraction ¢ of a weak solution
of our system, we should eliminate V¢ from our weak formulation taking into account the
incompressibility of v. Implicit time discretization has to be constructed carefully, using
a suitable mollification of ¢ and an addition of a small Laplacian term to the chemical
potential equation taking into account of the lack of H!'-regularity in space of . While the
arguments for the weak convergence of temporal interpolants of weak solutions of the time-
discrete problem are similar to [ADG13], the function space used for the order parameter
has less regularity in space since the nonlocal operator of order less than 2 is involved in
the equation for the chemical potential. For the convergence of the singular term W'(y),
we employ the argument in [ABG15]. The only difference is that we work in space-time
domains directly. For the validity of the energy inequality, additional arguments using
the equation of chemical potential and the fact that weak convergence together with norm
convergence in uniformly convex Banach spaces imply strong convergence are needed.

The structure of this contribution is as follows: In Section 2 we summarize preliminar-
ies, we fix notations and collect the needed results on nonlocal operator. In Section 3, we
define weak solutions of our system and state our main result concerning the existence of
weak solutions. In Section 4, we define an implicit time discretization of our system and
state an existence result of its weak solutions. In Section 5, we obtain compactness in
time of temporal interpolants of the weak solutions of time-discrete problem and obtain
weak solutions of our system as weak limits of a suitable subsequence.



2 Preliminaries

For a,b € R? we denote a ® b = (a;b;)¢,_; and Ayn = (A + AT) for A € R The
duality product of a Banach space X and its dual X’ is denoted by

<f7g>z<fag>X’,X:f(g)7 fGX',gGX

We write X —<— Y if X is compactly embedded into Y. Moreover, if H is a Hilbert
space, (-,-)n denotes its inner product. Furthermore, we use the abbreviation (.,.)y =
()2

Lebesgue and Sobolev spaces: Let M C R? be measurable. As usual Li(M), 1 <
¢ < oo, denotes the Lebesgue space, ||.||; its norm and LY(M; X) denotes the set of all
strongly measurable g-integrable functions/essentially bounded functions, where X is a
Banach space. If M = (a,b), we denote these spaces for simplicity by L%(a,b; X)) and
L%(a,b). Recall that f € L _([0,00); X) if and only if f € L9(0,7; X) for every T > 0.
Furthermore, LY ([0, 00); X) is the uniformly local variant of L?(0,c0; X) consisting of
all strongly measurable f:]0,00) = X such that

(A%

([0,00);X) = SUP”fHLq (ti+1;x) < O0.

ulo(,

If T < oo, we define LY, ([0,T); X) := L0, T; X).

In the following let QO C R? be a domain. Then W), m € Ny, 1 < ¢ < o0,
denotes the usual L7-Sobolev space, W/ () the closure of C§°(Q) in W (), W™ (Q2) =
(Wio()), and W, ™(Q2) = (W(Q))'. The L*-Bessel potential spaces are denoted by
H*(Q), s > 0.

Let fo = J, f(2) do denote the mean value of f € L'(Q). For m € R we define

L{,,(Q) =={f € LU(Q) : fo =m}, 1 <¢ <.

Then the orthogonal projection onto L%O)(Q) is given by

1
Pof =f—fa=f—- @ / f(x)dx for all f € L*(9).
Q
For the following we denote
H(l()) = H(l())(gz) = Hl(Q) M L?w(&l), ((/'7 d>H(10)(Q) = (VC./ Vd)Lz(Q

Note that H(IO)(Q) is a Hilbert space because of Poincaré’s inequality. More generally, we
define for s >0

Hy) = Hp)(Q) = H*(Q) N Ly (), Hj(Q) = (Hp) (),
Hy® () = (H(Q))', H™2(Q) = (H3 ()"

Finally, f € H}

e 5 .(Q) if and only if flo € H*(SY) for every open and bounded subset
with €' C Q.
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We denote by L2(Q) is the closure of Cg%,(€) in L*(Q)¢, where Cg%,(Q) is the set of
all divergence free vector fields in C§°(Q)?. The corresponding Helmholtz projection, i.e.,
the L2-orthogonal projection onto LZ(£2), is denoted by F,, cf. e.g. Sohr [Soh01].

Spaces of continuous vector-fields: For the following we assume that I = [0, 7] with
0<T <ooorl=1000)if T =00 and that X is a Banach space. The Banach space of
all bounded and continuous f: I — X is denoted by BC(I; X). It is equipped with the
supremum norm. Moreover, BUC(I; X) is defined as the subspace of all bounded and
uniformly continuous functions. Furthermore, we define BC,,(I; X) as the topological
vector space of all bounded and weakly continuous functions f: I — X. C5°(0,7T; X)
denotes the vector space of all smooth functions f: (0,7) — X with suppf CC (0,7T).
By definition f € W;(O,T;X), 1 < p < oo, if and only if ﬁ% € LP(0,T; X), where %
denotes the vector-valued distributional derivative of f. Furthermore, W} ,..([0, 00); X) is
defined by replacing LP(0,T; X) by L, ([0, 00); X) and we set H'(0,T; X) = W3(0,T; X)

uloc
and Hj,.([0,00); X) := W 1. ([0, 00); X). Finally, we note:

Lemma 2.1. Let X,Y be two Banach spaces such that Y — X and X' — Y’ densely.
Then L*>°(I;Y)N BUC(I; X) — BC\(I;Y).

For a proof see e.g. Abels [Abe09a.

2.1 Results on the Nonlocal Operator £

In the following let £ be defined as in (1.13). Assumptions (1.6)—(1.8) yield that there
are positive constants ¢ and C such that

CHUHE%(Q) < Im(u)]? + E(u,u) < C||u||il%<m for allu € H?(Q).

This implies that the following norm equivalences hold:

Ewu) ~ ul?g, — forallue HE(Q), (2.15)
E(u,u) + |m(u) ~ ||1I/HZ%(Q) for allu € H?(Q), (2.16)

cf. [ABG15, Lemma 2.4 and Corollary 2.5].
In the following we will use a variational extension of the nonlocal linear operator £

(see (1.5)) by defining £: H(Q) — H, *(Q) as
(Lu, p) =&(u,p) forall p e H%(Q)

- o
Hy 2, HZ

In particular we have
(Lu, 1) =E(u, 1) =0
by definition. We note that £ agrees with (1.5) as soon as u € HZ (Q) N H?(Q) and
p € C§°(Q), cf. [AKO7, Lemma 4.2]. But this weak formulation also includes a natural
boundary condition for u, cf. [ABG15, Theorem 6.1] for a discussion.
We will also need the following regularity result, which essentially states that the

operator L is of lower order with respect to the usual Laplace operator. This result is
from [ABG15, Lemma 2.6].



Lemma 2.2. Let g € L) () and 6 > 0. Then the unique solution u € H, () for the
problem

—9/ Vu-Vo+Eu, ) =(9,¢);: Jor all o € Hiy () (2.17)
Q

belongs to H} (Q) and satisfies the estimate

loc
GHVUH%?(Q) + ||U||i1a/2(9) < OHQH%Q(Q)a
where C' is independent of 0 > 0 and g.

For the following let ¢: [a,b] — R be a continuous function and set ¢(z) = +oo for
x & [a,b]. As in [ABG15, Section 3] we fix # > 0 and consider the functional

Fo(c) = g /Q |Vc|2d;v+%5(c7 ¢) + /Q o(c(x)) de (2.18)
where

domFy = {ce€ H*(Q)N L, (Q):é(c) € L'(Q)},
dom Fy = H'(Q)Ndom F, iff>0

for a fixed m € (a,b). Moreover, we define
Eo(u,v) = 9/ Vu - Vudr + E(u,v)
Q

for all u,v € H'(Q) if § > 0 and u,v € H*/?(Q) if § = 0.

We denote by 0Fy(c): L7, (2) — P(Lf,)(€2)) the subgradient of Fy at ¢ € dom F' in

the sense that w € dFy(c) if and only if
(w,d — )2 < Fy(d) — Fy(c) for all ¢’ € L, ().
The following characterization of OFy(c) is an important tool for the existence proof.

Theorem 2.3. Let ¢: [a,b] — R be a convex function that is twice continuously differ-
entiable in (a,b) and satisfies lim,_,, ¢'(x) = —oo, lim, , ¢'(x) = +o00. Moreover, we
set p(x) = 400 for © & (a,b) and let Iy be defined as in (2.18). Then 0Fy: D(0Fp) C
L%m)(Q) — L%O)(Q) is a single valued, maximal monotone operator with

DOF,) = {c € HY,(Q) N HY2(Q) N L2,(Q) : ¢/(c) € LA(Q),3f € LX(Q)
e+ [ Hopde= [ fedn Ve H@)
if 0 =0 and
D(OF;) = {c € HZ,(Q) N H' Q)N L3, (Q) : ¢/(c) € LA(R),3f € LA(Q) :

Glep)+ [ Spd= [ fodn Ve (@)
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if 0 >0 as well as
OFy(c) = —0Ac+ Lo+ Podf(c) inD'(Q)  for0 >0
Moreover, the following estimates hold
Blelzn + el + 612 < C (||8F0<c>u2 ez +1) (2.19)
| [t = e eta) = clohta. oz = 9) dady
C (I0F(@I2 + 3 + 1)
0 [ $(IVel dx < (ORI + el +1)

//\

for some constant C' > 0 independent of ¢ € D(OF,) and 6 >0
The result follows from [ABG15, Corollary 3.2 and Theorem 3.3].

3 Existence of Weak Solutions

In this section we define weak solutions for the system (1.1)-(1.4), (1.9)-(1.11) together
with a natural boundary condition for ¢ given by the bilinear form &£, summarize the
assumptions and state the main result.

Assumption 3.1. Let 2 € RY, d = 2.3, be a bounded domain with C*-boundary. The
following conditions hold true:
(1) ple) = 5(p1+ p2) + 5(p2 — 1) for all p € [-1,1].
(ii) m € CY(R), n € C°(R) and there are constants mg, K > 0 such that 0 < my <
a(s), m(s),n(s) < K for all s € R.
(iti) U € C([-1,1]) N C*((—1,1)) and

lim W'(s) = +oo, U"’(s)> —k for some r € R. (3.20)

s—+1

A standard example for a homogeneous free energy density ¥ satisfying the previous
conditions is given by (1.14). Since for solutions we will have ¢(z,t) € [—1,1] almost
everywhere, we only need the functions a,m,n on this interval. But for simplicity we
assume a,m, 7 to be defined on R.

Definition 3.2. Let vy € L2(Q) and @y € HY?(Q) with || < 1 almost everywhere in
Q and let Assumption 3.1 be satisfied. Then (v, p, i) such that
v € BC,(]0,00); L2(Q)) N L*(0, 00; Hi (2)4),
¥ € BC ([07 OO)/ HQ/Q(Q)) uloc([o OO) HZOC(Q))> \Ij ( ) € Luloc([O? OO)‘ LQ(Q))V
pe€ L2, ([0,00); HY(Q)) with Vi € L*(0,00; L*())



is called a weak solution of (1.1)-(1.4), (1.4)-(1.9) if the following conditions hold true:

- (pV, atd")Q + (diV(pV ® V)a '(vb)Q + (277(50)va D¢)Q - ((V ® 3)7 V¢)Q

— (Vi) (3.21)
for all 1p € C° (2 x (0, 00))¢ with divap = 0,
— (@, 0)g + (v- Vg, i) g = — (m() Vi, Vi), (3.22)

///u/)dult // t/)dedt+/m5(<p(t),'</)(t))dt (3.23)

for all ¢ € C§°((0, 00); C1(Q)) and

(v 0)limo = (Yo, 90) - (3.24)

Finally, the energy inequality

Eoi(p //277 |DV|2d:L’dT+/ /m WY ul|? de dr

< Ero(0(s), v(5)) (3.25)

holds true for all t € [s,00) and almost all s € [0,00) (including s = 0). Here Ey is as
n (1.12).

The main result of [AT18] is

Theorem 3.3 (Existence of Weak Solutions [AT18]).
Let Assumption 3.1 hold. Then for every vo € L2(Q) and ¢o € HY?(Q) such that
lol < 1 almost everywhere and §;, podx € (—1,1) there exists a weak solution (v, ¢, jt)

of (1.1)-(1.4), (1.9)-(1.11).

4 Approximation by an Implicit Time Discretization

Let ¥ be as in Assumption 3.1. We define ¥y: [—1, 1] — R by ¥o(s) = U(s) + Ii% for all
s € [a,b]. Then Uy: [—1,1] — R is convex and lim,_, 41 ¥((s) = £oo. A basic idea for the
following is to use this decomposition to split the free energy Eg.. into a singular convex
part E and a quadratic perturbation. In the equations this yields a decomposition into

a singular monotone operator and a linear remainder. To this end we define an energy
E: L*(Q) — RU {+o00} with domain

domE={p € H*(Q)| —1<¢ <1 ae}
given by

5 + [, Uo(p)dx for ¢ € domFE,
i) = { A -l-c{g ! else. : (4.26)
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This yields the decomposition
Eneel$) = E(¢) = Sll¢l}  for all ¢ € dom E.

Moreover, F is convex and F = Fy if one chooses ¢ = U, and Fj is as in Subsection 2.1.
This is a key relation for the following analysis in order to make use of Theorem 2.3,
which in particular implies that 0E = 0Fp is a maximal monotone operator.

In order to prove Theorem 3.3, we use an implicit time discretization. To this end, let
h =% for N € Nand v, € L2(Q), ¢r € H'(Q) with ¢4(z) € [-1,1,] almost everywhere
and pp = 3(p1 + p2) + 3(P2 — p1)er be given. Then U(p,) € LH(Q). We also define a
smoothing operator P, on L?(€2) as follows. We choose u as the solution of the following
heat equation

du—Au = 0 in Qx(0,7),
u|t:0 = QO/ on Qv
Oyl = 0 on 00 x (0,7),

where ¢’ € L*(Q), and set Py’ := uls=p. Then Py’ € H*(Q) and Py’ — ¢’ in L*(Q)
as h — 0 for all ¢’ € L?(2). Morcover, we have |Py¢’| < 1in Q if |¢/(x)] < 1 almost
everywhere and P,y —,_0 ¢ in H? (Q) as h — 0 for all ¢ € H?(Q).

Now we determine (v, p, 1) = (Vir1, Prat, ia1), k € N, successively as solution of the
following problem: Find v € H}(Q)4N L2(2), ¢ € D(OE) and

p € H2(Q) = {u€ H* Q)| Onulyy =0 on 90},

such that
(Z520w) o+ iy %) 90 + 2aton) Dv. D)y + (vt 0 3). )
— ((Pupr) Vi, ) (4.27)
for all ¥ € CF5,(9),
L h(pk + v - VPpor = div(m(Pupr)Vy) almost everywhere in €, (4.28)

and

/(/1—1—/@(’9 (pk)wd (gp,w)—l—/\I/f)(go)qu.r—o—h/Vg:-dez (4.29)
Q Q Q

for all v» € H*/?(Q), where

J= jk+1 = —52;[71 m(Phgpk)VukH = _ﬁz;ﬁl TTL(Ph(,Dk)VN .

For the following let

2
Ewt,h(%v):/p%dx—&—/ U(yp)dr + 5 /|Vgp|2d:r (4.30)
Q

denote the total energy of the system (4.27)-(4.29).



Remark 4.1. (i) Asin [ADG15] we obtain the important relation
P~ Pk
h
by multiplication of (4.28) with —252L = %j). Because of div(v © J) = (divJ)v +
(j V) v this yields that

—v - Vp(Pugr) = divJ,

<pv_hkak "»b) + (div(p(Prgr)v @ v), 9) o + (20(¢r) Dv, D), (4.31)

T ((divi P_h/)k —v- Vp(Phapk)> \2,,1,1;)0 + ((3-V) Vﬂl))ﬂ = — ((Pupr) Vi, )g

for all ¢ € CF%,(Q) to (4.27), which will be used to derive suitable a-priori estimates.

(#4) Integrating (4.28) in space one obtains [, ¢dx = [, ¢ dx because of div v =0 and
the boundary conditions.

The following lemma is important to control the derivative of the singular free energy
density W'(p). For its proof, we refer to [AT18].

Lemma 4.2 ([AT18]). Let ¢ € D(OFy,) and p € H'(Q) be a solution of (4.29) for given
or € HY(Q) with |or(x)| < 1 almost everywhere in Q such that

ﬁ/@dm:‘ﬁll/wkdme (-1,1).
Q Q
Then there is a constant C' = C’(fQ ok, Q) > 0, independent of ¢, i1, pr, such that

<C(|IVulle: + |IVollz2 + 1) and

195 () ooy + ] [

[0Fw(@)llz20) < C (lpllzz + 1) -

The following lemma is about the existence of solutions to the time-discrete system.
For its proof, we could follow the line of the corresponding arguments in [ADG13]. The
main tools are Theorem 2.3 and Leray-Schauder principle. For details, we refer to [AT18].
As before we denote

H2(Q) :={u € H*(Q) : n- Vulgg = 0}.

Lemma 4.3 ([AT18]). For every vy, € L2(Q), ¢r € HY(Q) with |pr(z)] < 1 almost
everywhere, and p, = L(p1 + p2) + $(p2 — P1)pw there is some solution (v,p,p) €
(Hy (4N LE(Q) x D(OF,) x H2(Q) of the system (4.28)-(4.29) and (4.31). Moreover,
the solution satisfies the discrete energy estimate

v — v |?

Vi — V|2 1
5 dw+/wd$+§5(¢—¢k#—%)
Q

Etut,h((pvv)'i_/pk
Q

+ h/ 2n() | DV|? dx + h/ m(er)|Vul* do < Erotn(¢r, Vi) - (4.32)
0 Q
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5 Proof of the Main Result

5.1 Compactness in Time

In order to prove our main result Theorem 3.3 we will pass to the limit h — 0 resp.
N — oo for the approximate solution, which are obtain by suitable interpolations of our
time-discrete solutions. To this end let N € N be given and let (vii1, @pr1, fes1), K € N,
be chosen successively as a solution of (4.27)-(4.29) with & = + and (vo, (") as initial
value.

As in [ADG13] we define f¥(t) for t € [—h, 00) by the relation f¥(t) = f for t € [(k—
1)k, kh), where k € Ny and f € {v, ¢, u}. Moreover, let p = 3(p1 + p2 )+ (pg p1)pN.
Furthermore we introduce the notation

(ALF) (0) = Jt+h) = [(2), (An ) @) = f(&) = f(t =),
O (8) = % (Arf) @), o= (mif) (t) = f(t = h).

In order to derive the weak formulation in the limit let % € (C5°(Q x (0,00)))* with

divep = 0 be arbitrary and choose 1,~b = ]s,lfﬂ)h'«,bdt as test function in (4.27). By
summation with respect to k € Ny this yields

//ch ¢didt+/ /le phVN®VN)-’l,bd.’L'dt+/0 /QQT]((,O}LN)DVNZD’I,bdwdt
—// v @JN :Dwa’wdt:—/ /VuNgohN-'t/:dxdt (5.33)
0 JQ 0 JQ

for all ¢ € (C5°(Q x (0,00)))* with divep = 0. Using a simple change of variable, one

sees
// thpv ) pdadt = // Ny ;fhwdzlgdt

for sufficiently small & > 0. In the same way one derives

//a;hgachde//v%ﬁ-vgda;dt://m(gaif)w”.vgda:dt (5.34)
0 JQ 0 JQ 0o JQ

for all ¢ € C5°((0,00); C1(Q)) as well as

// “"+‘Ph)¢dxdt=/0 (™ wdt—i—/ /\If Ny da di

+ h/ / VN . Vo de dt (5.35)
o Ja
for all v € C5°((0, 00); CH(2)).
Let EN(t) be defined as

k+1)h—t t—kh
%Etot((pkavk) +

EN(t) = Eiot (Ort1, Vir1) for t € [kh, (k+ 1)h)



and define
DY (1) = / ()| DV [ i + / ()| V s do
Q Q

for all t € (ty,tp41), k € Ng. Then the discrete energy estimate (4.32) yields

_ Etot(‘;pkyvk) - Etot(¢k+17vk+1)
h

for all t € (tx,tp41), k € Np. Integration implies

—EN(1) > D™(t) (5.36)

Etot(wN(t%VN(t)H/ /Q(271(wiv)|DVNl2+’m(<th)|VuN|2) d dr
< Bt (0™ (s), vV (s)) (5.37)

for all 0 < s <t < oo with s,t € hNy.
Because of Lemma 4.2 and since Etot(goév , Vo) is bounded, we conclude that

(vM)new € L2(0, 00; H'(Q2)%) N L>(0, 00; L*(Q2)4)
(Vi) nven € L*(0, 00; L2()7)

(™) nven € L(0,00; H2(Q)), and

(h2 V") xew C L=(0, 005 L2(Q))

(5.38)

are bounded. Moreover, there is a nondecreasing C': (0, 00) — (0, 00) such that

T
/ / Y dx
o |Ja

Therefore there are subsequences (denoted again by the index N € N, h > 0, respectively)
such that

dt <C(T) forall 0 <T < 0.

p = poin L0, T HY(Q)
VN =V in L*(0, 00; L*(Q)
where p € L2,,.([0,00); H(Q)).

uloc

In the following @V denotes the piecewise linear interpolant of ¢ (¢) in time, where
ty, = kh, k € No. Then 9,6" = 9,9 and therefore

1Y = ™ lla-1@) < hlIOE" |10y - (5.39)

Using that vV¢™ and V¥ are bounded in L2(0, co; L*(2)4) and (5.34) we conclude that
o™ € L*(0,00; H()) is bounded. Since (¢™)yen and therefore (™) yen are bounded
in L=(0,00; H%(2)), the Lemma of Aubin-Lions yields

N = @ in L*0,T;L*(Q)) (5.40)

forall 0 < T < o0,
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for all 0 < 7' < oo for some ¢ € L>(0,00; L*(2)) (and a suitable subsequence). In
particular @V (x, ) — @(z,t) almost every (x,t) €  x (0,00). Because of (5.39),

1Y — Ml L2 hos-1(2)) = O (5.41)

and thus ¢ = ¢. Since g € H],
and @ € L=(0,00; H2(Q)) are bounded, Lemma 2.1 implies ¢ € BC,,([0,00); H2(Q)).
Moreover, (" — oV)yen © L*(—h,00; H2(Q)) is bounded since (¢")yen, (§")nen C

L>®(—h,00; Hz(Q)) are bounded. By interpolation with (5.41) we conclude
PN — N = 0in L*(—h, T; L*(Q)) (5.42)
and therefore
o = @in L*(0,T; L*(Q)) (5.43)
for all 0 < T < oo. Moreover, we have
lon — Pllrzomr200) < len — enllz20mir2(9) + len — @llr2.m;200))
< h2lleg Nz + 19" = ¢l 2o r-nnz@) + lon = @l iz (5.44)

Because of ||¢n — ¢l r20,m:229)) —h—0 0, we obtain ||¢h" — @l r20.7:12(0)) —h—0 0.

Finally using the bounds of @V in H'(0,T; H 1(Q)) and in L>*(0,T; H*(Q2)) for all
0 < T < ooaswell as ¥ — ¢ in L*(0,T; L*(Q2)) we conclude g™ (0) — ¢(0) in L*(Q).
Since N (0) = ¢’ = N0 o in L2(Q), we derive ¢(0) = ¢y.

Since p" depends affine linearly on %, the conclusions hold true for p".

To show the convergence of (5.35), we closely follow the corresponding argument in
[ABG15]. The only difference is that work on the space-time domains directly, while they
work on the spacial domains fixing a time variable in [ABG15]. We include the argument
here for completeness. We first observe that W) (¢") is bounded in L?(0,T%; L?*(Q2)) for
0 < T < oo. Using this bound, we can pass to a subsequence such that Wf (o) converges
weakly in L*(0,7; L*(2)) to y for all 0 < T < oo as N tends to infinity. Let ¢ €
C°((0,00); C*(2)). Thanks to the convergences listed above, we can pass to the limit
N — oo in (5.35) to find

/ /(M+/~egp)wdwdt:/ E(p, V) dt + (X, V) L2((0,00)x )
0 Q !

)

To show (3.23), we only have to identify the weak limit x = limy_,o, U ("). Let T > 0.
Since (5.43) holds, passing to a subsequence, we have ¢ — ¢ almost everywhere in
2 x (0,7). On the other hand, thanks to Egorov’s theorem, there exists a set Q,, C
Q x (0,7 such that [Q,,| > [ x (0,T)] — 5= and on which ¢~ — ¢ uniformly. We now
use (uniform with respect to N) estimate on W( (™) in L2(2 x (0, 7). By definition, the
quantity

Msn = |{(z,t) € 2 x (0,T) | |¢™(z,t)] > 16}
is decreasing in ¢ for all n € N. Since [ (y) is unbounded for y — +1, we set

s i= inf [P —5 ,
cs ‘C‘lznl_5| o(c)] =50 00,

([0, 00); H~H())NL>([0, 00); H2 () — BUC([0, 00); L*(22))



A

we have by the Tschebychev inequality
/ W) (™)) do dt > c3| M.y
Qx(0,T)

From the uniform (with respect to N) estimate of the norm of W) () in L2(Q x (0,7)),
we obtain My, — 0 for 6 — 0 uniformly in n € N. Therefore, we deduce

: / N s
lim [{(z,1) € @x (0,7) | |¢"(x,£)] > 1 =6} =0
uniformly in N € N. Thus there exists 6 = §(m) independent of N, such that
1
]{(:c,t)eQx(O,TH|¢N(x,t)|>1—6}|§%, VN €N

Consider now N € N so large that by uniform convergence we have | (x, t) — ™ (z,t)| <
g for all N' > N and all (z,t) € Q,,. Moreover, let @,y C Qn be defined by

Qon = QN {(2,8) €2 x (0,T) | |pN(z,8)| <1-6}.
1

By the above construction, we immediately deduce that |Q;, 5| > | x (0,7)| — -- and
that [¢"'(z,t)] < 1 — ¢ for all N’ > N and for all (z,t) € Q. Therefore by the
regularity assumptions on the potential ¥, we deduce that ¥{(¢") — ¥ (¢) uniformly
on Q' . Since m is arbitrary, we have U(,(¢™) — U{(p) almost everywhere in Q x (0, 7).
By a diagonal argument, passing to a subsequence, we have W)(¢™) — W)(p) almost
everywhere in Q x (0, 00) and W (") — Wi(p) as h — 0 in LY(Q7) for every 1 < ¢ < 2
and 0 < T < oo. Finally, the uniqueness of weak and strong limits gives x = U((¢) as
claimed.

The next step is to show strong convergence vV — v in L*(0,7; L*(Q)?) for all 0 <

T < oo to conclude a convergence pointwise almost everywhere. As above let /’)VN be the
piecewise linear interpolant of (p"v") (t;), where t;, = kh, h € Ny. Then it holds that

0 (/WN> =, (PVvY).
Using that
onvY @ v is bounded in L*(0, T L%(Q)) ,
Dv" is bounded in L*(0,T7; L*(12)),
vV & VN s bounded in L7 (0,T: L3 (),
V¥ ol is bounded in L*(0, T} L%(Q)) .

together with (5.33), we obtain that 0, (IP’U(Z)T/N)) is bounded in L7 (0, T; (W (Q))') for
all 0 < T < oo. Here we remark that the boundedness of VY € L*(0,T; L*(Q)) and
oV € L2(0,T; L34 () imply that VNl € L2(0,T: Liva (Q)) < L2(0,T: L3 (Q)) is
bounded.

Since P,(pv") € L2(0,T; H'(2)4) is bounded, the Lemma of Aubin-Lions implies

P,(pv") = w in L*(0,7; L*(Q))
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forall 0 < 1" < oo for some w € L>(0, oo; L*(Q2)?). Since the projection P, : L*(0,T%; L*(Q)?) —

L2(0,T; L2(RQ)) is weakly continuous, we conclude from the weak convergence pv"© — pv

in L2(0,T; L*(Q)) that w = P,(pv). This yields

[ L= [ framsrer— [ framro= [ o

because of P, (pNvY) —n 0 Po(pv) in L2(0,T; L2(Q)9). Since weak convergence and
convergence of 1the norms imply strong convergence in a Hilbert space, we conclude
(pM)2vY — (p)2v in L*(0,T; L*(2)?). Because of

oY — p almost everywhere in (0,00) x Q and [p"]| > ¢ >0,
we derive

vV = (V)b ((pN>%vN) o v oin L2(0,T; LA(Q)Y).

This yields in particular that vV —y_,. v pointwise almost everywhere in (0,00) x
(for a subsequence).

Using these convergence results together with the fact that for all divergence free 1
the following convergence holds

T T
/ /V,uNPN(pflv-i,bdxdt %Ném/ /V;up-@[)dxdt,
0o Jo 0o Jo

we can pass to the limit in the equations (5.33), (5.34) to get (3.21), (3.22). The fact
that v(0) = v in L*(2)? is shown in the same way as in [ADG13]. Therefore we omit
the proof.

5.2 Energy Inequality

It remains to show the energy inequality (3.25). If we show that ¢ (t) — ¢(t) in H(fn)

for almost every ¢ € (0,00) and vVAVN — 0 in (L2(Q))? for almost every ¢ € (0, 00), the
rest of the proof is almost the same as in [ADG13] and we omit it. To this end it suffices

to show (N, VAVEY) converges strongly to (p,0) in L2(0,T; H(";n)((l) x (L2(52))4) for
every T' > 0. If we take ¢ = ¢" in (5.35), we have

/ /(u +I€ wh)gp dz dt = / E(PN, M) dt+/ / MM da dt

+h/ /V(pN~VgpN dx dt . (5.45)
0 Q

Since N — ¢ in L*(Qr), u¥ — pin L*(Qr) and ¥y(p") — Ui(¢"N) in L*(Qr) as
N — 00, we have

]\}i_ﬂnoo{/OOOE(WN(t)-,SﬁN(t))dt—I—IL/OOO/QVpN~V<,0Nd;L'dt}
:AW/Q(M@—Fme)dazdt—/OOO/Q\I/{)(go)godxdt:Awg(w(t)7<p(t))dt (5.46)



because of (3.23). )

Next we show ™ — ¢ in L2(0, 73 1)) and VhVN — 0in L*(0,T; L?) as N — oo for
any T > 0. Let T > 0 be arbitrarily fixed. (¢")yen is bounded in L>°(0, T’ H¢,), hence
also in L*(0,7% H,)). Then there exists some ¢’ € L*(0, T3 H; ) such that N — ¢ in

o o
2

L*(0,T5Hp,). Since oV — ¢ in L*(Qr), ¢ = ¢/. Hence ™ — ¢ in L(0, T3 H,,).
For any fixed ¥ € C5°(Qr)?,

/ Vh Voy -t d(z,t) = — Vh oV div 4 d(z, t)
Qr

Qr

tends to zero as N — oo since ¥ — ¢ in L?(Qr). Since supyey ||\/EV<pN||Lz(QT)d < 00
and Cg°(Qr)? Mez@na _ L2(Qr)4, we have VAVpN — 0 in L?(Qr)?. Hence we have

(PN VAVEY) = (,0) in L2(0.T; H, x (L*)%).
Because of (5.46), we also have the convergence of the norms of (¢, vVAVY) to that

of (¢,0) in L*(0, T H;,) x (L*)?). Hence we have shown the claim.
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