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1 Introduction

POPs (Polynomial optimization problems or optimization problems with polynomial ob-
jective and constraints) represent a broad range of applications in science and engineering.

Recently, an important theoretical development has been made by Lasserre [6] toward
achieving optimal values of POPs. According to the paper {4], his method to obtain a
sequence of SDP relaxations can be considered as a primal approach. He proved that
when the feasible region of the POP is compact, its optimal value can be approximated
within any accuracy by the sequence of SDP relaxations. However, the size of an SDP
relaxation to be solved in the sequence increases very rapidly as a higher accuracy for an
approximation to the optimal value of the POP is required.

The purpose of this paper is to present generalized Lagrangian duals and their SOS
(sums of squares) relaxations [7] for sparse POPs. This approach may be regarded as
dual of Lasserre’s SDP relaxations [6] mentioned above. Instead of selecting nonnegative
numbers for Lagrangian multipliers, we choose Lagrangian multipliers to be SOS polyno-
mials satisfying similar sparsity to associated constraint polynomials. Then, we define a
generalized Lagrangian dual for a POP over such SOS polynomial multipliers. After a
sequence of sets of SOS polynomials is constructed, e.g. SOS polynomials of increasing
degree, for Lagrangian multipliers, a sequence of Lagrangian duals is obtained. We derive
a sufficient condition for the sequence of Lagrangian duals to attain the optimal value
of the POP, based on the idea of the penalty function method. For practical purposes,
each Lagrangian dual in the sequence is relaxed to an SOS optimization problem, which
is further converted into an equivalent SDP. Thus we have sequences of SOS relaxations
and SDP relaxations of the POP. The resulting sequence of SDP relaxations corresponds
to dual of the sequence of SDP relaxations obtained from the primal approach[6].

An advantage of the dual approach in this paper is that sparsity of objective and
constraint polynomials in a POP can be exploited to reduce the size of the SDP relaxations.
The size of the SDP relaxations depends on the supports of the polynomials in the dual
approach, whereas the size of the SDP relaxations from the primal approach depends on
the degree of the polynomials. :

Throughout the paper, we use the following notation: Let R™ and ZJ denote the
n-dimensional Euclidean space and the set of n-dimensional nonnegative integer vectors,
respectively. Let f; : R® — R be a real valued polynomial in ¢ = (21,%32,...,2s) € R"
(=0,1,2,...,m). We denote each polynomial f;(x) as f;(x) = Zae}' ci(a)z®, where
a nonempty finite subset F; of Z7 denotes a support of the polynomial fJ (), cj(a) R

1This article is a short version of the paper [3]
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and 2@ = z{'z5? .- 28 for every a = (a1, a,...,an) € F; (7 =0,1,2,...,m) and

T = (21,%2,...,%n) € R™. Let 7; denote the degree of each polynomial filz) (§ =
0,1,2,...,m); rj = max{} " ; a; : @ € F;}.

2 Polynomial optimization problems and sparsity
We consider the POP (polynomial optimization problem):
minimize fo(x) subject to fi(z) >0 (5 =1,2,...,m). (1)

Let us focus on the support F; of the polynomial f;(z) (j = 0,1,2,...,m) to describe
sparsity of the POP (1). A polynomial f(x) of degree r or its support JF is called sparse if
the number of elements in the support F is much smaller than the number of elements in
the support G(€) = {a € Z} : }_", a; < £} of a general fully dense polynomial of degree
€. In particular, if the number of indices in I+.(F) = {i: a; > 0 for some a € F } is much
smaller than n, then f(z) is sparse. We present an example below.

Example 2.1 A box constraint POP. Let m = n and f;(z) = 1 - z? (j =1,2,...,n).
In this case, we have F; = {0, 2e’} (j = 1,2,...,n). Each F; has two elements and

I4(F;j) = {j}. Here €’ denotes the jth unit coordinate vector of R™ with 1 in the jth
component and 0 elsewhere.

Another example is given in Section 6 with some preliminary numerical results.
Let F denote the feasible region of the POP (1);

F = {zeR": f;(2)>0(=1,2,...,m)}

"Throughout the paper, we assume that F is nonempty and bounded. Then, the POP (1)
has a finite optimal value * at an optimal solution z* € F. In what it follows, we further
need a bound p > 0 to be known explicitly for the feasible region. We are concerned with
the following cases:

e FCCo={zeR":p* -2} >0(i=12...,n)}or
e FCBy={zxeR":p? — Tz >0}.
If F C C, holds then the POP (1) is equivalent to
minimize fo(z) subject to f;(z) >0 (j=1,2,...,m) andx € Cp. (2)

Example 2.1 is a special case of the POP (2) where we take m =0 and p=1. If F C B,
is satisfied, then we have F' C C); hence the two POPs (1) and (2) are equivalent to

minimize fo(x) subject to fj(z) >0 (j=1,2,...,m) and z € B,. (3)

In the next section, we present a (generalized) Lagrangian function, a Lagrangian re-
laxation and a Lagrangian dual for each of the POPs (2) and (3). For both POPs, the
Lagrangian dual converges to the optimal value (* of the original POP (1) under a mod-
erate assumption. But, only the SOS relaxation derived from the POP (3) is guaranteed
to converge to ¢* [3], while the SOS relaxation from the POP (2) inherits more sparsity
of the original POP (1) than the one from the POP (3). |



3 Generalized Lagrangian duals

3.1 Lagrangian functions

Let T denote the set of sums of squares of polynomials in € € R™;

k . s1 s n (.
S Z 2. Xi isa polynomial in z € R (i=1,2,...,k)
% = { — xi(@)” and k is any finite positive integer ’
=

We define two types of (generalized) Lagrangian functions Lp : By X ™ - R for POP
(3) and L¢ : R* x & — R for POP (2):

Lp(z,¢) = fol)—)_ pi(x)fi(z)

j=1
Lo(m e, %) = fol@) = es(@)fi(@) = Y ul@)(p* - =),
=1 i=1

Here 3 denotes the Cartesian product of £-tuples of 3,

=t = /2

T ={(pr,02,..,00) 9 €T (F=1,2,...,0)} (=m orm+n).
Let (v, 9) € 5" ". Then

LC(m"P:"/’) < fO(m) imeFnCpa }
Lg(z,) < folz) if € F( B,
Lo, ¢,¥) < La(z,¢) ifzeB,

(4)

3.2 Lagrangian relaxations and duals

We introduce a (generalized) Lagrangian relaxation of the POP (2):
Ly(e,%) = inf {Lo(w, 0, %)z €KY}
for each fixed (¢, ) € T and a (generalized) Lagrangian relaxation of the POP (3):
Ly () = inf {Ls (e, ) : @ € By)
for each fixed p € X . Let (¢,1%) € T™" By (4), we see that

&(p, ) < ¢* =min{fo(z): x € F} if F C Cy, } (5)
Lyl %) < Dy(e) < & F C B,

For every (Z,8) C T™" we define a (generalized) Lagrangian dual of the POP (2):
maximize L%(p,%) subject to (p,¢) €T X E. (6)
For every ¥ C &, we define a (generalized) Lagrangian dual of the POP (3):

maximize Lj(p) subject to ¢ € X. (N
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Let Lt,(X x E) and L;(X) denote the optimal values of (6) and (7), respectively;

Lo(ExE)=  sup  L(p, %) and Ly(Z) = sup Li(p).
(cp,zp)erE . ‘PEE

It follows from (5) that

Ly(Ex E

) <
Lp(Sx &) <

¢*if FcC,, (®)
Ly(Z)<¢*if FC B,

holds for every (£,E) C T

Assume that F' C C,. Then, the two POPs (1) and (2) are equivalent. If we restrict

(¢,%) to the nonnegative orthant R of R™7, Lo(z,¢,1) becomes the standard
Lagrangian function for the POP (2).

As we take a larger set TxEC """, the duality gap between L (X x E) and ¢* is
expected to decrease. We regard (¢,1) € T a5 g penalty parameter”, and

Bo(z, 0, %) = =D i) fi(@) - > wi(e)(? - 2)
=1 i=1

(the terms added to the objective function fo(z)
in the construction of the Lagrangian function Lo(z, ¢, ¥) )
as “a penalty function” with a choice of penalty parameters (e, ) = (P, ¥P) € T
(p € Z4) such that
if © € F then ®(z, P, 9*) - 0 as p — oo,
ifx ¢ F then ®(x, ¢”,Y*) — 00 88 p — oo.

It is shown that the Lagrangian function Lo(z,p, ) = folz) + @c(m,w,tp) with the

penalty parameter (p,) = (P, ¥P) € ™" hasa global minimizer 2P over R™ with the
objective value fo(zP) — (* as p — oo and that {zP} has an accumulation point in the
optimal solution set of the POP (2).

In order to describe this observation precisely, we use some notation. Take a real
number 4 > 1 such that

Ifi@)/yvl < 1 if ||zl < V2p,
<

| f5(2) /| lz/pPlls if |Zlleo = V20
(7=0,1,2,...,m), where r = max{rg,ry,... s Tm }
Letting (¢?, ") be
Vg(m) = (1 - fj(w)/7)2p (.7 =1,2...,m, p€ Z+)7
eP(x) = (H(z),Ah(@),...,dh(z) 0eZy),
W(@) = ((m+20/0%) (m:/p)" ) (i=1,2,...,n, peZy),
V() = (Yf(=),¥5(),. .., ¢h(z)) (pe€Zy),

the following theorem holds:

Theorem 3.1 [§] Assume that £ x E C 5" contains an infinite subsequence of
{(@P,P) (€ Zy)}. Then LLE(EXxE)=(*if F C Cp, and LE(B x B) = L(Z) = ¢* if
F c B,.
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3.3 Construction of ¥ x E satisfying the assumption of Theorem 3.1

For every nonempty subset A of Z7, we define

k .
_ ,_\2. Xi isapolynomial in z € R" with a support in A
E(A) = {ZX’("E) " (1=1,2,...,k) and k is any finite positive integer |

Suppose that .Aq (] =1,2,...,m, ¢ €Zs)and B! (i=1,2,...,n, g € Z;) are nonempty
finite subsets of Z7 such that

;@ € D(AD) and 9V (z) € Z(BY) f ¢ 2 ¢" ©)
for some ¢* € Z, and some mapping A from Z, into itself satisfying
Mg) £ AMg+1) (g€ Zy) and lim Xg) = oo.

Let

m n

=[] =49, =2 = [[58), =°= | B¢ and E® = U =

j=1 i=1 €y 9eZ

By construction, we see that
(*@,9*@) e 29 x B (¢ 2 ¢%).

Hence ¥*° x E* contains an infinite subsequence {(cp'\(‘Z),«,/,'\(Q)) (g > ¢*)}. Therefore
YT X B = I® x E® satisfies the assumption of Theorem 3.1. :

We give some examples of A] (j = 1,2,...,m, ¢ € Z,)and B (i=1,2,...,n, g € Ly)
satisfying the assumption (9).

Example 3.2 For every j =1,2,...,m, 1=1,2,...,n, ¢ € Zy, let
AC = {0}, A} = {0} JF;, AT = {a+b a€ A, beA;} (@ 1),
B! = {ke':k=0,1,2,...,(g+ 1)}

Example 3.3 For every j =1,2,...,m, 1 =1,2,...,n, € Z4, let

A = {0}, A = {0} J{ et ke L(Fn)},

A§+1={a+b:a€A§, beA}-} (g>1),

B! = {ke! 1 k=0,1,2,...,q+1} (g € Z4).
Here I;(F;) = {i:a; > 0 for some a € F;}.

In all the examples, both .A? and B? expand monotonically as ¢ increases, and for any
P € Z, there exists § € Z4 such that cp”(m) € T(A?) and ¢ (z) € T(B]) for all p < p and
g > §. It should be noted that if F; is sparse then .AJ remains sparse in Example 3.2.
The choice of .Aj in Example 3.3 may be also reasonable when the number of the indices
I.(F;) is smaller than n.
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4 Numerical methods for generalized Lagrangian duals

In the following three subsections, we discuss numerical methods for generalized La-
grangian duals (6) and those for (7) are discussed in [3]. These subsections include how
L (E® x E*®) can be approximated numerically. Throughout this section, we assume
that ' C Cy, so that L (EZ® x E®) = ¢*.

4.1 Approximation of generalized Lagrangian duals
We introduce a sequence of subproblems of the Lagrangian dual (6) for g € Z,.
maximize Lg(p,9) subject to (p,1) € B9 x B9, (10)

We donote an optimal value of (10) as L% (X9, E9).
Lemma 4.1 [§]

(a) Ly(29x B9 < LE(E% x 2%) (g€ Z4).

(b) For any e > 0, there ezists a nonnegative integer § such that

Le(Z® x B®) — e < LE(ZY x Z9) (¢ 2 9).

4.2 Sums of square relaxations

Let ¢ € Z, be fixed throughout this subsection. We can rewrite the problems in (10) as

maximize ¢
subject to  Lc(x, ,1) — ( > 0 (Va € R™),
(p,9) € 29 x BY.

(11)

Note that z € R™ is not a vector variable but it serves as an index vector for infinite
number of inequality constrains L¢(z, ,1) — ¢ > 0 (Vz € R™). Replacing the inequality
constraints Lg(z, ¢, %) —¢ > 0 (Vr € R™) by a sum of squares condition Lo(z,p,¢%)—( €
T in (11), we obtain an SOSOP (sums of squares optimization problem).

maximize (¢
subject to  Le(z, ¢, ) — ¢ = po(x) (VEE R™),
(p,9) € B9 x B9, pp(z) € T.

(12)

Let (£ denote the optimal value of the SOSOP (12);

— . LC(ma‘P,1/)) - C‘_‘ P (:1:) (V:c € Rn)a
gg*sup{“ (%) € 29 x 7, go(a) € 5 }

If (¢, @, %, yo) is a feasible solution of the SOSOP (12), then (¢, o, %) is a feasible solution
of the problem (11). It follows that (& < L% (29xE9). Although neither ¢ = LE(XIxET)
nor the convergence of ¢, to LE(Z® x E®) as ¢ — oo is guaranteed, we can solve the
SOSOP (12) as we show in the next subsection while the problem (11) is difficult to solve
in general.



4.3 Reduction to SDPs

Let us fix ¢ € Z, throughout this subsection. We show how to solve the SOSOP (12) as
an SDP (semidefinite program). If we rewrite the constraint (p,%) € X9 x =9 for each
component, we have

pj(x) € D(AD) (7 =1,2,...,m) and ¢i(z) € Z(B]) (i=1,2,...,n).

Notice that finite supports .A? and B} are given for generating variable polynomials ;(x)
and ¥;(x) (j = 1,2,...,m, i = 1,2,...,n). But, no finite support is specified for the
variable polynomial ¢o(z). The first step for constructing an SDP is to find an appropriate
finite set G C Z7 so that wo() can be chosen from 2(G).

To choose such a G C Z%, we focus on the support of the left hand side polynomial
Le(z, ¢,%) — ¢ of the equality constraint in the SOSOP (12). From the support Fo of
the objective polynomial function fo(z), the support of each term ;(z) fi(z)

A= {a+b+c:aeA§-, be A, ce]-‘,-}
(j=1,2,...,m) and the support of term ;(z)(p? — z7)
Bi={a+b+c:acB] beB ce {0,2¢'}}
(i=1,2,...,n), we know that the support of Lc(z, ¥, %) — ¢ becomes

Fr=FolJlor U (JQ N’I') U (;.Ulgg) |

Here {0} stands for the support of the term (.
By Theorem 1 of [9], we can use

0 _ . a € fLa n
G = (the convex hull of {a./2 ' every a; iseven (i =1,2,...,n) }) ﬂZ+.

for such a support G that wo(x) can be chosen from £(G). We can further apply a method
proposed recently by the authors [5] for reducing the size of G° to obtain the smallest
support G* in a class of supports including GP. See the paper [5] for more details.

To transform the SOSOP (12) into an SDP, we need some notations and symbols. Let
F € Z% be a nonempty finite set. Let [F| denote the cardinality of F and R(F) the |F|-
dimensional Euclidean space whose coordinates are indexed by a € F. Although the order
of the coordinates is not relevant in the succeeding discussions, we may assume that the
coordinates are arranged according to the lexicographical order. Each element of R(F) is
denoted as v = (vg : @ € F). We use the symbol S(F)4 for the set of |F| X | F| symmetric
positive semidefinite matrices with coordinates a € F; each V' € S(F )+ has elements V3,
(a € F, b € F) such that Vp = V3, and that wiVw = Ea.e]-' YbeF VapWap = 0
for every w = (wq : @ € F) € R(F). For every z € R™, let u(x,F) = (% :a € F) bea
column vector consisting of elements @ (a € F).

Lemma 4.2 [1, 5, 7, 8] Let F be a nonempty finite subset of Z%. A polynomial p(x) is
contained in £(F) if and only if there exists a V € S(F)+ such that

ol@) = u(z, )T Vu(@, F) = 3 3 Vopattb. (13)
acF beF
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Applying Lemma 4.2 to the polynomials pi(z) € E(Ag.'\")), (G=12,...,m), ¢(z) €
2(135“"’) (1=1,2,...,n) and po(x) € (G*), we represent as follows:

vi(@) = (@, A)TVIu(z, A), VI e S,
vi(e) = u(z,B) V™Hu(z, BY), Vi e 5(8Y),,
900(:17) = u(m,g*)TVou(m,g*), Ve ES(Q*)+.

Substituting these functions in the SOSOP (12) leads to

maximize . )
subject to  fo(z) — 37, fi(@)u(z, ANTVIu(z, A2)
" 10 = o), BTV ™iu(z, BY)
~u(x, G*)TVou(z,6*) - ¢ = 0 (V& € RM),
V7 € S(Ag)+ (.7 =12... ’m)a
Ve By (i=1,2,...,n), V% e S$(G*);. |

'

Since the left hand side of the equality constraint in the problem above is a polynomial
with the support

fc=.7’oU{0}U (G“ZZ) U(OEE)U{G'H’:“EQ*’ beG*},
j=1 i=1

and the coefficients are linear functions of matrix variable V7 G=12...,m), Vvmti(i =
1,2,...,n), V°and ¢, we can rewrite equality constraint of the problem above as

Y d(a,V,()z? =0,

ae]-'c

where d(a, V() is a linear function in the matrix variables V7 (4 =012,...,m+n)
and a real variable ¢ for each @ € F¢. This identity needs to be satisfied for all € R"
in the problem, and the equality constraint is equivalent to a system of linear equations

d(a,V,{) =0 (a € F¢).
Consequently, we obtain the following SDP which is equivalent to the SOSOP (12).

maximize (

subject to  d(a,V,() =0 (a € Fp), (14)
Vie S(Ag)‘l' (.7 =12,... 1m)’
Ve S(BY)y (i=1,2,...,n), VO € S(G*),.

The numerical efficiency of solving an SDP depends mainly on its size. In the SDP (14)
above, the number of equality constraint and the sizes of matrix variables are determined
by the supports F; of the polynomial functions fi(z) (7 = 0,1,...,m) in the original
POP (1) to be solved and g € Z;. When the supports are sparse, the size of the resulting
SDP becomes small. As we take a larger g € Z,, we can expect to have a more accurate
lower bound for the unknown optimal value ¢* of the POP (1), but the number of equality
constraint and the size of the matrix variables increases.



5 Preliminary numerical results

We provide an illustrative example of structured and sparse POPs and show how the
choice of SOS polynomials in SOS relaxations can enhance the efficiency of the proposed
relaxations greatly while preserving the effectiveness.

As mentioned in Remark 4.2 of [3], the support set G* in the proposed SOS relaxation
of (2) becomes dense even for sparse F; (j =0,1,2,...,m) of the POP (2) because a
polynomial o(z) is determined from the support of Lo (i, p) — €. The convergence result
shown in Section 4 is based on this choice of ¢g. In view of practical implementation
of the proposed SOS relaxations, however, it may be more important to obtain a good
lower bound with relatively small size SDP relaxations. We show the formulation of
SOS relaxation presented in this paper can be easily adapted for the consideration in
practice with the following example. The aim of the illustrative example is not to propose
a practical method for general structured and sparse POPs, but to show how the SOS
relaxation with convergent property can be modified for a specific problem in practice.

We consider an example

n—1 '
minimize  fo(x) = Z foi(zi, Ti1) (15)
i=1

subject to  fij(%i, Tit1) 20 (i=1,2,...,n— 1, i=12,...,m).

Here m € {1, n, n?}, each foi(%:,Zi+1) denotes a (fully dense) polynomial with degree
6 in two variables z;, and z;4+1 whose coefficients are chosen randomly from the interval
(-1,1) (i=1,2,...,n—1), and each fi;(i,Tiy1) denotes a polynomial in two variables
z; and z;4.1 of the form '

(4t 1 —a2 )\, _ 1(fa zf
1 (aton) (35 (22 ) anen+ 37 () one)) (2,

for some a = (al,ag)T chosen from the unit circle, A1, A2 chosen randomly from the
interval (0.5,2) and £ € {1, 3} (i=1,2,...,n—-1,j = 1,2,...,m). When £ = 1, each
constraint fi;(zi, Ti+1) > 0 forms an ellipsoid in the (zi, zi+1) space with the center at the
origin; if A\; > Ag, (a1, az)T corresponds to the major axis and (—az,al)T the minor axis.

Let us derive three relaxations of (15): the dual of Lasserre’s SDP relaxation, the SOS
relaxation presented in Section 4.2, and a practical version of the SOS relaxation. If we
want to have the POP (15) in the form of (2) and to follow the theory described so far
literally, the redundant inequalities

1-22>0(=1,2,...,n)

need to be added to the POP (15). However, for simplicity of discussion, we consider the
problem without these inequalities. Notice that if these inequalities are added, stronger
relaxations for the ‘three relaxations result in. As far as the size of the relaxations is
concerned, adding the inequalities increases the size of all three relaxations. The biggest
increase in the size occurs in case of the dual of Lasserre’s SDP relaxation given in (16).
We also note that all the SOS relaxations presented below remain effective without the
inequalities. '
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Define the Lagrangian function

n-1 m

Liz, o) = fo(x)— ZZcpij(w)fij(mi,le) for every z € R™
i=1 j=1
and every ¢ = (‘Pij)i=1,...,n-—1,j=1,...,m e T

For every i=1,2,...,n~1landg=0,1,... , let

Al = {pei+vei+1:u€Z+, vVEZL,, M+VSQ}a

n
{GEZZ:Z(J’;SQ}.

i=1

&
I

Then we have two types of SOS relaxations. The one is

maximize (¢

subject to  L(z, ) —~ ¢ = po(z) (Vz € R"),
Pij EE(AS) (1'= L2,...,n-1,5= 112"")m)a
w0 € 2(A8+z)a

which corresponds to the dual of Lasserre’s SDP relaxation applied to the POP (15). The
other is ‘

(16)

maximize

subject to  L(z, ) - ¢ = pp(z) (Vz € R"),
pi; EXA]) ((=1,2,...,n-1,5=1,2,...,m),
o € T(ALM),

(17)

which exploits the sparsity of the constraint inequalities of (15). In both relaxations, we
take nonnegative integers g and ¢ such that g+4£2>3; hence g =2,3,... if£=1, and
¢=0,1,2,... if£=3.

"The SDP relaxation (16) uses

m(n — 1) copies of support sets A of size #AS = (n: q)’

J4
a support set Ag'{'e of size #ASH _ (n + ;1 + )’

while the SDP relaxation (17) uses

m copies of support sets A? of size #A7 = (2 ; q) (i=1,2,...,n—1),

a support set AS of size #ALH = (n +: + Z)_

The two SOS relaxations (16) and (17) share the support set AT with size ("9, The
difference between them lies in the support sets Al and A]. We can see that the size of
the SOS relaxation (17) is smaller than the size of the SOS relaxation (16). When q is
fixed, the advantage of the SOS relaxation (17) in the size of the problem over the SOS



relaxation (16) becomes larger as m increases. This will be shown in Tables 1, 2 and 3.
In the case of m fixed, the common support set Ag“ dominates all other support sets
in both SOS relaxations in terms of size. As a result, the advantage from the size when
increasing q is not as much as the case of ¢ fixed in Table 4.

Exploiting the structure of polynomials may improve the weakness of the SOS relax-
ation (17) of the POP (15). We focus on “ tridiagonal structure” of the support of the left
hand side polynomial L(x, ) — ¢ of the equality constraint of the SOS relaxation (17),
where ¢;; is assumed to be chosen from £(A}). Specifically, the support of the polynomial
L(z, ) — ¢ is covered by 7} (A§+£ + Ag"'e) . Here we assume that ¢ + £ > 3. From
this observation, we can expect that the polynomial L(x,¢) — ¢ is represented as sums of
squares of polynomials, each of which has a support in one of .Ag“ (i=12,...,n—1).
We replace wo() and po € Z(AIH) by Sl i(x) and 4 € E(Ag“) (1=1,2,...,n—1)
in the SOS relaxation (17), respectively, to obtain a new SOS relaxation of the POP (15):

maximize (
n-1
subject to  L(,0) — ¢ = Y _ ¢(x) (V& € RY),

=1
pij € 2(A]) =1,2,...,n-1,j=1,2,...,m),
P € S(ATY (i=1,2,...,n-1).

(18)

It should be noted that the size of every support set in the SOS relaxation (18) is inde-
pendent of the dimension n of the POP (15). When m and q are fixed, the total size
of support sets in the SOS relaxation (18) grows linearly with the dimension n while the
growth rate of the total size of support sets in the SOS relaxation (16) as well as that in
the SOS relaxation (17) are of O(n9+%). This shows that the SOS relaxation (18) has a
considerable computational advantage in solving the POP (15) with large dimension n.

The numerical experiment was done using SDPA 6.0 [10] on Pentium IV (XEON) 2.4
GHz with 6GB memory, and the optimal values of the POP (15) with m € {1, n, n?},
€ {1, 3}, and n € {4, 5, 6, 7} were computed by GloptiPoly [2]. Tables 1, 2 and 3 show
some numerical results from the three SOS relaxations (16), (17) and (18) of the POP
(15) with m € {1, n, n?}, £ =1 and dimension n € {4, 5, 6, 7}. We observe that:

e All the SOS relaxations (16), (17) and (18) attain optimal values of the POP (15)
with the lowest order ¢ = 2. -

o The SOS relaxation (17) requires less cpu time than the SOS relaxation (16), and
the difference in cpu time becomes larger as m increases.

Table 4 shows some numerical results from the three SOS relaxations (16), (17) and (18)
of the POP (15) with m = n, £ = 3 and dimension n € {3, 4, 5, 6}. In this case:

e The SOS relaxations (17) and (18) attain optimal values of the POP (15) or their
lower bounds of (almost) the same quality as the SOS relaxation (16).

o The SOS relaxation (17) requires less cpu time than the SOS relaxation (16), but
the difference is small.

e When n = 6, the SOS relaxation (16) with the order ¢ = 2 attains the optimal value,
but the other two SOS relaxations with the same order ¢ = 2 provide only lower
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bounds for the optimal value. It should also be noted that the SOS relaxation (18)

with the higher order ¢ = 3 attains the optimal value.

In all cases reported in Tables 1, 2, 3 and 4:

¢ The SOS relaxation (18) has a clear advantage over the other SOS relaxations.

Table 1: Numerical results on the POP (15) withm=1,¢=0and ¢ =2

POP (15) cpu time in second
n relaxation (16) | relaxation (17) | relaxation (18)
4 0.6 0.4 0.1
5 4.9 2.2 0.1
6 22.3 215 0.1
7 153.8 98.6 0.2

Table 2: Numerical results on the POP (15) with m =n, £ =0 and g = 2

POP (15) cpu time in second
n relaxation (16) | relaxation (17) | relaxation (18)
4 1.6 0.5 0.1
5 11.2 2.6 0.2
6 83.3 13.2 0.4
7 607.1 64.4 0.5

Table 3: Numerical results on the POP (15) with m = n?, £ =0 and ¢ = 2

POP (15) cpu time in second
n relaxation (16) | relaxation (17) | relaxation (18)
4 6.6 1.0 0.5
5 83.7 5.1 1.1
6 717.1 23.2 2.7
7 7402.5 135.6 4.1

6 Concluding discussions

Considering two types of POPs (2) and (3) obtained from different characterizations of
the feasible region of the POP (1), we have proposed a sequence of SOS relaxations from
generalized Lagrangian duals of POP (2).

Theoretically, It is known in (3] that the SOS relaxation of the Lagrangian dual of
(3) attains the optimal value * of the POP (3). But there remains a gap between the



Table 4: Numerical results on the POP (15) with m=n and £ =3

POP (15) cpu time in second (optimal value)

n {optimal value) | ¢ relaxation (16) relaxation (17) | relaxation (18)
0 0 1 (-148.0654) 0.1 (-148.0654) | 0.1 (-148.0654)

3 (-1.782266) |1 4 (-1.872454) 0.4 (-1.888884) | 0.1 (-1.888890)
2 9 (-1.782266) 1.6 (-1.782266) | 0.2 (-1.782266)

0 1 (-129.5713) 0.4 (-129.5713) | 0.1 (-129.5713)

4 (-2.244005) 1 11 7 (-2.277639) 5.6 (-2.277639) | 0.2 (-2.277844)
2| 46.2 (-2.244005) 36.1 ( 2.244005) | 0.4 (-2.244005)

0 2.6 (-120.1503) 2.5 (-120.2150) | 0.1 (-120.1503)

5 (-3.848386) 1 65.3 (-3.888779) 61.7 (-3.888779) | 0.3 (-3.892605)
2| 787.1(-3.848386) |  644.6 (-3.848386) | 0.8 (-3.848386)

0 13.3 (-120.2150) 13.4 (-120.2150) | 0.1 (-120.2168)

6 (-3.531009) 1 500.4 (-3.603920) 469.2 (-3.696910) | 0.5 (-3.698462)
2 | 11,912.4 (-3.531009) | 11,718.1 (-3.535911) | 1.4 (-3.537123)

3 not solved not solved 2.8 (-3.531009)

Lagrangian dual of (2) and its SOS relaxation in Section 4.2; the former attains {* but the

latter is not guaranteed to attain ¢*. Thus it is interesting to prove or disprove that the -

SOS relaxation of the Lagrangian dual of (2) attains ¢*. This will be a subject of future
study.

The size of the SOS relaxation or the SDP relaxation obtained from the Lagrangian
dual approach by exploiting sparsity is smaller than the size of Lasserre’s SDP relaxation.
This is of course a nice feature, but this may not necessarily mean that the former SDP
relaxation is as effective as the latter in practice. To attain an approximation to the
optimal value ¢* of the POP (1) with as high accuracy as the one from Lasserre’s SDP
relaxation, we may need higher degree SOS polynomials in our dual approach, which
makes the size of the resulting SDP relaxation larger.

One of the advantages of the proposed method is that we have much flexibility in
implementation of the SOS relaxation and the SDP relaxation of the POP (1); sets of
Lagrangian multiplier SOS polynomials satisfying the assumption of Theorem 3.1 can be
freely chosen to strengthen the resulting relaxations. We have presented an illustrative
example of how the framework of the proposed SOS relaxation can be used to have a
practical SOS relaxation exploiting a structured sparsity. Numerical results of the example
have indicated that it is possible to drastically improve computational efficiency of SOS
relaxations by making proper heuristic choices of supports, depending on problems.

Additional numerical experiments on the SDP relaxation with heuristically chosen sup-
ports were performed for various types of polynomial optimization problems with certain
types of sparsity. We have not included the numerical results from the additional nu-
merical experiments in this paper because we believe that the discussion of heuristics is
beyond the scope of this paper. The main purpose of this paper has been proposing gen-
eral methods for sparsity in SDP relaxations for polynomial optimization and introducing
Lagrangian dual and penalty function approaches into SDP relaxations for polynomial
optimization. Although the numerical results supported the claim that the SOS relax-
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ations could improve the efficiency, it would be necessary to address issues such as (i)
a reasonable definition of structured sparsity in polynomial optimization problems, (ii)
technical details of heuristic choices of supports, and (iii) extensive numerical experiments
on various problems with structured sparsity. These will consist of a paper on practical
performance of the heuristics, which we hope to present in near future.
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