
Kojima et al. J Cheminform           (2020) 12:32  
https://doi.org/10.1186/s13321-020-00435-6

SOFTWARE

kGCN: a graph-based deep learning 
framework for chemical structures
Ryosuke Kojima1* , Shoichi Ishida2, Masateru Ohta3, Hiroaki Iwata1, Teruki Honma3,4 and Yasushi Okuno1,3

Abstract 

Deep learning is developing as an important technology to perform various tasks in cheminformatics. In particular, 
graph convolutional neural networks (GCNs) have been reported to perform well in many types of prediction tasks 
related to molecules. Although GCN exhibits considerable potential in various applications, appropriate utilization 
of this resource for obtaining reasonable and reliable prediction results requires thorough understanding of GCN 
and programming. To leverage the power of GCN to benefit various users from chemists to cheminformaticians, an 
open-source GCN tool, kGCN, is introduced. To support the users with various levels of programming skills, kGCN 
includes three interfaces: a graphical user interface (GUI) employing KNIME for users with limited programming skills 
such as chemists, as well as command-line and Python library interfaces for users with advanced programming skills 
such as cheminformaticians. To support the three steps required for building a prediction model, i.e., pre-processing, 
model tuning, and interpretation of results, kGCN includes functions of typical pre-processing, Bayesian optimization 
for automatic model tuning, and visualization of the atomic contribution to prediction for interpretation of results. 
kGCN supports three types of approaches, single-task, multi-task, and multi-modal predictions. The prediction of 
compound-protein interaction for four matrixmetalloproteases, MMP-3, -9, -12 and -13, in the inhibition assays is 
performed as a representative case study using kGCN. Additionally, kGCN provides the visualization of atomic con-
tributions to the prediction. Such visualization is useful for the validation of the prediction models and the design of 
molecules based on the prediction model, realizing “explainable AI” for understanding the factors affecting AI predic-
tion. kGCN is available at https ://githu b.com/clinf o.

Keywords: Graph convolutional network, kGCN, Graph neural network, Open source software, KNIME

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Deep learning is emerging as an important technol-
ogy to perform various tasks in cheminformatics [1–3]. 
With the recent development of artificial intelligence 
(AI) and deep learning, the application of deep learning 
approaches has been practically demonstrated for vari-
ous predictions such as virtual screening [4], quantitative 
structure-activity relationship (QSAR) studies [5], and 
ADMET (absorption, distribution, metabolism elimina-
tion, and toxicology) prediction [6, 7]. In particular, with 

the democratization of AI, it is expected that these pre-
diction tools should be readily used by the non-experts. 
The accessibility of deep learning to non-experts is an 
important issue in the field of cheminformatics. For 
example, as deep learning can be applied to a wide range 
of research areas in drug discovery such as ADMET pre-
dictions for lead optimization and virtual screening for 
lead identification, the chemists should be able to solve 
these research problems by using the latest technolo-
gies and analyze the results, availing the benefits of deep 
learning. However, as chemists are typically not profi-
cient in deep learning, the development of easy-to-use, 
multi-functional deep learning software is necessary.

In the predictions based on molecular structures, 
graph neural networks (GNNs), where a chemical 

Open Access

Journal of Cheminformatics

*Correspondence:  kojima.ryosuke.8e@kyoto-u.ac.jp
1 Graduate School of Medicine, Kyoto University, Shogoin-kawaharacho, 
Sakyo-ku, Kyoto 606-8507, Japan
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-1095-8864
https://github.com/clinfo
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-020-00435-6&domain=pdf


Page 2 of 10Kojima et al. J Cheminform           (2020) 12:32 

structure is represented as a graph, have been reported 
to perform well [8, 9]. In particular, graph convolutional 
networks (GCNs), a type of GNN, exhibited excellent 
performances in many applications [10, 11]. Despite 
these results, an appropriate application of GCN to real-
world research problems requires practical programming 
skills and comprehensive understanding of deep learning 
and GCN.

To address this issue, a new open-source software, 
kGCN1. is introduced for various users to employ deep 
learning including GCNs. kGCN is developed for the fol-
lowing functions:

• Providing interfaces for the various levels of users 
including users with limited programming skills

• Handling different types of data for cheminformatics 
tasks

• Easy, intuitive, and convincing interpretation of 
results

• Hyper-parameter optimization

As mentioned, one function of kGCN is to afford inter-
faces to assist various users such as chemists, cheminfor-
maticians, and data scientists. Considering the expertise 
levels of these users, a software should provide multiple 
interfaces suitable for each user. To satisfy these require-
ments, kGCN provides three types of user interfaces. 
Figure 1 shows the architecture of the kGCN system. The 
kGCN system supports both GUI-based and command-
line interfaces. To intuitively access a machine-learning 
procedure, the kGCN system provides a GUI interface 
on the GUI platform, KNIME (Konstanz Information 
Miner) [12]. The command-line interface supports typi-
cal machine-learning procedures such as training, evalu-
ation, and cross-validation. Additionally, the kGCN 

modules can be used as a Python library to allow flexibil-
ity and processing through programming languages.

The second function is to support different types of 
data. In cheminformatics, various types of data includ-
ing chemical structures represented by graphs shoul-
ded be considered. For example, the protein sequence 
data is often represented as a symbol sequence or vec-
tor descriptor. In deep learning, various architectures 
for neural networks have been proposed [13]. The sim-
plest GCN is based on the single-graph-input single-
label-output architecture. The kGCN system supports 
1) multi-input (multi-modal GCN) and 2) multi-output 
(multi-task GCN) architectures. A multi-modal GCN is 
a neural network that can accept multiple modalities of 
inputs [14, 15]. kGCN can accommodate a neural net-
work with two inputs: chemical structure as a graph and 
a protein sequence as a series of characters. This type 
of neural network can be used to predict interactions 
between the compounds and proteins for virtual screen-
ing and/or drug-repurposing [4, 16]. However, multiple 
related tasks are needed to be simultaneously handled in 
cheminformatics [17], for example, tasks to predict mul-
tiple different properties of a compound. To tackle these, 
a multi-task neural network is applied, which affords bet-
ter results than those for an individual prediction [18, 
19].

The third function is the interpretation and under-
standing of the cause of prediction results via deep 
learning by visualizing contributions of input data to the 
prediction. This process is important because the validity 
of the prediction model can be examined through a vis-
ual inspection of the good and bad features. The refine-
ment or re-construction of the prediction model can be 
performed if the causes of prediction do not appear to 
be reasonable or are contrary to common sense. Nota-
bly, designing new molecules with improved properties 
is possible if the reasons for good and/or bad predictions 
are identified by visualization. In recent years, several 
methods to calculate the different contributions to the 
prediction results of deep learning have been proposed 
[20, 21]. The kGCN system uses the integrated gradient 
method [22], which can be applied to any type of neural 
network architectures including multi-task and multi-
modal neural networks.

The last function is hyper-parameter optimization. In 
analysis using deep neural networks, hyper-parameters 
of deep learning such as the number of network lay-
ers, number of layer nodes, learning rate, and batch 
size should be appropriately set. However, setting these 
parameters is not easy for users without deep learn-
ing knowledge and experience. To assist such users and 
automatically determine the optimal hyper-parameters, 

User interface KNIME Command-line tools Jupyter

Graph convolution

Single-task model Multi-task model Multi-modal model

Hyper-parameter optimizationVisualization

Utility

kGCN

Algorithm

Fig. 1 Architecture of kGCN

1 Kyoto-university graph convolutional network framework.



Page 3 of 10Kojima et al. J Cheminform           (2020) 12:32  

the kGCN system employs Bayesian optimization and 
metaheuristics for hyper-parameter optimization [23].

In addition to this information, the kGCN system also 
provides tools for improving the usability. The kGCN 
back-end implementation uses Tensorflow [24] and sup-
ports GPUs (graphics processing units). To setup the 
execution conditions, kGCN-installed Docker images are 
also provided2. Additional unique tools to enhance the 
usability are provided for each interface. These will be 
described in the Implementation section.

Similar types of software have been reported in prior 
studies, e.g., DeepChem [25], Chainer chemistry [26], 
and OpenChem [27]. DeepChem is a Python library 
for neural networks, including GCNs. A notable fea-
ture of DeepChem is to support various machine learn-
ing methods as well as deep learning methods. Because 
deep learning usually requires large amounts of data, this 
feature can help users handle relatively small amounts of 
data. Chainer chemistry provides GCNs as an extended 
Python library of Chainer [28]. Both libraries can be used 
with Python and were developed for professional pro-
grammers of machine learning and Python. Although 
OpenChem supports both command-line and Python 
interfaces, good programming skills are still required to 
use OpenChem. The kGCN system is a framework con-
taining the GUI, command-line, and Python interfaces. 
The GUI interface of kGCN is expected to engage users 
with limited programming skills in GCN and deep learn-
ing. To our knowledge, kGCN is the first open-source 
and multi-functional GCN software to support all three 
interfaces.

Implementation
Before describing the details of the kGCN system, basic 
implementation techniques for the graph representation 
of molecules and graph convolution are discussed.

Graph representation of molecules for GCN
This section first describes the formalization of a mol-
ecule to apply the GCNs. A molecule is formalized as a 
tuple M ≡ (V ,E, F) , where V is a set of nodes. A node 
represents an atom in a molecule. A node has features 
fi ∈ F(i ∈ V ) , and F is a set of feature vectors repre-
senting the atom properties such as atom type, formal 
charge, and hybridization. These features should be 
appropriately designed by users. E is a set of edges, and 
an edge e ∈ E represents a bond between the atoms, i.e., 
e ∈ V × V × T  , where T is a set of bond types. An adja-
cency matrix A(t) is used, which is defined as follows:

where (·)i,j represents the j-th element of i-th row. Simi-
larly, the feature matrix is defined as:

where (·)k represents the k-th element of a vector.
Using this matrix, a molecule is represented by 

M′ = (A,F) , where A = {A(t)|t ∈ T } . The framework in 
the present system uses RDKit [29] to create adjacency 
and feature matrices and employs M′ as the input for 
GCN.

Graph convolutional network
kGCN supports GCNs in addition to the standard feed-
forward neural networks. Therefore, GCNs for molecules 
are described first. Graph convolution layer, graph dense 
layer, and graph gather layer are defined as described 
below.

Graph convolution layer
The graph convolution is calculated from the input X(ℓ) 
of the ℓ-th layer as follows: 

 where X(ℓ) is the N × D(ℓ) matrix and W(ℓ)
t  is the param-

eter matrix ( D(ℓ) × D(ℓ+1) ) for a bond type t, σ is the 
activation function, and Ã(t) is the normalized adjacency 
matrix ( N × N  ). This normalization and implementation 
of the layers follows Kipf ’s model [30] as a default. There 
are various choices for implementing the setting of graph 
convolution layers. In the kGCN system, the operation of 
the first layer input can be easily switched by changing 
the initial setting file for building the model.

The GCN is based on this graph convolution operation. 
The input of the first layer X(1) often corresponds to the 
feature matrix, F

Graph dense layer
X
(ℓ) is an input for graph dense layer. X(ℓ+1) is calculated 

as follows: 

 where X(ℓ) is an N × D(ℓ) matrix and W(ℓ) is a parameter 
matrix ( D(ℓ) × D(ℓ+1)).

Graph gather layer
This layer converts a graph into a vector [31], i.e., the 
input X(ℓ) is an N × D(ℓ) matrix and X(ℓ) , i.e., 

(A(t))i,j =

{

1 (vi, vj , t) ∈ E
0 (vi, vj , t) /∈ E

,

(F)j,k = (fj)k

X
(ℓ+1) = σ

(

∑

t

Ã
(t)
X
(ℓ)
W

(ℓ)
t

)

,

X
ℓ+1 = X

(ℓ)
W

(ℓ)
,

2 https ://hub.docke r.com/r/clinf o/kgcn.

https://hub.docker.com/r/clinfo/kgcn.


Page 4 of 10Kojima et al. J Cheminform           (2020) 12:32 

 where (·)i represents an i-th element of a vector. This 
operation converts a matrix into a vector.

Figure  2 shows an example of GCN for a prediction 
task. The GCN model is a neural network consisting of 
a graph convolutional layer (GraphConv) with batch 
normalization (BN) [32] and rectified linear unit (ReLU) 
activation, graph dense layer with the ReLU activation, 
graph gather layer, and dense layer with the softmax acti-
vation. By assigning the label that is suitable for each task 
to the compounds, this model can be applied to many 
types of tasks, e.g., ADMET prediction based on the 
chemical structures.

Figure 3 shows an example of a multi-task GCN for a 
prediction task. The only difference is that multiple labels 
are predicted as an output. In this type of neural net-
works, multiple labels associated with a molecule such 
as several types of ADMET properties can be predicted 
simultaneously. It is well-known that multi-task predic-
tion affords more improvement in the performance com-
pared to that of individual single-task prediction [33].

(X(ℓ+1))j =
∑

j

(X(ℓ))ij ,

Figure  4 shows an example of a multi-modal neural 
network employing a graph representing a compound 
and sequence of a protein. In addition to the information 
derived from the molecular structure, information from 
other modalities can also be used for the input. An exam-
ple of the prediction of activity using compound and 
protein related information is described in detail in the 
Experiment section.

The kGCN system supports operations described 
above and some other additional operations to build a 
neural network. These operations are implemented using 
TensorFlow [34] and are compatible with Keras [35], 
allowing the users to construct neural networks such as 
convolutional neural networks and recurrent neural net-
works [13] with Keras operations.

These neural networks include hyper-parameters such 
as the number of layers in a model and number of dimen-
sions for each layer. To determine these hyper-parame-
ters, the kGCN system includes Bayesian optimization.

Visualization of graph convolutional network
To confirm the features of the molecules that influence pre-
diction result, a visualization system using the integrated 
gradient (IG) method [22] is developed. After the construc-
tion of the prediction model, the visualization of the atom 
importance in the molecular structure, based on the IG 
value I(x) derived from the prediction model, is possible.

IG value I(x) is defined as follows:

where x is the input of an atom of a molecule, M is the 
number of divisions of the input, S(x) is the prediction 
score, i.e., the neural network output with input x, and 
∇S(x) is the gradient of S(x) related to input x. In the 
default setting, M is set to 100. The atom importance is 
defined as the sum of the IG values of features in each 
atom. The calculation of the atom importance is per-
formed on compound-by-compound basis.

The evaluation of the visualization results depends on 
each case. Although methods for the visualization of deep 
learning results are still developing, their effectiveness in 
solving common problems has not been reported; how-
ever, a quantitative evaluation of the IG values related to 
the molecules was previously reported for the prediction 
of a reaction [36].

Hyper‑parameter optimization
To optimize the neural network models, hyper-parame-
ters such as the number of graph convolution layers, the 
number of dense layers, dropout rate, and learning rate 

I(x) =
x

M

M
∑

k=1

∇S

(

k

M
x

)

,

BNGraphConv Activation GraphDense GraphGather
(read out)

DenseO
OH

O

HN

O
N

S
H

Fig. 2 Graph convolutional network for a prediction task with a 
compound input

BNGraphConv Activation GraphDense GraphGather
(read out)

DenseO
OH

O

HN

O
N

S
H

Fig. 3 Multi-task graph convolutional network with a compound 
input

BNGraphConv Activation Graph Dense GraphGather
(read out)

Dense

Conv1D Activation

MKSLPILLLLCV
AVCSAYPLDGA
ARGEDTSMNLV
QKYLENYYDLKK
DVKQFVRRKDSGP

Pooling
Conv1D Activation

Concatenate

Dense
BN
Activation

Dense

Embedding
FASTA format

O
OH

O

HN

O
N

S
H

Fig. 4 Multi-modal graph convolutional network with compound 
and sequence inputs



Page 5 of 10Kojima et al. J Cheminform           (2020) 12:32  

should be determined. As it is difficult to manually deter-
mine all these hyper-parameters, kGCN allows automatic 
hyper-parameter optimization with Gaussian-process-
based Bayesian optimization using a Python library, GPy-
Opt [37].

Interfaces
This section describes three interfaces in the kGCN 
system.

Command‑line interface
The kGCN system provides the command-line interface 
suitable for batch execution. Data processing is designed 
according to the aim, but there is a standard process com-
mon to many data processing designs, e.g., a series of pro-
cesses for cross-validation. The kGCN commands include 
these common processes, i.e., the kGCN system allows 
preprocessing, learning, prediction, cross-validation, and 
Bayesian optimization using the following commands: 

kgcn-chem command  allows preprocessing of mol-
ecule data, e.g., structure-data 
file (SDF) and SMILES.

kgcn command  allows batch execution related 
to prediction tasks: supervised 
training, prediction, cross-val-
idation, and visualization.

kgcn-opt command  allows batch execution 
related to hyper-parameter 
optimization.

These commands can be used with Linux commands 
and enable users to construct automatic scripts, e.g., 
Bash scripts. Because such batch execution is suitable for 
large-scale experiments using workstation and reproduc-
ible experiments, this interface is useful for the evalua-
tion of neural network models.

KNIME interface
The kGCN system supports KNIME modules as a GUI. 
KNIME is a platform to prepare the workflow, which 
consists of KNIME nodes for data processing, and is par-
ticularly useful in the field of data science. The kGCN 
KNIME nodes described below are useful for the execu-
tion of various kGCN functions in combination with 
existing KNIME nodes. The command-line interface 
allows batch execution, whereas the KNIME interface is 
suitable for early steps in the machine learning process 
such as prototyping and data preparation.

To train and evaluate the model, kGCN provides the 
following two nodes. 

GCNLearner  trains the model from a given dataset. 
This node receives the training data-
set and provides the trained model as 
an output. Detailed settings such as 
batch size and learning rate can be set 
as the node properties.

GCNPredictor  predicts the label from a given trained 
model and new dataset.

Using the kGCN nodes mentioned above, Fig. 5 shows 
an example of the workflow. This data flow can be sepa-
rated into that before and after GCNLearner. The former 
part is for data preparation, for which kGCN includes the 
following KNIME nodes: 

CSVLabelExtractor  reads labels from a CSV file 
for training and evaluation

SDFReader  reads the molecular informa-
tion from an SDF.

GraphExtractor  extracts the graph from each 
molecule.

AtomFeatureExtractor  extracts the features from 
each molecule.

GCNDatasetBuilder  constructs the complete 
dataset by combining input 
and label data.

GCNDatasetSplitter  splits the dataset into train-
ing and test datasets.

The test dataset is used for the evaluation and interpre-
tation of results. kGCN also provides the modules to dis-
play the output of the results. 

GCNScore  provides the scores of the predic-
tion model such as accuracy.

GCNScoreViewer  displays the graph of ROC scores 
in the image file.

GCNVisualizer  computes the IG values and atom 
importance.

GCNGraphViewer  displays the atom importance in 
the image file.

Another example of the workflow is shown in Fig.  6, 
which includes an example of multi-modal neural net-
works. To design multi-modal neural networks, the 
kGCN system provides the following modules: 

AdditionalModalityPreprocessor  reads the data of 
another modality 
from a given file.



Page 6 of 10Kojima et al. J Cheminform           (2020) 12:32 

AddModality  adds the data of another 
modality to the dataset.

To change from single-task to multi-modal, AddMo-
dality node should be added next to the GCNDataset-
Builder node.

The visualization process shown at the bottom-right of 
Fig. 6 requires a specific computation time depending on 
the number of molecules to be visualized, as the compu-
tation time for the integrated gradient method for each 
molecule is 1–5 s during GPU execution. To reduce the 

size of the dataset, GCNDatasetSplitter can be used for 
selecting a part of the dataset.

Python interface
The kGCN system also provides a Python library for pro-
grammers to more precisely tune the setting of the analy-
sis. The kGCN system can be used in a manner similar to 
any standard library and supports pip, a Python standard 
package manager. Furthermore, the kGCN system can 
be used in the Jupyter notebook, which is an interac-
tive interface. Therefore, the users can easily explore this 

This node reads
a comma-separated values(CSV) file

stored multiple labels for each molecule. In the multi-task setting,
this node outputs the evaluation score

for each task.

In the multi-task setting,
this node saves the ROC images

for each task.

SDFReader reads 
the molecular information

 from a structure-data file (SDF)

GraphExtractor extracts
the graph from each molecule

AtomFeatureExtractor extracts the features from each molecule.

GCNDatasetBuilder constructs
the complete dataset

by combining
input and label data.

CSVLabelExtractor reads
the labels from a CSV file

 for trainign and evaluation.

GCNDatasetSplitter splits the received dataset
into training and test datasets.

GCNLearner trains the model
from a given dataset.
This node receives

the training dataset and
outputs the trained model as output.

GCNPredictor predicts
the label from a given trained

model and new dataset.

GCNScore computes
the evaluation scores

such as accuracy.

GCNScoreViewer displays

the graph of ROC 
in the image file.

Multi-task workflow

Single-task workflow

   This part of the workflow constructs a dataset from the input files. A dataset consists of 
a set of pairs whose components correspond to a molecule and a label. Settings like 
input file paths can be set from the properties for each node in this part.

Preprocessing:
   This part carries out the hold-out evaluation, a standard machine learning procedure. The hold-out evaluation con-
sists of two steps: training a GCN using a training dataset and evaluation of the model using a test dataset. Detailed 
settings such as batch size and learning rate can be set as the properties of the nodes.

Training and evaluation:

   This part carries out the hold out evaluation considering multiple tasks, i.e.,  the training a GCN model for the all tasks 
and evaluate the model using the test dataset for each task.

Training and evaluation:
   The topology of this part is the same as the single-task workflow. The process of this 
part is similar to that of the single-task workflow. The different part is reading a label file 
containing multiple labels corresponding to multiple tasks and constructing a dataset 
containig multiple labels.

Preprocessing:

SDFReader GraphExtractor

AtomFeatureExtractor

GCNDatasetBuilder

CSVLabelExtractor

GCNDatasetSplitter

GCNLearner

GCNPredictor

GCNScore

GCNScoreViewer

SDFReader GraphExtractor

AtomFeatureExtractor

GCNDatasetBuilder

CSVLabelExtractor

GCNDatasetSplitter

GCNPredictor

GCNScore

GCNScoreViewer

SDFReader GraphExtractor

AtomFeatureExtractor

CSVLabelExtractor

GCNDatasetBuilder

GCNDatasetSplitter

GCNLearner

GCNPredictor

GCNScore

GCNScoreViewer

SDFReader GraphExtractor

AtomFeatureExtractor

CSVLabelExtractor

GCNDatasetBuilder

GCNDatasetSplitter

GCNLearner

GCNPredictor

GCNScore

GCNScoreViewer

Fig. 5 Single-task workflow for the hold-out procedure using the KNIME interface (Upper). Multi-task workflow for the hold-out procedure (Lower)



Page 7 of 10Kojima et al. J Cheminform           (2020) 12:32  

library using google collaboratory, a cloud environment 
for the execution of Python programs.

The kGCN system adopts an interface similar to scikit-
learn, a defacto standard machine learning library in 
Python. Therefore, the process employing the kGCN 
library includes preprocessing, training by fit methods, 
and evaluation by pred method, in this order. The users 
can easily access the kGCN library in a similar manner to 
that of scikit-learn. Furthermore, designing a neural net-
work, which is necessary for using kGCN, is easy if users 
are familiar with Keras because kGCN is compatible with 
the Keras library, and the users can easily design a neural 
network such as Keras.

To demonstrate a wide applicability of the present 
framework, three sample programs comprising the data-
sets and scripts using the standard functions of kGCN 
are available in the framework web pages. In addition to 
these examples, the application of kGCN for a reaction 
prediction has been reported in a prior study [36], where 
the visualized reaction centers predicted by GCNs were 
consistent with reaction centers reported in the litera-
ture. This literature report used GCNs for reaction pre-
diction on the kGCN system.

Flexible user interfaces
As described in the introduction and implementation 
sections, kGCN provides KNIME GUI, a command-
line interface, and a programming interface to support 

various types of users with various skill levels. For exam-
ple, an easy-to-use high-layer GUI can assist the chem-
ists with limited programming knowledge in using kGCN 
and understand SAR at a molecular level. Contrarily, for 
machine learning professionals with good programming 
skills, it is expected that they will focus on the improve-
ment of algorithms using a low-layer python interface. 
By using a Python interface, the users can make machine 
learning procedures more flexible and incorporate the 
kGCN functions into the user specific programs such as 
web services. The users with good programming skills 
can also use the command-line interface to automate 
data-analysis procedures using the kGCN functions 
because it is easy to construct a pipeline combined with 
other commands such as Linux commands.

Results
For applications of kGCN, this section describes the 
prediction of the assay results of a protein based on 
the molecular structure. The prediction of compound-
protein interactions (CPIs) has played an important 
role in drug discovery [38], and CPI prediction meth-
ods using deep learning have achieved excellent results 
[4, 14–16]. In this study, the applicability of kGCN to 
CPI prediction is demonstrated as an example of sin-
gle-task/multi-task/multi-modal GCNs. The single-
task GCN predicts the activity against a protein based 
on the chemical structure represented as a graph. The 

AddModality adds
an additional modality

into the dataset.

AdditionalModalityPreprocessor
 constructs an input vector modality

from a specified CSV file.

This node extracts
a part of the dataset

to reduce samples for visualization.

GCNVisualizer computes
the integrated gradient scores.

GCNGraphViewer
 displays the computed

 integrated gradients
in an image file.

Multi-modal workflow

   In the multi-modal workflow, the two nodes are added after GCNDatasetBuild-
er: AdditionalModalityPreprocessor and  AddModality. This additional part adds 
the vector input data from the additional CSV file.

Preprocessing:
   In the multi-modal workflow, the two nodes are added after GCNDatasetBuilder: AdditionalModali-
tyPreprocessor and  AddModality. This additional part adds the vector input data from the additional 
CSV file.

Training and evaluation:

   This part outputs the images visualizing the contribution to the prediction using the integrated 
gradient method.

Visualization:

SDFReader GraphExtractor

AtomFeatureExtractor

CSVLabelExtractor

GCNDatasetBuilder AddModality

AdditionalModalityPreprocessor

GCNDatasetSplitter

GCNLearner

GCNPredictor

GCNScore

GCNScoreViewer

GCNDatasetSplitter
GCNVisualizer GCNGraphViewer

SDFReader GraphExtractor

AtomFeatureExtractor

CSVLabelExtractor

GCNDatasetBuilder AddModality

AdditionalModalityPreprocessor

GCNDatasetSplitter

GCNLearner

GCNPredictor

GCNScore

GCNScoreViewer

GCNDatasetSplitter
GCNVisualizer GCNGraphViewer

Fig. 6 Multi-modal workflow for the hold-out procedure



Page 8 of 10Kojima et al. J Cheminform           (2020) 12:32 

multi-task GCN predicts the activities against multiple 
proteins from a chemical structure. Although single-
task and multi-task GCNs do not use the information 
related to proteins, multi-modal neural networks pre-
dict the activity from information of both the protein 
sequence and chemical structure.

For this examination, a dataset was prepared from the 
ChEMBL ver.20 database. The threshold for active/inac-
tive was defined as 30uM. This dataset consists of four 
types of matrix metalloprotease inhibition assays, MMP-
3, MMP-9, MMP-12, and MMP-13. The number of com-
pounds for each assay are listed in Table 1. These MMPs 
were selected because relatively large amounts of data 
were available for these in the ChEMBL dataset [39].

kGCN provides many types of descriptors for a com-
pound and protein. For example, kGCN allows graph 
representation for GCN and vector representation, such 
as ECFP [40] and DRAGON [41], for standard neural 
networks. Additionally, to represent a protein, kGCN 
uses an amino-acid sequence and vector representation 
such as PROFEAT descriptors [42]. This application uses 
graph representation for a compound and sequence rep-
resentation for a sequence.

To simplify the experiment, the molecules with greater 
than 50 atoms were removed. As the dataset was unbal-
anced, negative data corresponding to inactivity were 
selected in the same manner [14]. Negative data was gen-
erated to equalize the number of negative and positive 
data for each assay.

Such preprocessing can be realized using the kgcn-
chem command included in the section describing the 
command-line interface.

Figure 7 shows the area under the curve in the receiver 
operator characteristic curve (ROC-AUC) of five-fold 
cross-validation. This result shows that the multi-modal 
approach outperforms the other approaches. The rea-
son for a better ROC-AUC of the prediction with 
multi-modal approach is speculated to be the use of 
sequence-related information of the target proteins in 
addition to the graph representation of the compounds. 
This result is consistent with the reported results which 
indicate that the sequence descriptor contributes to 
improved accuracy [4, 14–16].

kGCN allows the visualization of the atomic contri-
butions to the prediction result, as shown in Fig.  8b. 
The compound, N-hydroxy-2-[N-(propan-2-yloxy)
[1,1’-biphenyl]-4-sulfonamido]acetamide (Fig.  8a), is 
used for this prediction and its reported activity 200 nM 
(IC50) against MMP-9 [43]. The label of this compound 
for MMP-9 in the dataset is active, and the activity pre-
dicted for this compound in single-task mode is correct 
(probability of active label is 0.964). This compound 
possesses a hydroxamic acid group (-C(=O)NHOH), 
and it is well-known that many MMP inhibitors have a 
hydroxamic group. The crystallographic structure of a 
complex of MMP-9 and this compound has been pre-
viously reported [44]. MMP-9 is a zinc protease, and 
the hydroxamic acid group of the above compound is 
coordinated to the zinc ion of MMP-9. The positive 
contributions of OH, NH, and carbonyl oxygen of the 
hydroxamic acid group shown in Fig. 8b are consistent 
with the interaction of the hydroxamic group with zinc 
of MMP-9.

Such visualization can be used to confirm the valid-
ity of the prediction by comparing the atomic contribu-
tions toward the prediction with structure-activity and/
or -property relationships. Additionally, this visualiza-
tion can be useful for drug designing to improve the 
activity, physicochemical properties and/or ADMET 

Table 1 Number of compounds in our dataset

Assay type #Compounds

MMP-3 2095

MMP-9 2829

MMP-12 533

MMP-13 2607

AU
C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MMP3 MMP9 MMP12 MMP13

single-task

Fig. 7 AUCs obtained from five-fold cross-validation

S

OO

O

O

OH

N

NH

O
N O

HN OH

S

O

O

ba

Fig. 8 a Chemical structure. b Atomic contributions to the predicted 
MMP-9 activity. Red color represents the positive contribution to 
the prediction (MMP-9 active in this case). Blue color represents the 
negative contribution (not active)



Page 9 of 10Kojima et al. J Cheminform           (2020) 12:32  

properties by modifying the chemical moieties that 
contribute negatively to the prediction.

Conclusion
For assisting various users including chemists and 
cheminformaticians, an open-source GCN tool, kGCN, 
is described. To support the users with various levels of 
programming skills, kGCN provides three interfaces: 
a GUI using the KNIME platform for users with lim-
ited programming skills such as chemists, as well as 
command-line and Python library interfaces for the 
advanced users such as cheminformaticians and data 
scientists. Three steps including preprocessing, model 
tuning, and interpretation of results, required for build-
ing a prediction model and utilization of prediction 
results. kGCN supports these three steps by including 
functions such as the automatic preparation of graph 
representation based on the chemical structures for 
pre-processing, Bayesian optimization for automatic 
optimization of the hyper-parameters of the neural 
networks for model tuning, the integrated gradient 
method to visualize the atomic contribution toward 
the prediction result for interpretation. In terms of the 
approaches used for prediction, kGCN supports single-
task, multi-task, and multi-modal predictions. The CPI 
prediction for four assays of matrixmetalloprotease 
inhibition, MMP-3, -9, -12, and -13, is performed as a 
representative case study using kGCN. Multi-modal 
prediction shows higher accuracy than those of the sin-
gle-task and multi-task predictions. Additionally, the 
visualization of atomic contribution to the prediction 
indicated that hydroxamate group of the compound 
exhibits a positive contribution to the activity and this 
is consistent with the known structure-activity rela-
tionships. Such visualization is useful for the validation 
of the models and designing new molecules based on 
the model. This also allows the realization of “explain-
able AI” for understanding the factors influencing the 
AI prediction which are typically a black-box.

kGCN is available at https ://githu b.com/clinf o/kGCN. 
Various examples such as Jupyter notebooks are also pro-
vided. Future works will include supporting new methods 
of graph neural networks because graph neural networks 
are a hot topic at present and new methods, e.g., graph 
attention and pooling, are being actively developed. We 
will proactively adopt these new methods and continue 
to develop kGCN so that various users can easily apply 
such latest methods to appropriately analyze the data in 
their hands and understand the reasons for the predic-
tions. Also, we are going to gather the user feedback and 
improve kGCN for better usability.

Authors’ contributions
RK; Designed and implemented the software, analysed data, and co-wrote 
the paper. SI; Designed and implemented the software, analysed data, and 
co-wrote the paper. MO; analysed data and co-wrote the paper. HI; analysed 
data and co-wrote the paper. TH and YO; supervised the research. All authors 
provided critical feedback and helped shape the research, analysis and manu-
script. All authors read and approved the final manuscript.

Funding
This paper is based on a part of results obtained from a project commissioned 
by the New Energy and Industrial Technology Development Organization 
(NEDO).

Availability of data and materials
Project name: kGCN. Project home page: https ://githu b.com/clinf o/kGCN. 
Operating system(s): Platform independent(Ubuntu 18.04, and CentOS 7 are 
mainly supported). Programming language: Python. Other requirements: 
python3 (> 3.6), tensorflow. License: https ://githu b.com/clinf o/kGCN/blob/
maste r/LICEN SE. Any restrictions to use by non-academics: licence needed.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Graduate School of Medicine, Kyoto University, Shogoin-kawaharacho, 
Sakyo-ku, Kyoto 606-8507, Japan. 2 Graduate School of Pharmaceutical Sci-
ences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. 3 Medical 
Sciences Innovation Hub Program, RIKEN Cluster for Science, Technology 
and Innovation Hub, Tsurumi-ku, Kanagawa, Kanagawa 230-0045, Japan. 
4 RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Kanagawa, 
Kanagawa 230-0045, Japan. 

Received: 17 February 2020   Accepted: 28 April 2020

References
 1. Gawehn E, Hiss JA, Schneider G (2016) Deep learning in drug discovery. 

Mol Inform 35(1):3–14. https ://doi.org/10.1002/minf.20150 1008
 2. Goh GB, Hodas NO, Vishnu A (2017) Deep learning for computational 

chemistry. J Comput Chem 38(16):1291–1307
 3. Elton DC, Boukouvalas Z, Fuge MD, Chung PW (2019) Deep learning for 

molecular design - a review of the state of the art. Mol Syst Design Eng 
4(4):828–849

 4. Torng W, Altman RB (2019) Graph convolutional neural networks for pre-
dicting drug-target interactions. J Chem Inform Model 59(10):4131–4149

 5. Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V (2015) Deep neural nets as 
a method for quantitative structure-activity relationships. J Chem Inform 
Model 55(2):263–274

 6. Schneckener S, Grimbs S, Hey J, Menz S, Osmers M, Schaper S, Hillisch 
A, Göller AH (2019) Prediction of oral bioavailability in rats: transferring 
insights from in vitro correlations to (deep) machine learning models 
using in silico model outputs and chemical structure parameters. J Chem 
Inform Model 59(11):4893–4905

 7. Wegner JK, Sterling A, Guha R, Bender A, Faulon J-L, Hastings J, O’Boyle 
N, Overington J, Van Vlijmen H, Willighagen E (2012) Cheminformatics. 
Commun ACM 55(11):65–75

 8. Kearnes S, McCloskey K, Berndl M, Pande V, Riley P (2016) Molecular graph 
convolutions: moving beyond fingerprints. J Comput Aided Mol Des 
30(8):595–608

 9. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural 
message passing for quantum chemistry. In: Proceedings of the 34th 
International Conference on Machine Learning, vol. 70, pp 1263–1272

 10. Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-
Guzik A, Adams RP (2015) Convolutional networks on graphs for learning 
molecular fingerprints. Adv Neural Inform Process Syst 28:2224–2232

 11. Jin W, Coley CW, Barzilay R, Jaakkola T (2017) Predicting organic reaction 
outcomes with weisfeiler-lehman network. In: Proceedings of the 31st 
International Conference on Neural Information Processing Systems, pp 
2604–2613

https://github.com/clinfo/kGCN
https://github.com/clinfo/kGCN
https://github.com/clinfo/kGCN/blob/master/LICENSE
https://github.com/clinfo/kGCN/blob/master/LICENSE
https://doi.org/10.1002/minf.201501008


Page 10 of 10Kojima et al. J Cheminform           (2020) 12:32 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

 12. Berthold MR, Cebron N, Dill F, Gabriel TR, Kotter T, Meinl T, Ohl P, Thiel K, 
Wiswedel B (2009) Knime - the konstanz information miner: version 20 
and beyond. ACM SIGKDD Explorat Newslett 11(1):26–31

 13. Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT Press
 14. Hamanaka M, Taneishi K, Iwata H, Ye J, Pei J, Hou J, Okuno Y (2017) 

Cgbvs-dnn: prediction of compound-protein interactions based on deep 
learning. Mol Inform 36(1–2):1600045

 15. Nguyen TT, Nguyen T, Le DH, Quinn H, Venkatesh S (2020) Predicting 
drug–target binding affinity with graph neural networks. bioRxiv. https 
://doi.org/10.1101/68466 2. https ://www.biorx iv.org/conte nt/early 
/2020/01/22/68466 2.full.pdf

 16. Tsubaki M, Tomii K, Sese J (2019) Compound-protein interaction 
prediction with end-to-end learning of neural networks for graphs and 
sequences. Bioinformatics 35(2):309–318

 17. Ramsundar B, Liu B, Wu Z, Verras A, Tudor M, Sheridan RP, Pande V (2017) 
Is multitask deep learning practical for pharma? J Chem Inform Model 
57(8):2068–2076

 18. Sanyal S, Balachandran J, Yadati N, Kumar A, Rajagopalan P, Sanyal S, 
Talukdar P (2018) MT-CGCNN: Integrating crystal graph convolutional 
neural network with multitask learning for material property prediction. 
arXiv preprint arXiv :1811.05660 

 19. Liu K, Sun X, Jia L, Ma J, Xing H, Wu J, Gao H, Sun Y, Boulnois F, Fan J (2019) 
Chemi-net: a molecular graph convolutional network for accurate drug 
property prediction. Int J Mol Sci 20(14):3389

 20. Selvaraju RR, Cogswell M, Das Vedantam AR, Parikh D, Batra D (2017) 
Grad-cam: visual explanations from deep networks via gradient-based 
localization. In: Proceedings of the IEEE International Conference on 
Computer Vision, pp 618–626

 21. Smilkov D, Thorat N, Kim B, Viegas F, Wattenberg M (2017) Smoothgrad: 
removing noise by adding noise. arXiv preprint arXiv:1706.03825

 22. Sundararajan M, Taly A, Yan Q (2017) Axiomatic attribution for deep net-
works. In: Proceedings of the 34th International Conference on Machine 
Learning, vol 70, pp 3319–3328. JMLR.org

 23. Snoek J, Larochelle H, Adams RP (2012) Practical bayesian optimization 
of machine learning algorithms. In: Proceedings of the 25th Interna-
tional Conference on Neural Information Processing Systems, vol 2, pp 
2951–2959

 24. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat 
S, Irving G, Isard M, et al. (2016) Tensorflow: a system for large-scale 
machine learning. In: 12th USENIX Symposium on Operating Systems 
Design and Implementation, pp 265–283

 25. Ramsundar B, Eastman P, Walters P, Pande V (2019) Deep learning for the 
life sciences. O’Reilly Media inc.,

 26. pfnet research: chainer-chemistry. https ://githu b.com/pfnet -resea rch/
chain er-chemi stry

 27. Popova M Openchem: deep learning toolkit for computational chemistry 
and drug design. https ://githu b.com/Marie welt/OpenC hem

 28. Tokui S, Oono K, Hido S, Clayton J Chainer (2015) A next-generation 
open source framework for deep learning. In: Proceedings of Workshop 
on Machine Learning Systems (LearningSys) in the Twenty-ninth Annual 
Conference on Neural Information Processing Systems (NIPS), vol 5, pp 
1–6

 29. Landrum G (2018) RDKit: open-source cheminformatics. http://www.rdkit 
.org (Accessed August 21 2019)

 30. Kipf TN, Welling M (2017) Semi-supervised classification with graph 
convolutional networks. In: International Conference on Learning 
Representations

 31. Altae-Tran H, Ramsundar B, Pappu AS, Pande V (2017) Low data drug 
discovery with one-shot learning. ACS Cent Sci 3:283–293

 32. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep 
network training by reducing internal covariate shift. arXiv preprint. 
arXiv:1502.03167

 33. Montanari F, Kuhnke L, Laak A Ter, Clevert D-A (2020) Modeling physico-
chemical admet endpoints with multitask graph convolutional networks. 
Molecules 25(1):44

 34. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, 
Davis A, Dean J, Zheng X (2015) TensorFlow: large-scale machine learning 
on heterogeneous systems. https ://www.tenso rflow .org/ (Accessed 21 
August 2019)

 35. Chollet F, et al (2015) Keras. https ://githu b.com/fchol let/keras 
 36. Ishida S, Terayama K, Kojima R, Takasu K, Okuno Y (2019) Prediction and 

interpretable visualization of retrosynthetic reactions using graph convo-
lutional networks. J Chem Inform Model 59(12):5026–5033

 37. The GPyOpt authors: GPyOpt (2016) A bayesian optimization framework 
in Python. http://githu b.com/Sheffi eldM L/GPyOp t

 38. Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH, 
Kuijer MB, Matos RC, Tran TB et al (2009) Predicting new molecular targets 
for known drugs. Nature 462(7270):175–181

 39. Gimeno A, Beltrán-Debón R, Mulero M, Pujadas G, Garcia-Vallvé S (2020) 
Understanding the variability of the S1’ pocket to improve matrix metal-
loproteinase inhibitor selectivity profiles. Drug Discov Today 25(1):38–57

 40. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem 
Informat Model 50(5):742–754

 41. Mauri A, Consonni V, Pavan M, Todeschini R (2006) Dragon software: an 
easy approach to molecular descriptor calculations. MATCH Commun 
Math Comput Chem 56(2):237–248

 42. Zhang P, Tao L, Zeng X, Qin C, Chen S, Zhu F, Li Z, Jiang Y, Chen W, Chen 
Y-Z (2016) A protein network descriptor server and its use in studying 
protein, disease, metabolic and drug targeted networks. Brief Bioinform 
18(6):1057–1070

 43. Rossello A, Nuti E, Carelli P, Orlandini E, Macchia M, Nencetti S, Zando-
meneghi M, Balzano F, Barretta GU, Albini A, Benelli R, Cercignani G, 
Murphy G, Balsamo A (2005) Ni-propoxy-n-biphenylsulfonylaminobu-
tylhydroxamic acids as potent and selective inhibitors of mmp-2 and 
mt1-mmp. Bioorg Med Chem Lett 15(5):1321–1326

 44. Antoni C, Vera L, Devel L, Catalani MP, Czarny B, Cassar-Lajeunesse E, Nuti 
E, Rossello A, Dive V, Stura EA (2013) Crystallization of bi-functional ligand 
protein complexes. J Struct Biol 182(3):246–254

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1101/684662
https://doi.org/10.1101/684662
https://www.biorxiv.org/content/early/2020/01/22/684662.full.pdf
https://www.biorxiv.org/content/early/2020/01/22/684662.full.pdf
http://arxiv.org/abs/1811.05660
https://github.com/pfnet-research/chainer-chemistry
https://github.com/pfnet-research/chainer-chemistry
https://github.com/Mariewelt/OpenChem
http://www.rdkit.org
http://www.rdkit.org
https://www.tensorflow.org/
https://github.com/fchollet/keras
http://github.com/SheffieldML/GPyOpt

	kGCN: a graph-based deep learning framework for chemical structures
	Abstract 
	Introduction
	Implementation
	Graph representation of molecules for GCN
	Graph convolutional network
	Graph convolution layer
	Graph dense layer
	Graph gather layer

	Visualization of graph convolutional network
	Hyper-parameter optimization
	Interfaces
	Command-line interface
	KNIME interface
	Python interface
	Flexible user interfaces


	Results
	Conclusion
	References




