
Journal of Physics: Conference Series

OPEN ACCESS

Thermal phase transitions to valence-bond-solid
phase in the two-dimensional generalized SU(N)
Heisenberg models
To cite this article: Takafumi Suzuki et al 2015 J. Phys.: Conf. Ser. 592 012114

 

View the article online for updates and enhancements.

Related content
Cold quark matter phase diagram under
strong magnetic fields within a generalized
SU(2) NJL model
PG Allen, VP Pagura and NN Scoccola

-

Rate of thermal transitions in kagome spin
ice
S Y Liashko, V M Uzdin and H Jónsson

-

Zeros of the partition function for Ising
models with many-body interactions
J L Monroe

-

This content was downloaded from IP address 130.54.110.22 on 15/02/2021 at 01:12

https://doi.org/10.1088/1742-6596/592/1/012114
/article/10.1088/1742-6596/706/5/052026
/article/10.1088/1742-6596/706/5/052026
/article/10.1088/1742-6596/706/5/052026
/article/10.1088/1742-6596/741/1/012182
/article/10.1088/1742-6596/741/1/012182
/article/10.1088/0305-4470/15/8/027
/article/10.1088/0305-4470/15/8/027
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstAFvbSSyhPwxl8T537LP_nCXmb3GsxylU167IrVYSkseT8S1Ld0JS0M94HF7lkPEe4H-zKpkCuXRULjOUOIClAy9y-RNdAcoN7l89qHpZ0SxYw6Y8K1J25HfMGi8ir-vct3VqzhE-ZDYdi1kwvDlyiODb8P5Mhd70MeyhxrpSwy0e0sxmpk9FNlQgUMZHP0R9BzelUtKLcfGykoVqBZJgf1V9Habnb6Q-BFPF-p8U4TrmrtmFePE5FiQ3asLL4sWawnIvAQIqiC7ogjONt_5Jx&sig=Cg0ArKJSzAMNm9SjTQVw&adurl=http://iopscience.org/books


Thermal phase transitions to valence-bond-solid

phase in the two-dimensional generalized SU(N)

Heisenberg models

Takafumi Suzuki1, Kenji Harada2, Haruhiko Matsuo3, Synge Todo4,5

and Naoki Kawashima5

1Graduate School of Engineering, University of Hyogo, Hyogo 670-2280, Japan
2Graduate School of Informatics, Kyoto University, Kyoto 615-8063, Japan
3Research Organization for Information Science and Technology, Hyogo 650-0047, Japan
4Department of Physics, University of Tokyo, Tokyo 113-0033, Japan
5Institute for Solid State Physics, University of Tokyo, Chiba 277-8581, Japan

E-mail: takafumi-s@eng.u-hyogo.ac.jp

Abstract. We study thermal transitions of the generalized SU(N) Heisenberg models with
four-body interactions on a square lattice and with six-body interactions on a honeycomb
lattice. In both models for the N=3 and 4 cases, a singlet-dimer state is stabilized at a very low
temperature, where a rotational symmetry of lattice is broken spontaneously. We discuss the
universality class of thermal transition to the singlet dimer phases, performing quantum Monte
Carlo calculations. From the finite-size scaling analysis, we find that the criticality for the
square lattice case is well explained by the 2D weak Ising universality, while the 2D three-state
Potts universality is observed in the honeycomb lattice case.

1. Introduction

In this decay, one of the most discussed topics is the possibility of deconfined critical phenomena
(DCP) [1–3] in quantum spin systems. The phenomena are expected to be observed at a quantum
phase transition (QPT) between the magnetic ordered phase such as Néel phase and the valence-
bond-solid (VBS) phase in two dimension (2D). The remarkable feature is that it is continuous
although the symmetry group in one phase is not the subset of another phase. The most famous
models believed to show the DCP behavior are SU(N) JQm models on several 2D lattices [4].
Great numerical efforts have been devoted to clarify the critical properties of those models.
However it has not been achieved yet satisfactory [4–11].

When we focus on the thermal properties of the SU(N) JQm models, the finite temperature
transition to the VBS phase is expected because the VBS order can be characterized by the
rotational symmetry breaking. For example, in the square lattice case, the VBS pattern is
described by a columnar dimer configuration as shown figure 1 (b). This is the π/2-rotational
symmetry breaking around the center of plaquette. Consequently the universality class is
expected to be the same as the 2D classical models with Z4 symmetry-breaking fields, such
as the XY+Z4 model[12] and the Ashkin-Teller model[13] and so on. Interestingly the criticality
of the above classical models shows that the thermal exponent ν changes keeping relations among
critical exponents with constant correlation exponent η = 1/4 : γ/ν = 7/4 and β/ν = 1/8. This
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is known as the 2D weak Ising universality [14]. As for the SU(2) JQ3 model on the square
lattice case, the QMC calculations done in ref. [15] indicated that the criticality is well explained
by the c=1 CFT and ν monotonically increases as the system approaches to the DCP point.
When the Z4 symmetry-breaking field becomes zero, it is expected that the Kosterliz-Thouless
(KT) transition takes place and ν diverges in the classical model. Thus the authors in ref. [15]
pointed out that the emergence of U(1) symmetry in the vicinity of the DCP point is associated
with the KT physics at Tc = T and T → 0.

In contrast to the square lattice case, the situation is much different in the honeycomb
lattice case. When the VBS order is columnar and accompanies the π/3-rotational symmetry
breaking, the expected classical model is the XY model with the Z3 symmetry-breaking field.
Therefore the related classical model that can explain the universality is the 2D three-state Potts
model [16]. The Z3 field is always strongly relevant in 2D, and thus the critical exponents do
not change depending on the coupling ratio as far as Tc > 0 and the symmetry of Hamiltonian
is kept.

Based on the DCP scenario, the quantum criticality should not change depending on the
lattice geometry. Indeed, in previous study [11], the same criticality is expected in both the
square JQ2 and honeycomb JQ3 models at T = 0, while the possibility of the weak first order
transition still remains especially in the SU(3) case. If the DCP point is the first order transition,
the presence of the multi-critical point in the finite temperature region emerges. This indicates
that the values of critical exponent ν should change when the system approaches to the multi-
critical point or the discontinuous fixed point along the thermal transition line. From the above
background, we focus on thermal phase transitions of SU(N) JQ2 model on the square lattice
and JQ3 model on the honeycomb lattice in this paper.

2. Model and Method

The Hamiltonian for the SU(N) JQ2 model on the square lattice and JQ3 model on the
honeycomb lattice can be simply expressed by introducing singlet projection operator Pij . The
singlet projection operator[11; 17] is defined in terms of the generators of the SU(N) algebra as

Pij = − 1
N

∑N
α=1

∑N
β=1 S

αβ
i S̄βα

j , where S̄βα
j is conjugate operator of Sαβ

i . This singlet projection
operator gives a simplified form for the Hamiltonian written as

H = −J
∑

(ij)

Pij −Q2

∑

(ij)(kl)

PijPkl, (1)

for the square lattice case and

H = −J
∑

(ij)

Pij −Q3

∑

(ij)(kl)(mn)

PijPklPmn, (2)

for the honeycomb lattice case, where (ij) is the nearest-neighbor sites. The summation for the
Qm terms runs over all pairs without breaking the rotational symmetry of lattice as illustrated
in figure 1. Since the present lattices are bipartite, the fundamental (conjugate) representation
is adapted for SU(N) spins on A(B) sites. By tuning the two coupling parameters J and Qm,
the ground state of the above Hamiltonians changes from the VBS state to the Néel state. Thus
it is convenient to introduce the coupling ratio defined as

λ = J/(J +Qm). (3)

The values of the QPT points between the Néel state and the VBS state were already evaluated
in ref. [11], and summarized as (N,λc) = (3, 0.665) and (N,λc) = (4, 0.918) for the square
lattice case, and (N,λc) = (3, 0.797) and (N,λc) = (4, 0.985) for the honeycomb lattice case.

International Conference on Strongly Correlated Electron Systems 2014 (SCES2014) IOP Publishing
Journal of Physics: Conference Series 592 (2015) 012114 doi:10.1088/1742-6596/592/1/012114

2



i j

J Q3

i

j

k l

m

n

Q3

i j

k

lm

n

Q2

i j

k l

i

j

k

l

Q2

(a) (b) (d)

µ = 1

µ
=

2

µ=3

µ
=

4

µ = 1

µ
=
2

µ
=
3

(c) (e)

Figure 1. Singlet projection operator on a bond (a). Bold ellipsoids denote projection operator
Pij and color-singlet dimer state. Projection operator for Q2 term (b) and Q3 term (c). (d) and
(e) are coordination indexes µ.

For the Hamiltonian (1) and (2), we carried out the QMC calculations up to L=192 for
the square lattice case and L=96 for the honeycomb lattice case, changing the coupling ratio
λ with the fixed energy scale, J+Qm=1. The computations were executed by using the
massively parallelized Loop algorithm code [18] provided in ALPS project [19]. To discuss
the thermal transition to the VBS phase, we defined the complex-VBS magnetization defined
as Ψr ≡

∑z
µ=1 exp[

2πi
z µ]P̂r,rµ , where P̂r,rµ is the diagonal component of projection operator, z

is the coordination number of a lattice, and rµ represents the neighboring site of r along the µ
direction, respectively.

3. Results and discussion

In the QMC calculations, we evaluated the VBS order parameter Ψ = L−2 ∑

r Ψr. From the
obtained Ψr, we further calculated the VBS correlation function given by C(r) ≡ 〈ΨrΨ0〉, the
static structure factor S(Q) = L−2 ∑

r exp[−iQr]Ψr, the Binder ratio BR ≡ 〈Ψ4〉/〈Ψ2〉2, and

the correlation length, ξ ≡ 1
|∆Q|

√

S(0)
S(|∆Q|) − 1, where ∆Q denotes the smallest distance from the

Γ point, namely (0, 2π/Ly) or (2π/Lx, 0).
From the temperature dependence, we found that BR and ξ for each system sizes show

a good cross at a critical point. Assuming the scaling forms, ξ/L ∼ gξ[L
1/ν(T − Tc)] and

BR ∼ gBR
[L1/ν(T − Tc)], we evaluated the critical temperature Tc and thermal exponent ν.

Figure 2 show the results for (N,λ) = (3, 0.10) and (4, 0.20). In the finite-size scaling (FSS)
analysis, we evaluated the two variables Tc and ν simultaneously by the Bayesian-scaling-analysis
scheme [20]. The obtained values are (Tc, ν) = (0.2550(6), 1.30(4)) for (N,λ) = (3, 0.10) and
(Tc, ν) = (0.2542(7), 1.08(3)) for (N,λ) = (4, 0.20). Therefore we find that ν apparently depends
on the coupling ratio λ and SU(N) spins.

Next, we evaluate γ/ν from the static structure factor with the obtained critical temperatures.
In the present case, a single peak structure at the Γ point is expected for S(Q). Figure 3(a)
and (c) present the system size dependence of S(Q = Γ) in the vicinity of critical temperatures.
We find that S(Q) well scales as S(Q) ∼ Lγ/ν at Tc and γ/ν = 7/4 is satisfied independently of
SU(N) spins. In fact, as shown in figure 3 (b) and (d), temperature dependence of S(Q)L−γ/ν

shows a good cross when we assume γ/ν = 7/4. The crossing temperature, namely Tc, is the
same value within the error bar that is estimated from the FSS analysis for the Binder ratio and
correlation length. The value of γ/ν also indicates that the critical exponent for the correlation
function satisfies η = 1/4 if the hyper scaling relation is assumed. As not shown here, we found
that γ/ν is constant independently of λ. [17]

The obtained results strongly suggest that the thermal transition for the SU(N) JQ2 model
on the square lattice is explained by that of the 2D XY+Z4 model, because the critical exponents
satisfy the condition in the 2D Ising weak universality class[14]; ν changes depending on the
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Figure 2. Finite-size scaling analysis for the Binder ratio and correlation length. (a) and (b) (
(c) and (d) ) are the results for the SU(3) ( SU(4) ) spin case.

parameters but η and the others scaled by ν, for example β/ν and γ/ν, take constant values.
(This is related with the fact that the Z4 symmetry-breaking field becomes marginal just on the
critical temperature.) When we discuss whether the universality is same or not, it is important
clue to check the form of scaling function each other. In figure 4, we show the Binder ratio
as a function of inverse correlation. The scaling form of the Binder ratio is expressed by
BR(L/ξ) = gBR

[L/ξ]. The Binder ratio is analytical function and takes a characteristic value
depending only on the universality class at the critical point [21]. Therefore if the value at the
critical point is same each other, the scaling function g[x] should be same. Unfortunately, the
value of binder ratio at the critical point changes depending on the coupling ratio λ. Thus it is
difficult to estimate the corresponding magnitude of Z4 fields in the classical models from the
coupling ratio in the quantum SU(N) JQ2 model directly. However, we can check the trend
when λ or Z4 field changes and then, can give a discussion, whether the universality class for
both models is same or not and the possibility of the first order transition. (In the first-order
transition case, it is expected that the Binder ratio itself shows a dip structure [21]. )

In figure 4, we show BR(L/ξ) for the SU(N) JQ2 model and the 2D XY+Z4 model. Note
that the data set for the 2D XY+Z4 model is obtained from the Monte Carlo calculations for
H = J

∑

〈ij〉 cos(θi − θj) − h4
∑

i θi. Any dip structure is not confirmed in the results for the
SU(N) JQ2 model. We also find the quite small system-size dependence of BR(L/ξ) and a
relatively weak dependence for λ and α = h4/(J + h4). The important point is that the same
trend of BR(L/ξ) is confirmed in both quantum and classical models; the behavior of BR(L/ξ)
closes to that of the 2D Ising model case, when λ → 0 and α → 1. This is reasonable because
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Figure 3. Size dependence of S(Q = Γ) in the vicinity of critical temperatures and temperature
dependence of S(Q).

the Q term flavors the columnar dimer configuration along the x or y -axis. In the classical
case, the similar behavior is also observed when α → 1, where the system can be expressed by
the double Ising model exactly. The above result is consistent with the result for the SU(2)
JQ3 model case reported in ref. [15]. Consequently we conclude that the universality class of
the SU(N) JQ2 model possesses the same feature of the classical XY + Z4 model and this is
independent of SU(N) spins.

In the honeycomb lattice case, the expected columnar VBS pattern is characterized by the
π/3-rotational symmetry breaking, with reflecting the honeycomb-lattice background. This
implies that the related classical model showing the same universality class is the 2D XY+Z3

model. The most different point from the square lattice case is that Z3 symmetry-breaking field
is always relevant. This may warrant that the critical exponents should be independent of the
coupling ratio λ. Therefore we assume the critical exponents for the 2D 3-state Potts universality
class, namely ν = 5/6 and γ/ν = 26/15. Adopting the fixed values for the critical exponents,
we perform the FSS analysis for the correlation length and static structure factor. The results
are shown in figure 5. From the FSS results, we obtain the critical temperatures Tc = 0.083(1)
for the SU(3) case and Tc = 0.205(1) for the SU(4) case, and find that the universality class is
independent of the SU(N) spin and coupling ratio λ. Interestingly the critical exponents for the
SU(3) spin case are well explained by those of the 3-state Potts universality even in the vicinity
of the QPT point.

In the previous study[11], the possibility of the weak first-order transition at T = 0 was
discussed. Our present results for ν do not change in the vicinity of the QPT point. This
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Figure 4. The Binder ratio as a function of L/ξ. Colored symbols are results for the SU(N)
JQ2 models and classical XY+Z4 model. Open colored circles (squares) are the results for
SU(3) (SU(4)) spin case. Plus symbols are the results for the classical case. Black diamonds
are the results for the two dimensional Ising model. All data in figure include several different
system-size results.

supports the absence of conventional first order transition, because the apparent decrease of ν
toward the trivial value 1/d = 1/2 is not observed. Although we can not discuss the order of
the QPT point directly from the thermal transitions, the clarification of phase boundary in the
finite temperature region is important because the quantum criticality is expectable to appear
in the boundary curvature. The further discussions for the parameter λ dependence of critical
exponents and phase boundaries are challenging tasks and we will discuss the details in the other
paper [17].

4. Summary

We have investigated the thermal transitions of JQ2 models on the square lattice and JQ3

models on the honeycomb lattice for SU(3) and SU(4) spins. We have found that the criticality
can be explained by the 2D weak Ising universality class in both SU(3) and SU(4) in the square
lattice case. This is the same result for the SU(2) JQ3 model, as Jin and Sandvik discussed [15].
In the honeycomb lattice case, reflecting that Z3 field is strongly relevant, thermal exponent ν
always takes the value of the 2D three-state Potts one.
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