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1 Introduction 

This contribution is a summary of the results in A. and T. [AT18]. We consider here 
a two-phase flow for incompressible fluids of different densities and different viscosities. 
The two fluids are assumed to be macroscopically immiscible and to be miscible in a thin 
interface region, i.e., we consider a diffuse interface model (also called phase field model) 
for the two-phase flow. In contrast to sharp interface models, where the interface between 
the two fluids is a sufficiently smooth hypersurface, diffuse interface model can describe 
topological changes due to pinch off and droplet collision. 

There are several diffuse interface models for such two-phase flows. Firstly, in the case 
of matched densities, i.e., the densities of both fluids are assumed to be identical, there 
is a well-known model H, cf. Hohenberg and Halperin or Gurtin et al. [HH77, GPV96]. 
In the case that the fluid densities do not coincide there are different models. On one 
hand Lowengrub and Truskinovsky [LT98] derived a quasi-incompressible model, where 
the mean velocity field of the mixture is in general not divergence free. On the other hand, 
Ding et al. [D8807] proposed a model with a divergence free mean fluid velocities. But 
this model is not known to be thermodynamically consistent. In A., Garcke and Griin 
[AGGll] a thermodynamically consistent diffuse interface model for two-phase flow with 
different densities and a divergence free mean velocity field was derived, which we call 
AGG model for short. The existence of weak solutions of the AGG model was shown in 
[ADG13]. For analytic result in the case of matched densities, i.e., the model H, we refer 
to [Abe09b] and the reference given there. Existence of weak and strong solutions for the 
model by Lowengrub and Truskinovsky was proven in [Abe09a, Abell]. 

Concerning the Cahn-Hilliard equation, Giacomin and Lebowitz [GL97, GL98] ob-
served that a physically more rigorous derivation leads to a nonlocal equation, which we 
call a nonlocal Cahn-Hilliard equation. There are two types of nonlocal Cahn-Hilliard 
equations. One is the equation where the second order differential operator in the equa-
tion for the chemical potential is replaced by a convolution operator with a sufficiently 



58

smooth even function. We call it a nonlocal Cahn-Hilliard equation with a regular ker-
nel in the following. The other is one where the second order differential operator is 
replaced by a regional fractional Laplacian. We call it a nonlocal Cahn-Hilliard equation 
with a singular kernel, since the regional fractional Laplacian is defined by using singu-
lar kernel. The nonlocal Cahn-Hilliard equation with a regular kernel was analyzed in 
[GZ03, G14, GL98, LPlla, LPllb]. On the other hand, the nonlocal Cahn-Hilliard equa-
tion with a singular kernel was first a叫 yzedin A., Bosia and Grasselli [ABG15], where 
they proved the existence and uniqueness of a weak solution of the nonlocal Cahn-Hilliard 
equation, its regularity properties and the existence of a (connected) global attractor. 
Concerning corresponding fractional Allen-Cahn equation, there is an earlier study by 
[NNG08]. 

Concerning the nonlocal model H with a regular kernel, where the convective Cahn-
Hilliard equation is replaced by the convective nonlocal Cahn-Hilliard equation with a 
regular kernel, first studies were done by [CFG12, FG12a, FG12b]. More recently, the 
nonlocal AGG model with a regular kernel, where the convective Cahn-Hilliard equation 
is replaced by the convective nonlocal Cahn-Hilliard equation with a regular kernel, was 
studied by Frigeri [F15] and he showed the existence of a weak solution for that model. 
The method of the proof in [F15] is based on the Faedo-Galerkin method of a suitably 
mollified system and the method of passing to the limit with two parameters tending to 
zero. The method is different from [ADG 13] which is based on implicit time discretization 
and a Leray-Schauder fixed point argument. 

In this contribution, we consider a nonlocal AGG model with a singular kernel, where a 
convective Cahn-Hilliard equation in the AGG model is replaced by a convective nonlocal 
Cahn-Hilliard equation with a singular kernel. Our aim is to prove the existence of a weak 
solution of such a system. 

We consider the existence of weak solutions of the following system, which couples a 
nonhomogeneous Navier-Stokes equation system with a nonlocal Cahn-Hilliard equation: 

叫pv)+ div(vR(pv + J)) -div(2TJ(t_p)Dv) +▽ p=μ ▽¢ 

div v = 0 

Ot({J+V. ▽ t_p=div(m(t_p)▽ μ) 

μ= W'(t_p) + .Ct_p 
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(1.1) 

(1.2) 

(1.3) 

(1.4) 

where p = p(ゃ）：=p丘和 和脅1+ 2 rp, J = _Pデ m(rp)▽μ, Q = n x (0, oo). We assume that 

nc配， d= 2, 3, is a bounded domain with C2-boundary. Here and in the following v, 
p, and p are the (mean) velocity, the pressure and the density of the mixture of the two 
fluids, respectively. Furthermore尻 j= 1, 2, are the specific densities of the unmixed 
fluids, rp is the difference of the volume fractions of the two fluids, andμis the chemical 
potential related to rp. Moreover, Dv =½(▽v 十▽vり， Tl(ゃ） > 0 is the viscosity of the 
fluid mixture, and m(rp) > 0 is a mobility coefficient. 
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Finally, £is defined as 

£11,(.r) = p.v. J (11,(x) -u(y))k(.r, y, x -y)dy (1.5) 
!1 

＝四1¥Be(x)(u(x) -u(y))k(x, Y, x -y)dy for x En 

for suitable u: D→ 恥 Herethe kernel k : 配 x配 X(配¥{O})→ 艮 isassumed to be 
(d + 2)-times continuously differentiable and to satisfy the conditions 

k(x, y, z) = k(y, x, -z), 

虜句虎k(x,Y, z)I ::,;; C13,,,olzl-d-a-l8I' 

colzl―d-a::,;; k(x, y, z)::,;; C,。lzl―d-a.

(1.6) 

(1.7) 

(1.8) 

for all x, y, z E記 zヂ0and /3,'Y, 6 E喝with1/31 +bl+ lbl~d + 2 and some constants 
C13,-y,o, co, C,。>0. Here a is the order of the operator, cf. [AK07]). We restrict ourselves 
to the case a E (1, 2). If w E°'戸（配 x配） is symmetric, then k(x,y,z) = w(x,y)lzl-d-a 
is an example of a kernel satisfying the previous assumptions. 

We add to our system the boundary and initial conditions 

v加 =0

Onμlan = 0 

(v, <p) lt=O = (vo, <po) 

on 80 x (0, oo), 

on叩 x(0,oo), 

inn. 

(1.9) 

(1.10) 

(1.11) 

Here On= n・ ▽ and n denotes the exterior normal at 8D. We note that (1.9) is the usual 
no-slip boundary condition for the velocity field and 8nμl8n = 0 describes that there is 
no mass flux of the fluid components through the boundary. Furthermore we complete 
the system above by an additional boundary condition for cp, which will be part of the 
weak formulation, cf. Definition 3.2 below. If r.p is smooth enough (e.g. cp(t) E c1,f3(TT) 
for every t 2': 0) and k fulfills suitable assumptions, then 

llx0・Vc(xo) = 0 for all Xo E叩

where llx。dependson the interaction kernel k, cf. [ABG15, Theorem 6.1], and x。E8D. 
The total energy of the system at time t 2': 0 is given by 

Etot('P, v) = Ekin('P, v) + Erree位） (1.12) 

where 

恥 (cp,v)=J p凶~dx,。2
Efree位） = j w(r_p)dx 十~£(→）

0 2 

are the kinetic energy and the free energy of the mixture, respectively, and 

£(u,v) = J J位(x)-u(y))(v(x) -v(y))k(x, y, x -y) dx dy (1.13) 
!1 !1 
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for all u, v E H叩） is the natural bilinear form associated to£, which will also be used 
to formulate the natural boundary condition for r.p weakly. Every sufficiently smooth 
solution of the system above satisfies the energy identity 

d 
五加(r.p,v) = -1。初(r.p)IDvl2dx -1 m(r.p)I▽ μl2dx 

for all t 2: 0. This can be shown by testing (1.1) with v, (1.3) withμand (1.4) with 8tr.p, 
where the product of£,r.p and 8tr.p coincides with 

E(r.p(t), 如 (t))

under the natural boundary condition for r.p(t). 
In order to guarantee that r.p(x, t) E [-1, 1] almost everywhere, we consider a class of 

singular free energies, which will be specified below and which includes the homogeneous 
free energy of the so-called regular solution models used by Cahn and Hilliard [CH58]: 

0 0 
¥JJ(r.p) = -((1 + r.p) ln(l + r.p) + (1-r.p) ln(l -r.p)) -_!:_r.p2, r.p E [-1, 1] (1.14) 

2 2 

where O < 0 <仇.In order to deal with these terms we apply techniques, which were 
developed in Abels and Wilke [AW07] and extended to the present nonlocal Cahn-Hilliard 
equation in [ABG15]. 

Our proof of existence of a weak solution of (1.1)-(1.4) together with a suitable initial 
and boundary condition follows closely the proof of the main result of [ADG 13]. The 
following are the main differences and difficulties of our paper compared with [ADG13]. 
Since we do not expect H1-regularity in space for the volume fraction r.p of a weak solution 
of our system, we should eliminate▽ r.p from our weak formulation taking into account the 
incompressibility of v. Implicit time discretization has to be constructed carefully, using 
a suitable mollification of r.p and an addition of a small Laplacian term to the chemical 
potential equation taking into account of the lack of H1-regularity in space of r.p. While the 
arguments for the weak convergence of temporal interpolants of weak solutions of the time-
discrete problem are similar to [ADG13], the function space used for the order parameter 
has less regularity in space since the nonlocal operator of order less than 2 is involved in 
the equation for the chemical potential. For the convergence of the singular term w'(r.p), 
we employ the argument in [ABG15]. The only difference is that we work in space-time 
domains directly. For the validity of the energy inequality, additional arguments using 
the equation of chemical potential and the fact that weak convergence together with norm 
convergence in uniformly convex Banach spaces imply strong convergence are needed. 

The structure of this contribution is as follows: In Section 2 we summarize preliminar-
ies, we fix notations and collect the needed results on nonlocal operator. In Section 3, we 
define weak solutions of our system and state our main result concerning the existence of 
weak solutions. In Section 4, we define an implicit time discretization of our system and 
state an existence result of its weak solutions. In Section 5, we obtain compactness in 
time of temporal interpolants of the weak solutions of time-discrete problem and obtain 
weak solutions of our system as weak limits of a suitable subsequence. 
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2 Preliminaries 

For a, b E配 wedenote a 181 b = (aあ）f.j=l and Asym =½(A+ AりforA E股dxd_ The 
duality product of a Banach space X and its dual X'is denoted by 

〈f,g〉三〈f,g〉X',X= f(g), f E X',g EX. 

We write X →'----+ Y if X is compactly embedded into Y. Moreover, if H is a Hilbert 
space, (・, ・)H denotes its inner product. Furthermore, we use the abbreviation (., .)M = 

(.'.)戸(M)・

Lebesgue and Sobolev spaces: Let M C 配 bemeasurable. As usualび(M),1 < 
q'.S oo, denotes the Lebesgue space, 11-llq its norm andび(M;X) denotes the set of all 
strongly measurable q-integrable functions/essentially bounded functions, where X is a 
Banach space. If M = (a, b), we denote these spaces for simplicity by Lq(a, b; X) and 
Lq(a, b). Recall that f E Lr.。c([O,oo);X)if and only if f E Lq(O,T;X) for every T > 0. 
Furthermore, L忍loc([O,oo); X) is the uniformly local variant of Lq(O, oo; X) consisting of 
all strongly measurable f: [O, oo)→ X such that 

IIJIIL~loc(ID,oo);X) = sup llf 11£ 叫 +l;X)< 00. 
t;:>O 

If T < oo, we define L~10c([O, T); X) := Lq(O, T; X). 
In the following let n c配 bea domain. Then W;'(D), m E N。,1~q さ oo,

denotes the usual Lq-Sobolev space, W, 轟(D)the closure of C0(D) in W;'(D), wq-叫D)=

(W. 轟(D))',and W~ 悶[{'(D)= (W;'(D))'. The£2-Bessel potential spaces are denoted by 

H叩）， s~0.
Let Jo=向J以(x)dx denote the meaJ1 value off EL叩） • Form E恨 wedefine 

Lf m) (0) := {f E L叩）： fri = m}, 1~q~00. 

Then the orthogonal projection onto L恥（切 isgiven by 

1 
Pof := f -f 11 = f―五Jf(x) dx for all f EL叩）．

!1 

For the following we denote 

H{o)三 H向(0)= H叩） nL恥(0), (c, d)知 (!1):= (▽ c, ▽ d)L叩）・

Note that H向(D)is a Hilbert space because of Poincare's ineq叫 ity.More generally, we 
dcfinc for s 2: 0 

H[oJ = H向(D)= H・(n) n Lfoi(D), H⑲ j(D) = (H向(D))',

Ha・(n) = (H-•(n))', H-•(n) = (H~(D))'. 

f Finally, EH品(D)if and only if Jin, E H•(D') for every open and bounded subset D' 
with ff CD. 
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We denote by L即） is the closure of Cfra-(D) inび(D)叫whereC, 篇(D)is the set of 

all divergence free vector fields in C, 『(D)d.The corresponding Helmholtz projection, i.e., 
the£2-orthogonal projection onto L訊D),is denoted by J伝 cf.e.g. Sohr [SohOl]. 

Spaces of continuous vector-fields: For the following we assume that I= [O, T] with 
0 < Tく ooor I = [O, oo) if T = oo and that X is a Banach space. The Banach space of 
all bounded and continuous f: I→ X is denoted by BC(I; X). It is equipped with the 
supremum norm. Moreover, BUC(I; X) is defined as the subspace of all bounded and 
uniformly continuous functions. Furthermore, we define BCw(I; X) as the topological 
vector space of all bounded and weakly continuous functions f: I→ X. C0(0, T; X) 
denotes the vector space of all smooth functions f: (0, T)→ X with suppf cc (0, T). 
By definition f E WJ(O, T; X), 1さp< oo, if and only if f, 盟Eび (0,T; X), where忍
denotes the vector-valued distributional derivative off. Furthermore W1 ( , p,uloc , [Ooo);X)is 

defined by replacing I.l'(O, T; X) by L~loc([O, oo); X) and we set圧 (0,T; X) = Wd-(O, T; X) 
and H~loc([O,oo);X) := Wi,uloc([O,oo);X). Finally, we note: 

Lemma 2.1. Let X, Y be two Banach spaces such that Y→ X and X''---+ Y'densely. 
Then L00(I; Y) n BUC(I; X)'---+ BCw(I; Y). 

For a proof see e.g. Abels [Abe09a]. 

2.1 Results on the Nonlocal Operator ,C 

In the following let£be defined as in (1.13). Assumptions (1.6)―(1.8) yield that there 
are positive constants c and C such that 

cllull~ 詞)::,;; lm(u)l2 +£(u, u) ::,;; Cllull~ 詞） for all v, EH叩）．

This implies that the following norm equivalences hold: 

E(u, u) rv llull~ 知）

E(u, u) + lm(u)l2 rv llull~ 釦!1)

cf. [ABG15, Lemma 2.4 and Corollary 2.5]. 

g 

for allu EH向(D),

for all u EH釘D),

(2.15) 

(2.16) 

In the following we will use a variational extension of the nonlocal linear operator£ 

(see (1.5)) by defining£: H叩）→ H。音(n)as 

〈Cu,cp〉H。~'t ,H~= E(u, cp) for all cp EH扉）．

In particular we have 
〈Cu,1〉=£(u,1)=0

by definition. We note that£agrees with (1.5) as soon as u E H品(n)n H叩） and 
t.p E C, 合(0),cf. [AK07, Lemma 4.2]. But this weak formulation also includes a natural 
boundary condition for u, cf. [ABG15, Theorem 6.1] for a discussion. 

We will also need the following regularity result, which essentially states that the 
operator£is of lower order with respect to the usual Laplace operator. This result is 
from [ABG15, Lemma 2.6]. 
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Lemma 2.2. Let g E L恥(D)and 0 > 0. Then the unique solution u E H如(D)for the 
problem 

-0 J▽ U・ 匹 +£(u,cp) = (g, cp)だ

N 

for all zp EH向(0) (2.17) 

belongs to H贔(D)and satisfies the estimate 

011vulll2(0) + llullt"12(n)~Cllglll2cn), 

where C is independent of 0 > 0 and g. 

For the following let¢: [a, b]→ 艮 bea continuous function and set¢(x) = +oo for 
x (j_ [a, b]. As in [ABG15, Section 3] we fix 0~0 and consider the functional 

where 
゜F0(c) =う 11▽cl2 dx +店(c,c) + 1。¢(c(x))dx 

domF;。={ c E H"'i2(D) n Lぬ（切： ¢(c)E L1(D)}, 

domF;。=H叩） n domF;。 if0 > 0 

for a fixed m E (a, b). Moreover, we define 

叫 v)= 0 J▽ U・ ▽ v dx + [(u, v) 
FL 

for all u, v E H叩） if 0 > 0 and u, v E H叫切 if0 = 0. 

(2.18) 

We denote by 8F0(c): Lzm/切→ 回偏(D))the subgradient of F;。atc E domF in 

the sense that w E 8F0(c) if and only if 

(w,c'-c)L2~F0(c')-F0(c) for all c'EL糾(D).

The following characterization of 8F0(c) is an important tool for the existence proof. 

Theorem 2.3. Let¢: [a, b]→ 恥 bea convex function that is twice continuously differ-
entiable in (a, b) and satisfies limx→aが(x)= -oo, limx→bが(x)= +oo. Moreover, we 
set¢(x) = +oo for x ff_ (a, b) and let F;。bedefined as in (2.18). Then aF;。:D(8F0)こ
L『m)(D)→び (D)is a single valued, maximal monotone operator with (0) 

叩 F。) = {cE Hぬ(D)n H"'i2(D) n Lぬ（切：が(c)E L2(D), ヨ]EL叩）：

if 0 = 0 and 

V(8Fe) 

[(c, If!)+ 1¢'(c)!f!dx = 1 知 dx 咋 EH叫叫

{CE犀 (n)n H1(n) n L『m)位）： ¢'(c)EL叩），ヨfEL叩）：

品(c,cp) + 1。¢'(c)cpdx= L fcpdx 咋 EH暉｝
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if 0 > 0 as well as 

叩 (c)= -0△ c+.Cc+.R。¢'(c) in D'(O) for 0~0. 

Moreover, the fallowing estimates hold 

011cllな+llcllta/2 + 11¢'(c)II~ ~C (ll8F0(c)II~+ llcll~+ 1) (2.19) 

J J (¢'(c(x)) -¢'(c(y)))(c(x) -c(y))k(x, y, x -y) dx dy 
!1 !1 

~C (ll8F0(c)II芸+llcll芸+1) 

0 J¢"(c)IVcl2dx~C (ll8F0(c)II~+ llcll~+ 1) 
!1 

for some constant C > 0 independent of c E D(8F0) and 0~0. 

The result follows from [ABG15, Corollary 3.2 and Theorem 3.3]. 

3 Existence of Weak Solutions 

In this section we define weak solutions for the system (1.1)-(1.4), (1.9)-(1.11) together 
with a natural boundary condition for cp given by the bilinear form£, summarize the 
assumptions and state the main result. 

A ssumpt10n 3.1. Let O c記， d= 2, 3, be a bounded domain with C2-boundary. The 
following conditions hold true: 

(i) p(cp) =ら（か＋戸2)+も（戸2-P1)cp for all炉 E[-1, l]. 

(ii) m E C囀）， T/E C0(良） and there are constants m。,K > 0 such that O < m。こ
a(s),m(s),T/(s):::; K for alls E恥．

(iii) w E C([-1, 1]) n C2((-1, 1)) and 

lim w'(s) =士00, w"(s) 2:: ―K for some K E賊. (3.20) 
S→土1

A standard example for a homogeneous free energy density W satisfying the previous 
conditions is given by (1.14). Since for solutions we will have cp(x, t) E [-1, 1] almost 
everywhere, we only need the functions a, m, rJ on this interval. But for simplicity we 
assume a, m, rJ to be defined on R 

Definition 3.2. Let v0 E L訊n)and'Po E H"'l2(n) with l'Polさ1almost eve内wherein 
n and let Assumption 3.1 be satisfied. Then (v, cp, μ) such that 

v E BCw([O, oo); 店(D))nび(0,oo; HJ(n)り，
炉EBCw([O, oo); H"'12(D)) n L~zoc([O, oo); H~c(D)), w'(cp) E L~10c([O, oo); L2(D)), 

μE L~z0c([O, oo); 圧 (D))with▽ μEび(0,oo; び(D))
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is called a weak solution of (1.1)-(1.4), (1.4)-(1.9) if the following conditions hold true: 

-(pv紐）Q + (div(pv⑳ v), ゆ）Q + (217(cp)Dv, Dゆ）Q―((vi&iJ),▽ゅ）
Q 

= -(cp▽ μ, ゆ）Q (3.21) 

for allゆEC0(0 x (0, oo))d with divゆ=0, 

-(cp, 8t心）Q + (v• ▽ cp, 心）Q = -(m(cp)▽ μ, ▽い）Q (3.22) 

1001匹 dxdt= 1001 w'(ゃ）心dxdt+ 100£(cp(t), 心(t))dt (3.23) 

for all心EC0((0, oo); び(TT))and 

(v,cp)lt=D = (vo,cpo)・ (3.24) 

Finally, the energy inequality 

E叫 (t),v(t)) + j j初(cp)1Dvl2 dx dT + 
s n 

j j m(cp)I▽ μ12 dx dT 
s n 

:S Etat(cp(s), v(s)) (3.25) 

holds true for all t E [s, oo) and almost alls E [O, oo) (including s = 0). Here Etat is as 
in (1.12). 

The main result of [AT18] is: 

Theorem 3.3 (Existence of Weak Solutions [AT18]). 
Let Assumption 3.1 hold. Then for every v0 E L訊0)and cp。E H°'l2(0) such that 
炉0I :S 1 almost everywhere andわや0dxE (-1,1) there exists a weak solution (v,cp,μ) 
of (1.1)-(1.4), (1.9)-(1.11). 

4 Approximation by an Implicit Time Discretization 

Let ¥JJ be as in Assumption 3.1. We define ¥JJ0: [-1, 1]→ 股 by¥JJo(s) = w(s) +碍 forall 
s E [a, b]. Then ¥JJ。：［ー1,1]→ IR. is convex and lims→士1叱(s)=士oo.A basic idea for the 
following is to use this decomposition to split the free energy Efree into a singular convex 
part E and a quadratic perturbation. In the equations this yields a decomposition into 
a singular monotone operator and a linear remainder. To this end we define an energy 
E: び(n)→訊{+oo} with domain 

domE = {cp E H"'12(!:1) I -1 :<::; cp :<::; 1 a.e.} 

given by 

叫＝｛枠(<p,<p) + fn Wo(<p) dx for <p E domE, 
+oo else. 

(4.26) 
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This yields the decomposition 

K, 

Erree(<p) = E(<p) --
2 
ll<plll2 for all <p E dom E. 

Moreover, Eis convex and E = F;。ifone chooses¢= W。andFi。isas in Subsection 2.1. 
This is a key relation for the following analysis in order to make use of Theorem 2.3, 
which in particular implies that 8E = 8F;。isa maximal monotone operator. 

In order to prove Theorem 3.3, we use an implicit time discretization. To this end, let 
h=点forN E  N and vk EL叩），匹 EH叩） with叫 x)E [-1, 1,] almost everywhere 

and蝕＝ら(i51+ 152) +½(石ーか）({Jk be given. Then W(<pk) E L1(fl). We also define a 
smoothing operator Ph onび(fl)as follows. We choose u as the solution of the following 
heat equation 

｛如ーニ：゜~ 悶尉(0,T), 

い加=0 on叩 x(0, T), 

where <p1 Eび(fl),and set Ph<p':= ult=h・Then P, 屈＇€ 印 (fl)and Ph屈→ <p'in L叩）
ash→ 0 for all屈EL叩） • Moreover, we have IP, 年 'Iさ 1in n if l<p'(ェ） I~1 almost 
everywhere and P, 記→h→0 <p'in H釘fl)as h→ 0 for all <p'E H釘fl).

Now we determine (v, <p, μ) = (vk+l平 k+l,μk+i), k E N, successively as solution of the 
following problem: Find v E HJ(fl)d n L印）， <pE TJ(8E) and 

μEH罰） = {u Eザ (fl)I an疇=0 on叩｝，

such that 

(pv-:kバ）n + (div(p(Ph四）v⑧ v), 此+(2ri(叫 Dv,D虹+(div(v⑭ J), ゅ）Q

= -((A四）▽μ, ゆ）。 (4.27)

for allゆEq篇(n),

¢ ー ({Jk

h 
+v• v'Ph臼=div(m(Ph匹）▽μ) almost everywhere m fl , (4.28) 

and 

1 (μ+ K <p~({Jk) い dx =£(臼） + 1 "'~(<p)心 dx+h1巧冒dx (4.29) 

for allゆEH012(fl), where 

j三 jk+l:=—叫m(Ph({Jk)▽μk+l =一号m(Ph({Jk)▽μ. 

For the following let 

lvl2 h 
Etot,h(<p, v) = 1 p 2 dx + 1 W(<p) dx十店（い平）＋ぅ1団 12dx. (4.30) 

denote the total energy of the system (4.27)-(4.29). 
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Remark 4.1. (i) As in [ADG13} we obtain the important relation 

p-Pk 
V・ ▽ p(Ph匹） = divJ, 

h 

by multiplication of (4.28) withー和呟1 8p(<p) = . Because of div(vRJ) = (div J)v + 2 8<p 

(i-▽） v this yields that 

(pv-:kパ） + (div(p(Piい）V Q9 v), ゆ）!1 + (2TJ(匹）Dv,Dゅ）。 (4.31)

+ ((iliv j -p~:~- V ▽ μ(い））i, ゅ）n + ((J▽） v, ゅ）n~-((11叫）▽μ, ゆ）。

for allゆEC,品(D)to (4.27), which will be used to derive suitable a-priori estimates. 

(ii) Integrating (4.28) in space one obtains In r.p dx = In'Pk dx because of div v = 0 and 
the boundary conditions. 

The following lemma is important to control the derivative of the singular free energy 
density W'(r.p). For its proof, we refer to [AT18]. 

Lemma 4.2 ([AT18]). Let r.p E 1J(8Fh) andμEH叩） be a solution of (4.29) for given 
匹 EH叩） with I匹 (x)I :s; 1 almost everywhere in n such that 

向Lr.pdx=両1r.pkdx E (-1, 1). 

Then there is a constant C = C(Jn砂切>0, independent of r.p, μ,'Pk, such that 

図 (r.p)IIL叩） + Jμdx :s;C(II▽ μIIL2+11匹 lli2+ 1) and ， 
ll8F1心）11£ 叩）さ c(llμIIL2 + 1) . 

The following lemma is about the existence of solutions to the time-discrete system. 
For its proof, we could follow the line of the corresponding arguments in [ADG 13]. The 
main tools are Theorem 2.3 and Leray-Schauder principle. For details, we refer to [AT18]. 
As before we denote 

H加）：= {u Eが (D):n・ ▽ ulan = O}. 

Lemma 4.3 ([AT18]). For every vk E L訳n),臼 Eが (D)with l'Pk(x)I :s; 1 almost 
everywhere, and 糾＝昆＋匂＋昆—印四 there is some solution (v, r.p, μ) E 

(HJ(n)d n店(D))x 1J(8F, 川xH~(D) of the system (4.28)-(4.29) and (4.31). Moreover, 
the solution satisfies the discrete energy estimate 

Etot,h(r.p,v)+ J Pk dx+ 
lv-v計団—▽r.p出 1

N 
2 1 2 心+2£(r.p-い -'Pk)

+hi,。2,,.,(匹)IDvl2心 +hfor→）1▽ μ12 dx :s; Etot,hい，vり. (4.32) 
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5 Proof of the Main Result 

5.1 Compactness m Time 

In order to prove our main result Theorem 3.3 we will pass to the limit h→ 0 resp. 
N→ oo for the approximate solution, which are obtain by suitable interpolations of our 
time-discrete solutions. To this end let NE  N be given and let (vk+l,'Pk+l, μk+1), k EN, 
be chosen successively as a solution of (4.27)-(4.29) with h = ti and (v0, 蟷） as initial 
value. 

As in [ADG13] we define JN(t) fort E [-h, oo) by the relation JN(t) = fk fort E [(k-

l)h, kh), where k EN。andf E {v, cp, μ}. Moreover, let pN =ら（か+752) +ら(!52-j5リcpN.
Furthermore we introduce the notation 

（△ tf) (t) := f(t + h) -f(t), 

1 
弘f(t) := -(△訂） (t)' 

h 

（△ hf) (t) := J(t) -J(t -h), 

ih := (パf)(t) = f(t -h). 

In order to derive the weak formulat~on in the limit letゆ E (C0(0 x (0, oo))げwith

divゆ=0 be arbitrary and chooseゆ：= tk+l)h心dtas test function in (4.27). By kh 
summation with respect to k E N。thisyields 

1001 a;:h~ バ）ゆdxdt + fo00fn div (pごv~ RvN)ゆ dxdt + fo00 fn 2T/(吟）DvN:Dかdxdt

-11。（研応jN):Dゆdxdt= -11▽ μN吟・心dxdt (5.33) 

for allゆE(C'. 含(0x (0, oo)))d with divゆ =0. Using a simple change of variable, one 
sees 

!00! 叩(pい）・炉dxdt= - 00 
0 0 

11(バ） .[)ふゆdxdt

for sufficiently small h > 0. In the same way one derives 

1001仇註N(dx dt + 1001 v鸞・▽(dxdt = 1001 m(吟）▽μN. ▽ (dx dt (5.34) 

for all (EC, 訳((0,oo); び(TI))as well as 

1001い+K, <pN; 吟炒dxdt= 100£: 凡心）dt+ 1001叫(<p冒 dxdt

+h J J 豆• ▽ゆdxdt (5.35) 
o n 

for all心EC0((0, oo); び(TI)).
Let E州t)be defined as 

(k+l)h-t t-kh 
砂 (t)= Etot(({)k, Vり+ Etot(匹 +1,Vk+1) for t E [kh, (k + l)h) 

h h 
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and define 

DN(t) := lo 277(rpk)IDvk+1門dx+lo m(匹） 1▽μk+l門dx

for all t E (tk, tk+I), k EN。.Then the discrete energy estimate (4.32) yields 

d Etot(やk,vk) -Etot('Pk+I, Vぃ）
dt 
E汽t)= ~D汽t) (5.36) 

for all t E (tk, tk+I), k EN。.Integration implies 

Etotい(t),V汽t))+ ft J (277(rpf)IDv叩 +m(吟）1▽μ叫） dxdT 
s [l 

:::; Etot(砂「(s),vN (s)) (5.37) 

for all O :::; s :::; tく oowith s, t E hN。.
Because of Lemma 4.2 and since E叫碕，v0)is bounded, we conclude that 

(vN)NENこび(0,oo; H1(0)りnL呵O,oo;L門Q州），

（▽ μN)NEN <;;:; び(0,oo; び(0)り，
（砂「）NENこL00(0,oo;H只0)),and 

(h½v'rpりNEN こ L呵O,oo;L刊切）

are bounded. Moreover, there is a nondecreasing C: (0, oo)→ (0, oo) such that 

「!μ汀 x心：：：： C(T) for all O < T < oo. 
0 fl 

(5.38) 

Therefore there are subsequences (denoted again by the index N E  N, h > 0, respectively) 
such that 

VN→ V inザ(0,oo; H1(D)り，
VN→ * v in L00(0,oo;L2(D)り，
cpN→ * cp in L00(0, oo; H只D))'

μN→ μinび(O,T;H叩）） for all O < T < oo , 

▽ μN→ ▽ μinび(0,CX)心(D)り，

whereμE L~loc~[O, oo); が (D)).
In the followmg翌 denotesthe piecewise linear interpolant of cpN (tりintime, where 

tk = kh, k EN。.Then 8虐＝叩砂「 andtherefore 

I冒—砂rllH-l(fl) :::: hlloぷNIIH-l(fl) . (5.39) 

Using that vN cpN and▽ μN are bounded inび(0,oo; び(D)りand(5.34) we conclude that 
8ぷNEL2(0, oo; H-1(0)) is bounded. Since (cpN)NEN and therefore (⑳州NENare bounded 
in L00(0, oo; H釘D)),the Lemma of Aubin-Lions yields 

び→ 厄inび(O,T;L叩）） (5.40) 
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for all O < T く oofor some cp E L00(0, oo; L叩）） (and a suitable subsequence). In 
particular図(x,t)→ 沢x,t) almost every (x, t) En x (0, oo). Because of (5.39), 

-N  N 
llrp -rp IIい(-h,oo;H-1(0))→0 (5.41) 

and thus哀＝ゃ.Since戸NEH~loc([O, oo); H-1(0))nL00([0, oo); H訂0))←BUC([O, oo); L刊0))
and cpN E L00(0, oo; H釘0))are bounded, Lemma 2.1 implies rp E BC位([O,oo);H音(0)).
Moreover, (cpN -rpN)NEN~L00(-h, oo; H釘0))is bounded since (rpN)NEN, (哀N)NENこ
L00(-h, oo; H% (n)) are bounded. By interpolation with (5.41) we conclude 

図— rpN → 0 inび(-h,T;L叩）） (5.42) 

and therefore 

⑳「→ 'PinL2(0, T; L2(D)) 

for all O < T < oo. Moreover, we have 

11'-Pf: -'PIIい(O,TいcnJJ::::; ll'Pf: — 'Philい (O,T;L2(0)) + II'Ph― 'PIIい(O,T;炉 (0))

(5.43) 

::::; h½ll'P点 IIL2(n) + ll'PN -'PIIL2Co,T-h; い(0))+ ll'Phー 'PIIL2(0,T;戸 (O))・(5.44)

Because of ll'Phー 'PII口(O,T;L叩））→h→。 0,we obtain ll'Pf: -'PIIび (O,T;L叩））→h→。 0.
Finally using the bounds of (pN in H1(0, T; H-1(D)) and in L00(0, T; H叩）） for all 

0 < T < oo as well as翌→ 'Pinび(O,T;L叩）） we conclude翌(0)→tp(O) inび(n).

Since図(0)=蟷→N→00'P。inL叩）， wederive tp(O) ='Po・

Since pN depends affine linearly on砂凡 theconclusions hold true for pN. 
To show the convergence of (5.35), we closely follow the corresponding argument in 

[ABG15]. The only difference is that work on the space-time domains directly, while they 
work on the spacial domains fixing a time variable in [ABG 15]. We include the argument 
here for completeness. We first observe that w~(砂州 is bounded inび(O,T;L叩）） for 
0 < Tく oo.Using this bound, we can pass to a subsequence such that叫い） converges 
weakly inび(0,T; L2(D)) to x for all O < T < oo as N tends to infinity. Let ゆ€
C岱((0,oo); C順）） • Thanks to the convergences listed above, we can pass to the limit 
N→ oo in (5.35) to find 

「j(μ+匹）心dxdt= f00£(ゃ，心） dt + (x, 心）び((0,oo)X 0)・
o n o 

To show (3.23), we only have to identify the weak limit x = limN→ 00 w~(⑳州. Let T > 0. 
Since (5.43) holds, passing to a subsequence, we have'PN→'P almost everywhere in 
n x (0, T). On the other hand, thanks to Egorov's theorem, there exists a set Qm C 

n x (0, T) such that IQ叫：：：：： ID x (0, T)I -_L and on which砂T→tp uniformly. We now 
use (uniform with respect to N) estimate o~m\JJ~ い） in L叩 x(0, T). By definition, the 
quantity 

M8,N = l{(x,t) En X (O,T) I lcpN(x,t)I > 1-5}1 

is decreasing in 5 for all n E N. Since \[!~(y) is unbounded for y→ 土1,we set 

C& := inf 叫 (c)I→6→ O oo, 
lcl:C:1-8 
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we have by the Tschebychev inequality 

J 団(r.pN)l2dxdt2='. c加IMo,NI-
r!x(O,T) 

From the uniform (with respect to N) estimate of the norm of叫(r.p州inび(0x (0, T)), 
we obtain Mo,n→ 0 for 6→ 0 uniformly inn EN. Therefore, we deduce 

lim I { (x, t) E O x (0, T) I lr.p汽x,t)l>l-b}l=O
6→O 

uniformly in NE  N. Thus there exists 6 = b(m) independent of N, such that 

I { (x, t) E O x (0, T) I lr.p汽x,t)I > 1―b} I :S」 VNEN
2m 

Consider now N E N so large that by uniform convergence we have I r.pN'(x, t) -r.pN (x, t) I < 
~for all N'2='. N and all (x, t) E Qm-Moreover, let Q伍NC仇 bedefined by 

Q;,,N = Qm n { (x, t) E O x (0, T) I lr.p汽x,t) I :S 1 -b} . 

By the above construction, we immediately deduce that IQ伝刈 210 X (O,T)I --and 
m 

that r.pN'(x,t)I < 1 -~for all N'2='. N and for all (x,t) E Qm,N• Therefore by the 
regularity assumptions on the potential W~, we deduce that w~(砂')→ w~(r.p) uniformly 
on Q伍パ.Since mis arbitrary, we have w~(砂「）→ 叱(r.p)almost everywhere in O x (0, T). 
By a diagonal argument, passing to a subsequence, we have叫い）→ W~(r.p) almost 
everywhere in O x (0, oo) and叫（討り→ w~(r.p) ash→ 0 inい(Qりforevery 1さqく 2

and O < T < oo. Finally, the uniqueness of weak and strong limits gives x = W~(r.p) as 
claimed. 

The next step is to show strong convergence vN→ Vinび(O,T;び(0)りforall O < 
Tく ooto conclude a convergence pointwise almost everywhere. As above let底Nbe the 
piecewise linear interpolant of (PN vN) (t砂， wheretk = kh, h E N。.Then it holds that 

8t (声）＝幻 (pNV汀・
Using that 

N N N. L 凡 V ⑭ v 1s bounded in 2(0, T; L2 (0)), 

DvN is bounded inび(O,T;び(0))'

VN Q9▽ μN . 1s bounded in L1(0, T; L国）），

▽μ咋1;!is bounded inび(0T , ； L二 (0)).

together with (5.33), we obtain that Ot (巳（声）） is bounded in L打O,T;(~叩））')for 

all O < T く oo.Here we remark that the boundedness of▽ μNEび(O,T;L叩）） and 

r.pf: E L00(0, T; L計后(0))imply that▽μ賢f:Eび(O,T;L凸叩））→ び(O,T;L国）） is 
bounded. 

-N  
Since JP'u(pv) Eび(O,T;が (0)りisbounded, the Lemma of Aubin-Lions implies 

見（応州→ winザ(O,T;L叩）り
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for all O < Tく ooforsomewE L=(o,oo;L2(Q)d). SincetheprojectionlP'": L2(0,T;L2(D)り→
び(O,T;店(D))is weakly continuous, we conclude from the weak convergence函N→ pv 
inび(O,T;L叩）） that w = lP'山 (pv).This yields 

1T kP州v叫=1T 1 lP'cr(Pい） VN→ 1T klP'"(pv)-v= 1T kplvl2 

because of lP'er(炉v州→N→= lP'cr(pv) inび(O,T;び（切り.Since weak convergence and 
convergence of the norms imply strong convergence in a Hilbert space, we conclude 
(p叫VN→(p)½v inび(O,T;L叩）り.Because of 

PN→ p almost everywhere in (0, oo) x n and IP州2::c>O,

we derive 

VN = (pN〗½((p叫vN) →N→= V inび(O,T;L叩）り．

This yields in particular that vN→N→ = v pointwise almost everywhere in (0, oo) x n 
(for a subsequence). 

Using these convergence results together with the fact that for all divergence freeゆ
the following convergence holds 

1T1▽μザ心砂dt→N→= 1T 1 ▽ μr.pゆdxdt,

we can pass to the limit in the equations (5.33), (5.34) to get (3.21), (3.22). The fact 
that v(O) = v0 in L刊D)dis shown in the same way as in [ADG13]. Therefore we omit 
the proof. 

5.2 Energy Inequality 

竺

(N  It remains to show the energy inequality 3.25). If we show that r.p (t)→ r.p(t) in H向
for almost every t E (0, oo) and辺▽砂r→0 in (L叩））d for almost every t E (0, oo), the 
rest of the proof is almost the same as in [ADG13] and we omit it. To this end it suffices 

to show (r.pN, v訳7r.p州convergesstrongly to (r.p, 0) inび(0,T; 瓜(0)x (L叩））り for

every T > 0. If we take心=r.pN in (5.35), we have 

1= 1 (μN + K, r.pN; r.pfi) r.pN dxdt = 1=£:N, げ）dt+ 1= 1 %い）凶dxdt

+h J J 図 N_▽r.pN dx dt. (5.45) 
0 !1 

Since r.pN→ r.p inザ（切）， μN→ μinび（切） and叫い）→ ％（砂')inび（切） as 
N→ oo, we have 

昌 {J=t:い(t),ゃ汽t))dt+h「J ▽r.pN ▽ r.pN dxdt 

1=]  

= 0 !1 } 

= 0 !1 (μr.p + K, 厨）dxdt-11叫(r.p)r.pdxdt= 1=£(r.p(t),r.p(t))dt (5.46) 
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because of (3.23). 

Next we show cpN→ cp inび(0,T; H(~)) and ./h▽吟r→ 0 inび(O,T;び） asN→ oo for 
竺

any T > 0. Let T > 0 be arbitrarily fixed. (cp1刈NENis bounded in L00(0, T; H向）， hence
g g 

also inび(O,T;H向）• Then there exists some cp'Eび(O,T;H向） such that砂N→ cp'in 

び(0,T; H(~)). Since cpN→ cp inび(Qr),cp = cp'. Hence cpNーcpinび(O,T;Hふ）．

For any fixedゆEC,岱(Q州，

J切⑪ ▽ CfJN・ かd(x,t) = -ir v'h cpN divゆd(x,t) 

tends to zero as N→ oo since cpN→ cp in L刊伍） • Since supNEN 11./h▽ゃ州1戸 (Qr)d< 00 

and C0(い）d ll・IIL叫）d =び(Q州， wehave辺▽砂r→ 0 inび(Q出 Hencewe have 

い喜▽cpN)→ (cp, 0) inび(0,T; H(~) x (Lりり．
Because of (5.46), we also have the convergence of the norms of (cp凡v'h▽cpN) to that 

Q_ 

of (cp, 0) inび(0,T-H2  (2 d , (m) x L)) . Hence we have shown the claim. 
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