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Viscous compressible fluids with only bounded density 

Raphael Danchin1, Francesco Fanelli2 and Marius Paicu3 

Here we survey our paper [4] and give an example of application, Corollary 2.1, that 
is not contained in [4]. 

We are concerned with the following compressible Navier-Stokes equations: 

(pu)t + div(puい）―μ△u-μ'▽ divu + v'P = 0 in正 x配，

(CNS) c { p, + div(pu)~0 in股+X配，

(p,u)lt=O = (Po,uo) in配

The unknowns are the velocity field u = u(t, x) E配 andthe density p = p(t, x) ;::,: 0 
with t ;::,: 0 and x E配 (d;::,:1). 
The pressure P is a given locally Lipschitz function of the density, and it is assumed 
that the (constant) viscosity coefficientsμandμ'fulfill 

μ> 0 andμ+μ'> 0. (1) 

The above system is supplemented with initial data p。andu。attime t = 0. We have 
in mind the singular situation where the density is discontinuous along an interface, like 
for instance: 

Po= P6lv。+P6lの。 with P6, P6 > 0 and D。cc記 (2)

where P6, P6 and 8D。arereasonably smooth. 
For such an initial density, we would like to find out suitable conditions on u。ensuring
that (CNS) has a unique local-in-time solution, and that the structure (2) is propagated. 
Let us underline that, in contrast with the incompressible situation, there is no chance 
that the characteristic function structure is preserved stricto sensu, since the density need 
not be conserved along the flow of the velocity field. 

Before going into more details, let us shortly review some classical results for (CNS). 
Thanks to the pioneering works by P.-L. Lions [13] in 1996 and E. Feireisl [6] in 2001, the 
weak solution theory in the case of the isentropic pressure law P(p) = ap1 with 1 > d/2 
is by now well understood. It is based on the following (formal) energy balance 

J l 山Pl研+e(p))(t)dx+11/μlv'叩+μ'(divu)りdx= 1dGPolu而+e(po))dx 
1LAMA, UMR 8050, Universite Paris-Est Creteil, France 
2Institut Camille Jordan, UMR 5208, Universite de Lyon 1, France 
3Institut de Mathematiques de Bordeaux, UMR 5251, Universite de Bordeaux, France 



77

where the internal energy e satisfies ze"(z) = P'(z), and on rather subtle compactness 
arguments implemented on the solutions to a family of suitable approximate systems. It 
goes without saying that uniqueness in the class of finite energy solutions is a widely open 
question. 

At the exact opposite, one can find the more ancient theory of local-in-time classical 
solutions for smooth data with no vacuum (J. Serrin [16] in 1959 and J. Nash [15] in 
1962), local strong solutions with Sobolev regularity (see the works of A. Tani [18] and 
V. Solonnikov [17]), global solutions for small perturbations of a constant state (/5, 0) with 
P'(p) > 0 (A. Matsumura and T. Nishida [14] in 1983), and works dedicated to solutions 
with critical regularity (see [3] and more recent papers in the same spirit). 

Unfortunately, none of those works fit in our goal since the weak solution theory does 
not give much insight on the propagation of density discontinuities, and the strong solution 
theory does not allow for density discontinuity. 
In the 90ies, D. Hoff in [8] came up with an'intermediate solutions'theory that cor-
responds to data (p0, u0) such that p0 is close to some constant j5 > 0 in L00 and 
u0 E Un  H8 small with s~ ~-1 and q > d (d = 2, 3). This enabled him in [9] to prove 
that if the pressure law is linear then, for any bounded domain D。witha 01,a boundary 
and P6, P6 in C゚汽 if IIP6 -P6IIL= ≪ 1 then the structure (2) is propagated for all time 
and ll(P2 -が）(t) I I£= ::; Ce-ct (see also [ 11] for a more general result). 
However, to the best of our knowledge, it is not known whether Hoff's solutions are 
unique among a class of functions where the structure (2) is not prescribed. In this 
direction, one can mention the work by D. Hoff in [10] where it is proved that, if the 
pressure function is given by P(p) = K p, then one has weak-strong uniqueness on the 
time interval [O, T] if, essentially, one of the two solutions has velocity in Lに(0,T; Lip). 
Let us emphasize that Hoff's results (as well as the weak solution theory) strongly rely 
on the fundamental observation that the viscous effective fi皿

F := divu-v―1 P(p) with v :=μ+μ', 

is more regular than divu or P taken separately. 

The main aims of this note are: 

(3) 

-to address the existence issue for a class of initial densities containing the particular 
case of (2); 

-to prove the propagation of related geometrical structures, 

-to supplement Hoff's result with a uniqueness statement, 

-to present a unified method that works for all dimensions and pressure laws. 

The rest of the text unfolds as follows. In the next section, by taking advantage of the 
classical maximal regularity theory for parabolic systems, we establish an existence result 
for rather general initial densities with no smoothness, then, in Section 2, we prove the 
local-in-time propagation of geometrical structures that encompass (2). The last section 
of the paper is devoted to sketching the proof of uniqueness for the solutions constructed 
in Section 2. 
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1 A ・n existence result based on the classical maximal regularity 

In the present section, we outline the main ideas leading to a local existence statement 
in the case where the initial density is only bounded, but close enough to a positive 
constant j5. The overall approach is essentially based on the use of the viscous effective 
flux defined in (3), and on parabolic maximal regularity estimates. 

For notational simplicity, we shall assume throughout that j5 = 1. Then, if one denotes 
(! := p -1, the velocity equation may be written: 

切一μ△u-μ'▽ divu = g := (2 切ー pu• ▽u―▽ P(p). (4) 

Recall that the maximal regularity theory for the heat equation tells us that, if z fulfills 

{ Zt —ふ=f in股十 X記
zlt=O = z。on記

then one has, for all 1 < p, r < oo and t > 0, the a priori estimate: 

llzllE『r:= llzllL戸 (B!;~) + ll(zぃ▽2z) II 勾 (LP) 乏 llzollB;;~+ llfllq(LP), 

where the homogeneous Besov norm in the right-hand side is defined by 

00 

llzall8~:} := (/ ((0げII▽叩△zollLP) -
rdt¼ 

。 t)
and the notation II・IIL,(X) is a shortcut for the norm inじ([O,t]; X). 

Now, let us observe that the divergence free and potential parts Pu and Qu of u in 
(4) fulfill the following heat equations: 

(Pu)t -μ △ Pu= Pg and (Qu)t -(μ+μ')△ Qu = Qg. 

Hence, since (1) has been assumed and P, Q: び→ L仄weget for all t~0, 

llullEf'r乏lluoII . 2-i + II(! 叫I勾(LP)+llpu・ ▽ ullL,(LP) + llv'PIIL,(LP)・
Bp,rr 

Obviously, the second term of the right-hand side may be absorbed by the left-hand side if 
llr!IIL=≪1, and it is not difficult to check (by combining Sobolev embedding and Holder 
inequality) that the term with u・ ▽ u tends to O when t→ 0 whenever the function space 
E『,ris subcritical with respect to (CNS) (that is 2 -2/r > d/p -1). The troublemaker 
is▽ P (or equivalently▽ p) since having it in a Lebesgue space precludes our considering 
discontinuity across an interface for the density. 
To overcome the difficulty, let us introduce (in the spirit of (3)) the modified velocity 
w :=u十▽(-v△) -1 P. Since divw = divu -v―1 P, one can expect the coupling between 
p and w to be milder than between p and u. Indeed, using the fact that 

Pt= hdivu -div(Pu) with h := P -pP', 
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we discover that the equation for w reads 

叫—µ△w-μ'▽ divw =匹— pu·v'u+ (-v△)―1▽ (hdivu -div(Pu))・

The gain is that all the terms involving the density or the pressure are of order 0. There-
fore, after combining the standard maximal regularity estimate with Sobolev embedding 
and Gagliardo-Nirenberg inequality, we get, if llf211L= is small enough: 

llwllE『,r 乏 llwoll続―~+ llu・ ▽ ullL,(LP) + IIPull店(LP)+ l.o.t. 

Now, since (2 fulfills 

f2t + u・v'Q+ (l+Q)divw十い(l+Q)P= 0, 

classical estimates for the transport equation enable us to bound (2 in any Lebesgue space 
provided that divw is in L1(0, T; £00). 
Since we expect w to be in the space E『r,that latter condition will be achieved if 
p > d. A technical point that we omit here is that the operator (-v△) -1 in the definition 
of w is actually too singular (in particular in dimension 2), and has to be replaced with 
the milder one (Id -v△) -1. In the end, one gets the following statement, the complete 
proof of which may be found in [4]: 

Theorem 1.1 Let d~1 and (p, r) satisfy d < p < oo and 1 < r < 
that 

• Qo := Po -1 belongs to LP n£00; 

● wo := uo -Vo is in尻，；2/r, with Vo :=―▽ (Id -V△) -1(P(po)). 

There exist c > 0 and a time T > 0 such that, if 

lleollL00 :S c, 

2p 
2p-d 

• Assume 

(5) 

then there exists a solution (p, u) to (CNS) on [O, T] x配 with[! := p -l satisfying 

ll[!IIL00([0,T]x即）：：：：：： 2s and [! E C([O, T]; び） for all p::; qく⑳

Furthermore, u = v + w with v :=―▽ (Id -V△) -1(P(p)) is in C ([o, T]; w1,q(配）） for 
all p ::; q < oo, and 

w E C([O,T]麗，;2/r), 知，▽2w E Lr(o, T; LP). 

That solution is unique if d = l. 

In higher dimension, the uniqueness issue in the above functional framework is an open 
question. In order to pinpoint where the difficulty lies, consider two solutions (p□) and 
(p冒） of (CNS) emanating from the same initial data. Then (初心）：= (p2-p1, 炉—Ul)
fulfills 

{! ロニ：~:,;::~(~如 ~:)~p叫＋初（叶＋研·▽研）
＋が(ul-y'如＋初-v'炉＋▽(P(pりーP(pり）．
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The (unavoidable) loss of one derivative in the first equation spoils the second one 
since, for instance, having Jp in a negative regularity space does not allow to get any 

control on 6p (UF +砂▽研）．

Another weakness of Theorem 1.1 is that, even though one may consider initial density 
like (2), it does not tell us much on the evolution of that structure. 
To some extent, the diagnostic in the two cases is the same: we lack the property that 
▽ u E L1([0, T]; L00), as this would ensure the solution to have a Lipschitz flow. Our 
aim (and this is the object of the next part) is to exhibit additional assumptions on the 
data, ensuring that▽ u E L1([0, T]; L00) but that, nevertheless, the density may have the 

structure (2). 

2 Striated regularity 

A natural question is how far from Lipschitz we are, under the hypotheses of Theorem 1.1. 
From it and Sobolev embedding, we know that both divu and curl u are inじ(0,T; L00), 
since 

divu = divw ―1 p -v―l (Id -V△) -lp and curlu = curlw Eじ(o,T; w1,P). 
ヽ
+v 、、- , 

W',P'---+£00£00 smooth 

However, unless d = l, those two conditions together do not quite imply that▽ u E 
い(0,T; £00) (only that▽ u E£1(0, T; BMO) actually), so that we do not know whether 
u has a Lipschitz flow and if the Lipschitz regularity of the domain D。in(2) is preserved. 
In order to figure out what are the missing ingredients to achieve the Lipschitz regu-
larity, let us consider the'flat'situation. Then, if both divu and curl u are in£00 and, 
in addition, first order derivatives of u in d -l independent directions are bounded, it is 
obvious that we do have Vu E£00. 

The way to generalize that property to non.fiat situations goes back to the work by 
J.-Y. Chemin in [1], and relies on the notion of striated regularity that we introduce now. 

Let X = (ふ）l:'o入'.ombe a family of vector-fields with components m the space 

JL00,P :={XE£00, ▽ XEび｝，

that is non-degenerate in the following sense: 

I(X) := inf sup 勾ふ(x)h > o. 
xEIRd AEA閉ー1

Here A E A;f_1 means that A = (ふ，．．．，入d-1)with 1 ::; ふく・・・＜入d-l::; m, while 
d-l 
A XA stands for the unique element of配 suchthat 

VYE酎， (dズXA)・Y= det (Xふ...X虻 i,Y).

Since for a general function f in£00, 瓜 fneed not be defined (in contrast with div (X,¥f) 
and fdivふ） and, in the smooth case, we have 

む>-f= div(X,¥f) -fdivX,¥, 
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we adopt the following definition of regularity along a non-degenerate family of vector 
fields. 

Defimt10n 2.1 Let Y be in JL00,P for some p E]d, oo]. A function f E£00 is said to 

be in lL~if div (JY) E LP (配） • If X = (ふ）ls入smis a non-degenerate family of 
vector-fields in JL00,P, then we set 

lL左：= n lL応 and llfllIL~:= I(~) (llfllL=IIXIIIL=,P + lldiv (JX)ll£p)・ 
1豆sm

The generalization of the above observation to the nonflat situation is a consequence of 
the following statement. 

p ropos1t10n 2.1 Let d < p < oo and m > d -1. Take a nondegenerate family X = 
(X入）1<入<m 1゚vector-fields belonging to JL00,P. Then, the following inequality holds true 
for all v > 0 : 

II守 (Id-v△) -lpい (i+IIXII芦 II可 IILP)IIPIIL= + IIXlli':~411坂PIILP ・
(I(X))4d-4 (I(X)) 

Proof. Fix some A E A閉ー1and consider the set U A of those x in 配 satisfying 

（吹1ふ (x))2: (I(X)t-1. 

Then, for all x E UA and~E 配， one has the following algebraic identity (see [2, 
Lemma 3.2]): 

) ()  （吹1ふ (x)i d入1ふ (x)J 
＆ら＝ d-1 2 I~ ド+d-1 1 4 L勾(x)~k(以(x)·0

AX心）＾ふ(X) k,f 

where the bり'sare homogeneous of degree 4d -5 with respect to the Xぶs.

Multiplying by (1 + vl~l2)-1 P(~) then taking th・ e mverse Founer transform yields: 

d-1 i d-1 j 

(Id -v△) -18;8? = 
(A XA) (八 XA)
d-1 

△ (Id -v△) -lp 

八 XA

+ d-11 4 L叩x入J叫Id-v△)―iP). 
A xAI k,c 

We conclude thanks to the following inequality based on commutator estimates (see 
the appendix of [4]): 

llax入£8k(Id-v△)―1PIIL00乏IIPIIL=IIVX入JLP+ ll8x怜PIILP if p > d. 

Since the union of all UA's is equal to配， onegets the desired inequality. ■ 
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The above proposition is the key to the following existence and uniqueness statement. 

Theorem 2.1 Let the assumptions of Theorem 1.1 be in force and assume in addition 
that there exists a non-degenerate family Xi。= (Xぃ）1年入;,;min JL00,P such that Po is in 
]LP 
ふ・

Then, there exists a time T > 0 and a unique solution (p, u) to (CNS) on [O, T] 
satisfying the properties of the previous theorem and▽ u E L1([0, T]; L00(配））．
In particular, u has a unique Lipschitz flow心， thatis the solution of 

叫 x)= x + J u(T, 心(T,x)) dT for all (t, x) E [O, T] x記
゜and the family ぷ ： = (Xぃ）l翠 m with Xぃ(x):=む。，入い(t,い(t,x))is non-degenerate 

for all t E [O, T] and in JL00,P, and p(t) belongs to lLぶ・

Proof. Let us report the main steps of the proof of the existence part of Theorem 
2.1 (uniqueness will be discussed in the next section). Since Theorem 1.1 ensures 
the existence of a solution (p, u) on [O, T] x配 forsome T > 0 with the regularity 
described therein, it is only a matter of checking that striated regularity is preserved. 

Now, the evolution equation for transported vector-fields reads: 

⑰ +u• ▽)ふ =8x氾・

We need to estimate X入inL00 and▽ふ inL丸whichrequires at a minimum that 

▽ u E L1(0, T; L00), 8x入uE L1(0, T; L00) and ▽ (8x入u)E L1(0, T; び）. (6) 

Next, in order to study the propagation of striated regularity for p and P, one may 
use that 

瓜 p= div(X>.p) -pdivふ and ⑰ +u• ▽) (div(X>.p)) = -divu div(ふp).

Hence, to estimate div (X入p)in L仄weneed divu E L1(0, T; L00). 

Finally, since u = w―▽ (Id -V△) -1p, we have 

▽ U= • w —• 2(Id -V△)―1P and 8x入▽u=8x入▽w-8x入▽(Id -V△)―ly'p_ 

Hence, to achieve (6), it suffices to prove that: 

—• w E L1(0, T; L00) and▽（仇w)Eが(O,T;び）；

―▽刊Id-V△) -1 PE L00(0, T; L00); 

-V(保▽(Id -V△) -l P) E L1(0, T; び）．

The first item is an easy consequence of the fact that w E E『rand of the embedding 
w1,p→ L00 while the second one is given by Prop. l. The last part follows from 
rather tricky commutator estimates that are omitted here. 
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Of course, the estimates given by the above arguments depend the one from the 
others, hence one has to resort to a bootstrap argument in order to eventually close 
the estimates for small enough time. ■ 

Corollary 2.1 Assume that Po= p5lv。+p5lcv。whereP6 and P6 are in L00 n W1,P and 
D。isa W2,P bounded domain of配 withp > d. If u。isas above and, in addition, 
IIP6 -P611L=≪1 then (CNS) admits a unique solution on [O, T] such that 

p(t) = Pi屈 +p『lcv, for all t E [O, T], 

with Dt :=心(t,D。)having w2,P regularity, and Pi and p; in w1,P. 

Proof. Assume that D。corresponds(locally) to the level set { cp。=0} of some w2,P 
function with nondegenerate gradient on 8D。.Then, one can take for (Xぃ）区応m
a suitable family constructed from linear combinations of components of▽伽 (one
may use for instance the construction given in Prop. 5.1 of [2]) and check that p0 is 
in lL~。. Hence Theorem 2.1 applies. 

Now, if one defines c/Jt :=伽（心(t,•)), then 8Dt corresponds to {¢t = O} and we have 
8Dt in W2,P (one may argue as in [2]). Furthermore, 

仇 +u• ▽)恥 =0.

Let F := divu -v―1 P(p). Let us define p1 and炉tobe the solutions of 

⑰ +u・ ▽)が＋がF+v―1II(/)= 0 with II(z) := zP(z) 

and data P6 and p各， respectively.

The fact that P6 and P6 are bounded, and that the function F is inじ(0,T; L00) 
ensures that p'E L00(0, T; L00). Furthermore, p := 1研+lcv炉fulfills

仇 +u・▽) p+pF+v―1 II(p) = 0 

while 
⑰ +u・ ▽) p+pF+v―1II(p) = 0. 

Since犀 o= Plt=O = Po, this ensures that p三 pon [O, T]: to prove it, one can for 
instance estimate Jp := p -p in L00 after noticing that 

⑰ +u• ▽) Jp+JpF+v―1Jp f 1 II'(p + T6p) dT = 0. 
゜Now, differentiating the equation of pi, we see that 

(at+ u. ▽)（▽が）十▽U・ ▽が+(F+v―i II'(p'))▽ p'= -p'▽ F. 

Since our assumptions guarantee that the right-hand side of the above equality is in 
L1(0, T; LP), one can deduce that▽ pi is in L00(0, T; び）． ■
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3 Uniqueness 

Since the main responsible for the loss of one derivative in the stability estimates for 
(CNS) is the density equation (note that the velocity equation is parabolic), it is tempting 
to use Lagrangian coordinates, since they allow to compute the density from the initial 
one and the flow, and thus only the velocity equation would have to be considered. 
More specifically, we go from Eulerian coordinates (t, x) to Lagrangian coordinates 
(t, y) by making the change of unknowns: 

p(t,y):=p(t,x) and u(t,y):=u(t,x) with x:=い(t,y) 

where心isthe unique flow of u defined (according to the Cauchy-Lipschitz theorem) by 

心(t,y) = y + j¥(T, 心(T,y))dT.

゜Hence 

心(t,y) = y + ft u(T, y) dT and Dゆ(t,y)=Id+ ft卯 (T,y) dT. 
0 0 

We thus have 
(Jp)(t) = Po with J := det(Dい）．

At the same time, using the following identities: 

▽ぷ=1;;1 divy(adj D如K) for K: 配→配

divxH = J;;1 divy(adj D卯甘） for H: 配→ 股

where adj(Dゆ） stands for the adjugate matrix of D飢 wediscover that 

Po切― μdiv(adj(D心）TA▽ u) -μ'div(adj(D心）伍：▽u) + div(adj(D心）P(F1pa)) = 0 

with A:= (D匹）ー1.

Note that if ft。:Du(T, •) dT is small enough, then 
+oo 

A=応-l)k(jt Du(T, ・) dT f. 
k=O ゜

(7) 

Now, consider two solutions (P1, u1) and (P2, 1位） for the same data (Po, u0), and perform 
the Lagrangian change of coordinates for the two solutions, with respect to their own 
flow: 

(Pi, 妬)~(Ji-1Po,ui), i = 1, 2. 

Then初：＝四一附 fulfills

Po8ut -.C18u = (.C2 -.C1)匹十div(adj(D加）P(J11po) -adj(Dゅ2)P(J21Po)) 

with .Ci:=μdiv(adj(D的）TAj°¥況）十μ'div(adj(D化）TAj: ▽ Uj)-
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P f . d T 
er ormmg an energy method an assuming that Jc。IID町IL=dt, i = 1, 2, is small 
enough (so that one may use (7) and similar identities) eventually leads to 

d 
dt j Pol初l2dx+J鵡 12:::; Ct(l + IIV祈Iii=)j II顕 IIわdT on [O,T]. 

゜It is then easy to conclude to uniqueness by Gronwall lemma, if 

JT t戸 (t)lli=dt < 00. 

゜That latter property which is not utterly obvious stems from the fact that (p2, uりisa 
solution to (CNS), and from the regularity properties that have been exhibited so far. 
Here one has to first prove time weighted maximal regularity estimates (see Proposition 
4.1 in [4], and its corollary therein). 
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