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Histone variant H2A.B-H2B dimers are
spontaneously exchanged with canonical H2A-H2B
in the nucleosome
Rina Hirano 1,2, Yasuhiro Arimura 1, Tomoya Kujirai1, Mikihiro Shibata 3,4, Aya Okuda 5,

Ken Morishima 5, Rintaro Inoue5, Masaaki Sugiyama5 & Hitoshi Kurumizaka 1,2✉

H2A.B is an evolutionarily distant histone H2A variant that accumulates on DNA repair sites,

DNA replication sites, and actively transcribing regions in genomes. In cells, H2A.B

exchanges rapidly in chromatin, but the mechanism has remained enigmatic. In the present

study, we found that the H2A.B-H2B dimer incorporated within the nucleosome exchanges

with the canonical H2A-H2B dimer without assistance from additional factors, such as his-

tone chaperones and nucleosome remodelers. High-speed atomic force microscopy revealed

that the H2A.B nucleosome, but not the canonical H2A nucleosome, transiently forms an

intermediate “open conformation”, in which two H2A.B-H2B dimers may be detached from

the H3-H4 tetramer and bind to the DNA regions near the entry/exit sites. Mutational

analyses revealed that the H2A.B C-terminal region is responsible for the adoption of the

open conformation and the H2A.B-H2B exchange in the nucleosome. These findings provide

mechanistic insights into the histone exchange of the H2A.B nucleosome.
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In eukaryotes, chromatin compacts genomic DNA for accom-
modation within the nucleus. The basic structural unit of
chromatin is the nucleosome, which is composed of the

nucleosome core particle (NCP) and linker DNAs. In the NCP,
two histone H2A-H2B dimers associate with one histone H3-H4
tetramer, forming the histone octamer, and 145–147 base pairs of
DNA are tightly bound to its basic surface1,2. Histones are stably
incorporated into chromatin with a very slow exchange rate in
living cells3, indicating that the NCP exists as a stable archi-
tecture. Therefore, the machineries managing genomic DNA
functions, such as transcription, replication, repair, and recom-
bination, must work on the DNA tightly wrapped within the
NCP4–6. To relieve this NCP barrier in the genome, NCPs have
versatile structures and dynamics7–11.

Histone variants are independently encoded by distinct
genes12,13, and are considered to increase the variations in NCP
structures and dynamics in chromatin6,14–27. The human testis-
specific histone H3 variants, H3T and H3.5, form unstable NCPs, as
compared to the canonical NCP14,15. CENP-A is a histone H3
variant that dictates the centromeric region of the chromosome,
and forms an NCP structure with flexibly detached DNA ends16–20.
In the NCPs containing histone H2A variants, H2A.Z.1 and H2A.

Z.2, the overall NCP structures are equivalent to those of the
canonical NCPs, but the local structures around the H2A.Z L1-loop
regions are substantially different21,22.

H2A.B (formerly named H2A.Bbd in human) is an evolutio-
narily distant histone H2A variant that conserves about 50%
amino acid identity, as compared to the canonical H2A, and has
short C-terminal tail28 (Fig. 1a). In mammalian cells, H2A.B
reportedly accumulates on the transcription start sites29–31 and/
or gene body regions of transcribing genes31–34. H2A.B also
transiently assembles at DNA repair and replication sites35,36.
These findings suggest that H2A.B may briefly form an NCP and
protect the genomic DNA from endogenous and exogenous
attacks, such as ionizing radiation or nucleases, when chromatin
is re-configured after DNA transcription, repair, and replication.
Indeed, H2A.B forms the NCP structure with flexible DNA ends
in vitro35,37–41. The presence of flexible DNA ends in the H2A.B
NCP is also supported by a molecular dynamics simulation
study42. However, the biochemical properties of the H2A.B NCP
have remained poorly understood.

In the present study, we found that the nucleosomal H2A.B-
H2B dimer efficiently exchanges with the canonical H2A-H2B
dimer, probably by forming an intermediate “open conformation”
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Fig. 1 Crystallization of the H2A.B/H2A heterotypic NCP. a Sequence alignment of H2A, H2A.B, H2A.Z, and H2A.X. The specific residues of H2A.B, H2A.
Z, and H2A.X, as compared with H2A, are colored blue, orange, and green, respectively. Dashes indicate gaps in the alignment. The C-terminal region of
H2A (enclosed in the red square) is replaced with that of H2A.B (enclosed in the red square), in the chimeric protein shown in Fig. 5a and Supplementary
Fig. 5. (a, b) The purified NCPs were analyzed by native-PAGE with ethidium bromide staining (b) and SDS-PAGE with Coomassie Brilliant Blue (CBB)
staining (c). d The crystals obtained in the presence of the H2A.B/H2A heterotypic NCP (see “Methods”). e Histones in the crystals (lane 2) and in the
solution of the H2A.B/H2A heterotypic NCP (lane 3) were analyzed by SDS-PAGE with CBB staining. The uncropped gel images are shown in
Supplementary Fig. 9.
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NCP structure. Interestingly, the H2A.B-specific C-terminal tail
segment is important for the adoption of the open conformation
and the H2A.B-H2B exchange in the NCP. These findings pro-
vide important insights into understanding the unusual behavior
and function of H2A.B in cells.

Results
Nucleosomal H2A.B exchanges with canonical H2A without
additional factors. H2A.B is a rapid-exchanging histone variant
in cells35,43. To study the structural features of the H2A.B NCP,
we reconstituted the NCP with recombinant human histones,
H2A.B, H2B, H3, and H4, and obtained its crystals. However, the
crystals of the H2A.B NCP generated poor X-ray diffraction data,
probably due to the flexible nature of its DNA ends35,37–41. We
previously reported that the crystal of the heterotypic NCP with
the histone variant, CENP-A, which forms an NCP with flexible
DNA ends, diffracted better than that of the homotypic NCP19,44.
This fact led us to prepare the heterotypic NCP containing one
each of H2A.B and H2A in the NCP, to improve the quality of the
crystals (Fig. 1b, c). We then performed the X-ray crystal-
lographic analysis (Fig. 1d). Surprisingly, the putative H2A.B/
H2A heterotypic NCP lacked H2A.B and was formed with two
canonical H2As (Supplementary Fig. 1 and Table 1), although the
NCP sample before crystallization actually formed the heterotypic
NCP containing both the H2A.B and H2A proteins (Fig. 1e). This
implied that, during the crystallization processes, the nucleosomal
H2A.B may be exchanged with the canonical H2A without
assistance from additional factors.

Nucleosomal H2A.B-H2B exchanges with free H2A-H2B in
solution. We then performed the histone exchange assay to
determine whether the nucleosomal H2A.B is actually exchanged
with the canonical H2A, without additional factors. In this assay,
the H2A.B NCP or the canonical NCP (H2A NCP) was incubated
with the purified H2A-H2B dimer, and the resulting NCPs were
analyzed by native polyacrylamide gel electrophoresis (PAGE). To
confirm the incorporation of the H2A-H2B dimer exogenously
added to the NCP, we used a fluorescently labeled H2A-H2B dimer
(H2A-H2Bfluo) as the exogenously added H2A-H2B dimer (Fig. 2a
and Supplementary Fig. 2). Since the H2A.B NCP migrates more
slowly in 6% native PAGE as compared to the canonical H2A NCP,
the H2A-H2Bfluo dimer exchange can be detected by the migration
change of the resulting NCPs, in addition to the fluorescence signal
(Fig. 2b, Supplementary Fig. 3). As shown in Fig. 2b–d (lanes 5–8),
the H2A-H2Bfluo dimer was substantially incorporated into the
NCP, when the H2A.B NCP was incubated with the H2A-H2Bfluo

dimer. In contrast, only a trace amount of the H2A-H2Bfluo dimer
was incorporated into the H2A NCP by spontaneous histone
exchange, when the H2A-H2Bfluo dimer was added to the reaction
mixture (Fig. 2b–d, lanes 1–4). These results indicated that the
H2A.B-H2B dimer in the NCP spontaneously exchanges with the
canonical H2A-H2B dimer.

The H2A.B NCP forms an open conformation. To understand
the mechanism of H2A.B-H2B dimer exchange in the H2A.B
NCP, we performed a high-speed atomic force microscopy (HS-
AFM) analysis45. This method allows the visualization of the
dynamic structural transition of the nucleosome46–48. We found
that 49.4% of the H2A.B NCP existed as the open conformation,
in which two small histone complexes (probably H2A.B-H2B
dimers) are bound to the DNA and detached from the large
histone complex (probably H3-H4 tetramer) at the initial stage of
the HS-AFM analysis (Fig. 3a, c). In contrast, in the canonical
H2A NCP, only a small proportion (5.3%) of the open con-
formation was observed at the initial stage (Fig. 3b, d).

We selected NCPs with about 6 nm heights and monitored the
NCP dissociation induced by scratching with the HS-AFM probe
(Fig. 4). We found that the putative H2A.B-H2B dimers bound to
the detached DNA region were continuously observed in the
H2A.B NCP (Fig. 4a). This suggested that the H2A.B NCP was
transformed into the open conformation (Fig. 4a and Supple-
mentary movie S1). In contrast, in the H2A NCP, the putative
H2A-H2B dimers were rapidly released from the DNA, and an
obvious open conformation of the H2A NCP was rarely observed
when the H2A-H2B dimer was released (Fig. 4b and Supple-
mentary movie S2). The dwelling time of the H2A.B-H2B dimer
on the nucleosomal DNA was quite long (average 24.6 s), as
compared to that of the canonical H2A-H2B dimer (average
4.4 s), during the NCP disruption process (Supplementary Fig. 4).
These results suggested that the H2A.B NCP, but not the H2A
NCP, may dynamically adopt the open conformation.

The H2A.B C-terminal region is responsible for the open
conformation adoption and the H2A-H2B exchange activity.
The H2A.B variant is smaller than the canonical H2A, because of
its shorter C-terminal tail region (Fig. 1a). In addition, the
C-terminal amino acid sequence of H2A.B is not conserved
among the H2A variants28 (Fig. 1a). We hypothesized that the C-
terminal region of H2A.B may play a role in its specific char-
acteristics, such as the adoption of the open conformation. To test
this hypothesis, we prepared the canonical H2A mutant, H2AH2A.

B(102–114), in which the C-terminal region (amino acid residues
98–129) of canonical H2A is replaced with the corresponding
H2A.B C-terminal region (amino acid residues 102–114) (Figs. 5a
and 1a). The NCP containing the H2AH2A.B(102–114) mutant
was reconstituted (Supplementary Fig. 5). Consistent with our

Table 1 X-ray crystallography data collection and refinement
statistics.

NCP

Data collection
Space group P212121
Cell dimensions
a, b, c (Å) 98.56, 107.71, 168.16
α, β, γ (°) 90.000, 90.000, 90.000
Resolution (Å) 50.00–2.6 (2.69–2.60)
Rmerge 9.5 (50.1)
I / σI 69.4 (5.6)
Completeness (%) 98.5 (96.5)
CC1/2 in outer shell 0.747
Redundancy 5.3 (4.4)
Refinement
Resolution (Å) 49.72–2.6
No. reflections 54914
Rwork / Rfree 19.7/24.8
No. atoms
Protein 5975
DNA 5967
Water 0
Ion 4
B-factors
Protein 50.2
DNA 76.4
Water –
Ion 82.8
R.m.s. deviations
Bond lengths (Å) 0.010
Bond angles (°) 1.228

Values in parentheses are for highest-resolution shell.
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hypothesis, most of the H2AH2A.B(102–114) NCP formed an open
conformation similar to that of the H2A.B NCP detected by HS-
AFM (Fig. 5b, c, Supplementary Fig. 6, and Supplementary
movie S3).

We next performed a small-angle X-ray scattering (SAXS)
analysis. In this method, the apparent NCP volume can be
evaluated as the radius of gyration (Rg). As shown in Table 2, the
Rg value of the H2A.B NCP was 56.5 ± 0.5 Å, which is
substantially larger than that of the canonical NCP (44.9 ±
1.0 Å). Intriguingly, the Rg value of the H2AH2A.B(102–114) NCP
was 52.9 ± 0.4 Å, which is also substantially larger than that of the
canonical NCP (Table 2). These results supported the idea that
the C-terminal region of H2A.B plays a role in forming the open
conformation of the NCP in solution.

The detachment of the H2A.B-H2B dimers from the H3-H4
tetramer in the NCP may be important for generating the open
conformation. The cryo-EM structure of the H2A.B NCP
demonstrated that the H2A.B-H2B dimers associate with the
H3-H4 tetramer in the NCP41. However, our gel filtration
chromatography experiments revealed that, in the absence of

DNA, the H2A.B-H2B dimer eluted separately from the H3-H4
tetramer, and did not form a histone octamer under conditions
with 2M NaCl (Fig. 5d, Supplementary Fig. 7a). In contrast, the
canonical H2A-H2B dimers associate with an H3-H4 tetramer
and form a histone octamer under the same experimental
conditions (Fig. 5e, Supplementary Fig. 7b). These differences
indicate that the association of the H2A.B-H2B dimer with the
H3-H4 tetramer is weaker than that of the H2A-H2B dimer with
the H3-H4 tetramer. This is perfectly consistent with the previous
reports37,41. Interestingly, the H2AH2A.B(102–114)-H2B dimer, like
the H2A.B-H2B dimer, eluted separately from the H3-H4
tetramer (Fig. 5f, Supplementary Fig. 7c). These results supported
the hypothesis that the weak association between the H2A.B-H2B
dimer and the H3-H4 tetramer in the NCP is mediated by the
H2A.B C-terminal region, and may be required for the formation
of the open conformation of the NCP.

We finally tested whether the H2A.B C-terminal region
functions in the H2A-H2B exchange. As expected, the exchange
rates of the H2AH2A.B(102–114)-H2B dimers and the wild-type
H2A.B-H2B dimers in the NCPs with the H2A-H2B dimers
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Fig. 2 Histone exchange activity of the H2A.B NCP. a Schematic representation of the histone exchange assay. The NCP was incubated with the H2A-H2B
dimer, in which the H2B protein was conjugated with the Alexa Fluor 488 fluorescent dye (H2A-H2Bfluo dimer). The samples were analyzed by native-
PAGE. b–d Representative gel images of the histone exchange assay. The H2A NCP (1 µM) was incubated with the H2A-H2Bfluo dimer (0 µM: lane 1; 2 µM:
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PAGE. The gels were visualized by ethidium bromide staining, or through the Alexa488 conjugated with the H2A-H2B dimer. b Ethidium bromide;
c Alexa488 (H2A-H2Bfluo); d Overlay of ethidium bromide (green) and Alexa-488 (magenta). The asterisk indicates the NCP-histone complexes.
Reproducibility is confirmed by three independent experiments, and the results are presented in Supplementary Fig. 3. The uncropped gel images are
shown in Supplementary Fig. 9.
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were similar (Fig. 6a–c, Supplementary Fig. 8). Therefore, we
concluded that the H2A.B C-terminal region may enhance
the H2A-H2B exchange in the NCP, through the adoption of the
open conformation (Fig. 6d model).

Discussion
H2A.B is a mysterious histone variant with quite interesting struc-
tural and physical characteristics35,37–42,49–51. Histone exchange is
usually facilitated by factors, such as histone chaperones and
nucleosome remodelers5,52. The nucleosomal H2A.B-H2B exchange
is also reportedly promoted by the histone chaperone Nap153.
Surprisingly, we found that the H2A.B-H2B dimer incorporated into
the NCP efficiently exchanges with the canonical H2A-H2B dimer,
without assistance from additional factors (Figs. 1 and 2).

Previous studies demonstrated that H2A.B is incorporated
into chromatin at replication and repair sites, and rapidly
exchanged within several minutes in cells35,43. The exchange-
able H2A.B variant may be utilized as a histone that tem-
porarily protects the naked DNA regions emerging during
DNA replication and repair. This rapid removal of the
nucleosomal H2A.B may be mediated by the spontaneous H2A.
B-H2B exchange with the canonical H2A-H2B. H2A.B also
accumulates around the transcription start sites and/or gene
bodies of transcribed genes29–34. The NCP containing the H2A.
B-H2B dimers has a tendency to adopt the open conformation
(Figs. 3 and 4), in which the nucleosomal DNA may become
more accessible to DNA-interacting factors, such as transcrip-
tion factors and RNA polymerase54,55. It will be intriguing
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of the counted particles. The source data for HS-AFM analysis are shown in Supplementary Data 1.
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to study the transcription efficiency on the nucleosome
containing H2A.B.

H2A.B reportedly exists in spermatogenic cells and sperm56.
During spermatogenesis, the chromatin architecture drastically
changes and most of the nucleosomes are replaced by protamines
in sperm57. The H2A.B-H2B exchange activity may be important
to promote transitions of the chromatin architecture in the testis.
A mouse histone H2A variant, H2A.L.2, reportedly functions in
the histone replacement process by transition proteins and pro-
tamines26. Although mouse H2A.L.2 lacks a human homolog, like
human H2A.B, it contains a shortened C-terminal region58. We
determined that the H2A.B C-terminal region is responsible for
the H2A.B-H2B exchange activity via the adoption of the open
conformation (Figs. 5 and 6). In addition, both mouse H2A.L2
and human H2A.B are retained in sperm56,57,59–61. These simi-
larities suggest that, in humans, H2A.B may serve as a counter-
part to mouse H2A.L.2, which plays an essential role in
spermatogenesis26.

In the present study, we found that the H2A.B NCP forms an
open conformation, which may be an intermediate structure for
the H2A.B-H2B exchange in the NCP (Figs. 3 and 4). In light of
this finding, we propose a model for the nucleosomal H2A.B-H2B
exchange (Fig. 6d). In this model, the H2A.B NCP (closed con-
formation) dynamically adopts the open conformation, which
may facilitate access to the H3-H4 tetramer (Figs. 6d, (1) to (2)).
A conformational change between the closed and open con-
formations may occur, because the association of the H2A.B-H2B
dimer with the H3-H4 tetramer is substantially weaker, as com-
pared to that between the H2A-H2B dimer and the H3-H4
tetramer37,41 (Fig. 5). This is consistent with the fact that the H2A

docking domain (mapped to its C-terminal region), which
interacts with the H3-H4 tetramer in the histone octamer, is not
conserved in H2A.B37,39. In the canonical NCP, the H2A C-
terminal residues (P109 and I111), which are not conserved in
H2A.B, directly interact with the H3 residues (L48, I51, and Q55).
In the open conformation, the H2A-H2B dimers may bind to the
H3-H4 tetramer, because the H3-H4 surface becomes accessible
in this conformation (Figs. 6d, (3)), and the H2A.B-H2B dimers
could be evicted from the nucleosomal DNA (Figs. 6d, (4)). This
model is consistent with the previous mutational analysis, in
which the mutations of the histone H3 l51 and Q55 residues,
located on the binding surface with the H2A C-terminal region in
the NCP, enhanced the H2A-H2B exchange rate62.

The nucleosome has a stable architecture that often becomes
an obstacle for gene functions, such as transcription, DNA
replication, DNA recombination, and DNA repair. This negative
effect of the nucleosome is utilized to regulate the genomic DNA
functions, and may play a central role in the epigenetic regulation
of genes in eukaryotes. Histone variants are considered to provide
versatility in the nucleosome structures and physical properties,
and play important roles in the epigenetic regulation of the
genome6–11. The nucleosomal H2A-H2B exchange revealed in
the present study is a quite unique characteristic specific for the
H2A.B variant, and may play an important role in epigenetic
regulation in mammals. Detailed structural studies of the open
conformation of the H2A.B NCP are awaited.

Methods
Preparation of histones and histone mutants. The human histones, H2A,
H2B, H2B(T122C), H3.1, H4, H2A.B, and H2AH2A.B(102–114), were produced as
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Fig. 4 HS-AFM observations of the NCPs containing H2A.B and H2A. a, b Sequential HS-AFM images of the H2A.B NCP (a) and the H2A nucleosome
(b). Representative NCPs with about 6 nm heights are shown, and the dissociation processes of the NCPs elicited by scratching with the HS-AFM probe
were monitored. White arrows indicate possible histone dimers. Scale bars are 20 nm. Frame rate is 2.5 frames per second.
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Fig. 5 HS-AFM observation and histone octamer formation assay of the H2AH2A.B(102–114) NCP. a Graphical representation of the chimeric protein used
in the HS-AFM observations shown in (b, c) and the histone octamer formation assay shown in (d–f). b Initial HS-AFM images of the H2AH2A.B(102–114)

NCP. Individual particles are presented in the panels. White arrows indicate possible histone dimers. Scale bars are 20 nm. c The numbers of histone
dimers in individual particles were counted and plotted. N indicates the total number of the counted particles. The source data for HS-AFM analysis are
shown in Supplementary Data 1. d–f The H3-H4 tetramers were mixed with the H2A.B-H2B dimer (d), the H2A-H2B dimer (e), or the H2AH2A.B(102–114)-
H2B dimer (f), and incubated in the presence of 2M NaCl at 37 °C for 30 min. After the incubation, the samples were subjected to chromatography on a
Superdex 200 10/300 GL column. Histone compositions of the peak fractions were analyzed by 18% SDS-PAGE with CBB staining. Reproducibility is
confirmed by two independent experiments, and the results are presented in Supplementary Fig. 7. The uncropped gel images are shown in
Supplementary Fig. 9.
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recombinant proteins in Escherichia coli cells, and purified by the methods
described previously35,63. Briefly, proteins were produced in E. coli BL21(DE3) cells
as hexa-histidine (His6)-tagged proteins. The His6-tagged proteins were purified by

Ni-NTA agarose (QIAGEN) chromatography under denaturing conditions. Except
for H2A.B and H2AH2A.B(102–114), the His6-tag was removed by cleavage with
thrombin protease, and the histone proteins were further purified by MonoS cation
exchange column chromatography. The His6-tags of H2A.B and H2AH2A.B(102–114)

were removed after the H2A.B-H2B or H2AH2A.B(102–114)-H2B dimer formation,
as described below. The resulting proteins were desalted and lyophilized.

Preparation of the histone complexes. The H2A-H2B, H2A-H2B(T122C), H2A.
B-H2B, H2AH2A.B(102–114)-H2B dimers, and the H3.1-H4 tetramer were prepared
as described previously63. The H2AH2A.B(102–114)-H2B dimer was purified by the
same method used for the H2A.B-H2B dimer preparation. For the H2A-H2B
dimer, the H2A-H2B(T122C) dimer, and the H3-H4 tetramer, the freeze-dried
histones were mixed at equal molar ratio, and dissolved in 20 mM Tris-HCl (pH

Table 2 SAXS analyses of the H2A, H2A.B, and H2AH2A.B

(102–114) NCPs.

NCP Rg [Å]

H2A 44.9 ± 1.0
H2A.B 56.5 ± 0.5
H2AH2A.B(102–114) 52.9 ± 0.4
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Fig. 6 Histone exchange activity of the H2AH2A.B(102–114) NCP. a–c Representative gel images of the histone exchange assays of the H2A (a), H2A.B (b),
and H2AH2A.B(102–114) (c) NCPs. The NCPs (1 µM) were incubated with the H2A-H2B dimer (0 µM: lane 1; 2 µM: lanes 2, 3, and 4) for 10min (lane 2),
120min (lane 3), and 360min (lanes 1 and 4). After the incubation, the samples were analyzed by native-PAGE with ethidium bromide staining. The
asterisk indicates the NCP-histone complexes. Reproducibility is confirmed by three independent experiments, and the results are presented in
Supplementary Fig. 8. The uncropped gel images are shown in Supplementary Fig. 9. d Model showing the spontaneous exchange of the H2A.B-H2B dimer
with the canonical H2A-H2B dimer in the H2A.B NCP. When the H2A.B NCP forms an open conformation (2), the H2A-H2B dimer (dark gray) preferably
binds to the H3-H4 tetramer (light gray) because of its higher affinity to the H3-H4 tetramer (3). The DNA rebinds with the newly accommodated H2A-
H2B dimer (4). Another H2A-H2B dimer then binds to the NCP (5), and the remaining H2A.B-H2B dimer (blue) dissociates from the DNA (6).
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7.5) buffer, containing 7M guanidine-HCl and 20 mM 2-mercaptoethanol. The
complexes were refolded by dialysis against refolding buffer, containing 10 mM
Tris-HCl (pH 7.5), 2 M NaCl, 1 mM EDTA, and 5 mM 2-mercaptoethanol. The
complexes were further purified by chromatography on a Superdex 200 gel fil-
tration column (GE Healthcare).

The purified His6-tagged H2A.B or H2AH2A.B(102–114) was mixed with H2B in
1:1 stoichiometry, and dissolved in 20 mM Tris-HCl (pH 7.5) buffer, containing
7M guanidine-HCl and 20 mM 2-mercaptoethanol. The H2A.B-H2B and
H2AH2A.B(102–114) -H2B complexes were refolded by dialysis against refolding
buffer, containing 10 mM Tris-HCl (pH 7.5), 2 M NaCl, 1 mM EDTA, and 5 mM
2-mercaptoethanol. After dialysis, the buffer was exchanged to refolding buffers
containing 1M, 0.5 M, and 0.1 M NaCl, in a stepwise manner. The His6-tag was
removed by a treatment with thrombin protease (Wako), and the complex was
further purified by chromatography on a Superdex 200 gel filtration column (GE
Healthcare). Alexa488 labeling of the H2A-H2B (T122C) dimer was performed as
described previously64. The purified H2A-H2B(T122C) complex was conjugated
with Alexa Fluor 488 C5 Maleimide (invitrogen) in 10 mM Tris-HCl (pH 7.5)
buffer, containing 2 M NaCl, 1 mM EDTA, and 1 mM TCEP. The reaction was
stopped by adding 2-mercaptoethanol. The sample was then dialyzed against
10 mM Tris-HCl (pH 7.5) buffer, containing 2M NaCl, 1 mM EDTA, and 5 mM 2-
mercaptoethanol.

Purification of the NCPs. The NCPs were prepared by the salt dialysis method
with the palindromic 146 base-pair α-satellite DNA fragment, as described
previously1,65. The DNA fragment containing one half of the α-satellite DNA
fragment in pGEM-T Easy vector was amplified in the E. coli strain DH5α, and was
excised from the plasmid DNA by EcoR V (Takara). The DNA fragment was then
dephosphorylated by alkaline phosphatase (Takara), and was further cleaved by
EcoR I. The DNA fragment was purified by DEAE-5PW anion-exchange column
chromatography (TOSOH). The DNA fragment was self-ligated by T4 DNA ligase
(NIPPON GENE), and the resulting DNA fragment was further purified by DEAE-
5PW anion-exchange column chromatography (TOSOH).

The reconstituted NCPs were purified by non-denaturing gel electrophoresis,
using a Prep Cell model 491 apparatus (Bio-Rad). For the H2A/H2A.B heterotypic
NCP preparation, the 146 base-pair DNA, the H2A-H2B dimer, the H2A.B-H2B
dimer, and the H3.1-H4 tetramer were mixed in a 1:0.85:2.55:1.7 molar ratio. The
NCPs were reconstituted by the salt dialysis method. As a result, H2A/H2A, H2A/
H2A.B, and H2A.B/H2A.B NCPs were reconstituted. The resulting three types
of NCPs were separated by non-denaturing gel electrophoresis, using a Prep
Cell model 491 apparatus (Bio-Rad), and the heterotypic NCP was selectively purified.

Crystallization of the heterotypic NCP. The NCPs were dialyzed against 20mM
potassium cacodylate buffer (pH 6.0) containing 1mM EDTA, for crystallization. The
crystals were obtained by the hanging drop method. The NCP (1 µl, 2.33 mg/ml DNA
concentration) was mixed with 1 µl of 20mM potassium cacodylate buffer (pH 6.0),
containing 50mM KCl and 70–190mMMnCl2. The mixture was equilibrated against
500 µl of reservoir solution, containing 20mM potassium cacodylate (pH 6.0), 40mM
KCl, and 55–110mM MnCl2. Crystals of the NCPs were obtained in 6–8 weeks. The
crystals were cryoprotected by soaking in 19mM potassium cacodylate buffer (pH
6.0), containing 5% trehalose, 30% polyethylene glycol 400, 38mM KCl, and 86mM
MnCl2. The crystals were then flash-cooled in liquid nitrogen.

Determination of the crystal structure. The X-ray diffraction data were collected
at the beamline BL41XU (wavelength: 1.00000 Å) at SPring-8 (Harima, Japan). The
diffraction data were scaled and processed using the HKL2000 program66. To
prepare the search model for molecular replacement, the H2A atomic coordinates
were removed from the human NCP structure (PDB ID: 5Y0C)67. The molecular
replacement was performed with the PHASER program68. The atomic coordinates
were refined using the PHENIX and Coot programs69,70.

Histone exchange assay. The fluorescently labeled H2A-H2B dimer (2 μM) was
mixed with the NCPs (1 μM), and the mixture was incubated at 37 °C for 10, 120, and
360min in 14mM Tris-HCl buffer (pH 7.5), containing 150mM NaCl, 0.8mM
EDTA, 1.5mM dithiothreitol, and 3mM 2-mercaptoethanol. The resulting samples
were subjected to 6% non-denaturing PAGE. The gel was stained with ethidium
bromide, and the H2A-H2B dimer was visualized by the Alexa488 fluorescence.

For the exchange assay with H2AH2A.B(102–114), the H2A-H2B dimer (2 μM)
was mixed with the NCP (1 μM), and the mixture was incubated at 37 °C for 10,
120, and 360 min in 14 mM Tris-HCl buffer (pH 7.5), containing 150 mM NaCl,
0.8 mM EDTA, 1.5 mM dithiothreitol, and 3 mM 2-mercaptoethanol. The resulting
samples were subjected to 6% native PAGE, and the gel was stained with ethidium
bromide.

HS-AFM observations. HS-AFM images of NCPs were obtained with our
laboratory-build microscope, as described previously71. Briefly, HS-AFM was
performed in the tapping mode. Deflections of the cantilever were detected by a
two-segmented PIN photodiode, using an infrared laser (0.8 mW, 780 nm) focused
through a ×60 objective lens (Nikon, CFI S Plan Fluor ELWD 60x) onto the back
side of a cantilever (Olympus, BL-AC10DS-A2) covered with a gold coating. The

free oscillation amplitude of the cantilever was ~1 nm, and the set-point amplitude
was ~90% of the free amplitude for feedback control of HS-AFM. An amorphous
carbon tip grown by electron beam deposition (EBD) was used as the AFM probe.
For HS-AFM observations of NCPs, a mica surface was treated for 5 min with 50
μg/mL poly-L-lysine (mol. wt. 1000~5000, Sigma-Aldrich). HS-AFM observations
were performed at room temperature (~25 ˚C), in a buffer consisting of 20 mM
Tris-HCl (pH 7.5), 100 mM KCl, and 0.03% NP-40. HS-AFM observations of each
NCP were performed at least three times to confirm the reproducibility. The
imaging rate of HS-AFM is 2.5 frames per second for 100 × 80 nm2. HS-AFM
images were collected using Igor Pro Ver. 8.0.4.2. (WaveMetrics). The images were
analyzed using Igor Pro Ver. 8.0.4.2. (WaveMetrics) and ImageJ.

SAXS analysis. SAXS was performed with a NANOPIX instrument (RIGAKU) at
the Institute of Radiation and Nuclear Science, Kyoto University. To cover the wide q-
range, we measured the sample with two sample-to-detector positions: 1330mm for
0.007 –0.03 Å−1, and 300mm for 0.03–0.8 Å−1, and then combined the measure-
ments. After the standard procedures of transmission correction, buffer scattering
subtraction, and conversion to an absolute scale with water scattering, we obtained the
scattering profile of the NCPs. The NCP concentrations were 1.49 mg/mL, in 20mM
Tris-HCl (pH 7.5), 50mM NaCl, and 1mM dithiothreitol, and the temperature was
kept at 20 °C.

We first examined the sample structure with the Guinier formula, which is
established in the low q-range

ðqÞ ¼ 4π
λ
sin

θ

2

� �
;

(λ and θ are the X-ray wavelength and the scattering angle, respectively).

I qð Þ ¼ I 0ð Þexp �R2
g

3
q2

 !
;

where I(0) and Rg are the zero angle scattering intensity and gyration radius,
respectively. Rg values were calculated with standard error. The observed SAXS
intensity was corrected for background scattering, empty cell scattering, buffer
scattering, and transmission factors, and subsequently converted to the absolute
scale by SAngler (http://pfwww.kek.jp/saxs/SAngler.html). The Guinier analysis
was performed with the linear least square method by Igor Pro (7.04).

Gel filtration assay. The H3-H4 tetramer (2.75 nmol) was incubated with the
H2A-H2B dimer (5.5 nmol), the H2A.B-H2B dimer (5.5 nmol), or the
H2AH2A.B(102–114)-H2B dimer (5.5 nmol), in 100 μl of refolding buffer containing
2 M NaCl, at 37 °C for 30 min. After the incubation, 500 μl of refolding buffer
containing 2 M NaCl was added to each sample mixture. The samples were then
subjected to chromatography on a Superdex S200 10/300 gel filtration column (GE
Healthcare). The peak fractions were analyzed by 18% SDS-PAGE with Coomassie
Brilliant Blue staining.

Statistics and reproducibility. For HS-AFM imaging experiments, the numbers of
total counted particles are presented in Figs. 3c, d, 5c, and Supplementary Fig. 4b, c.
The histone exchange assay was repeated three times. The octamer formation assay
was repeated two times.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The uncropped images of gels are shown in Supplementary Fig. 9. The structural data of
the NCP shown in Supplementary Fig. 1 have been deposited to the Protein Data Bank
(PDB ID: 6V2K). The source data for HS-AFM analysis are shown in Supplementary
Data 1. All other data are available from the authors upon reasonable request.
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