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Abstract 

A new concept is developed to mathematically understand the dynamics of the rainfall-runoff 

events in a barren catchment of the Jordan Rift Valley. Time series data of rainfall and runoff 

have been acquired at an observation point in the catchment. Due to the extreme arid 

environment, water current as the runoff from the catchment is ephemeral, and the 

rainfall-runoff events are clearly distinguishable from each other. Firstly, a pair of linear 

autoregressive models with exogenous input (ARX models) is identified to tightly bound each 

runoff time series using the simplex method of linear programming. The exogenous input part is 

compatible with the conventional unit hydrograph method, while the autoregressive part is 

regarded as a discretized differential operator of fractional orders. Then, a linear fractional 

differential equation is determined to approximate each linear ARX model, which restricts the 

perturbation of the actual causal relationship between rainfall intensity and runoff discharge. The 

resulting lower and upper bounding rainfall-runoff models with fractional derivatives are 

examined in the system-theoretic framework. Finally, a nominal model from which actual 

nonlinear and stochastic phenomena perturb is arranged to envelope the all upper bounding 

rainfall-runoff models in the frequency domain, leading to the formulation of a challenging 
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fractional optimal control problem involving stochastic processes. 

Keywords: Rainfall-runoff model, Jordan Rift Valley, ARX model, Linear programming, 

Fractional calculus, Transfer function 

 

1. Introduction 1 

 2 

One of the most known challenges in hydrology is to model dynamic behaviour of 3 

rainfall-runoff processes, whose input-output relationships are inherently nonlinear and 4 

stochastic. To merely simulate the phenomena, advanced technologies in these decades might be 5 

sufficient. Artificial neural network model approach (Furundzic, 1998; Hsu et al., 1995), fuzzy 6 

logic-based approach (Lohani et al., 2011), and physically-based spatially-distributed model 7 

approach (Deb et al., 2019; Emmanuel et al., 2015) are good examples. However, developing an 8 

appropriate hydrological model is not an easy task when attempting to represent dynamic 9 

causality based on time series data with a finite sampling interval, so that the model is applicable 10 

to practical problems of risk assessment or water resources management. So far, the authors 11 

have used the zero-reverting Ornstein–Uhlenbeck process for drought risk assessment (Sharifi et 12 

al., 2016), the Langevin equation for water flow index in irrigation water management (Unami 13 

and Mohawesh, 2018), and WGEN (Richardson and Wright, 1984) for optimal reservoir 14 

operation with a continuous state variable (Fadhil, 2018). The Langevin equation can be utilized 15 

for hydrological extreme value analysis as well (Rosmann and Dominguez, 2018). In contrast to 16 

these stochastic models, linear models have advantages of utilizing system-theoretic frameworks 17 

(Chang et al., 2019; Goswami et al., 2005; Karlsson and Yakowitz, 1987), especially when they 18 

are regarded as nominal models from which actual nonlinear and/or stochastic phenomena 19 

perturb. A primitive transfer function model of first order coupled with an estimation of error 20 

bounds has been proposed for rainfall-runoff processes in the first author’s earlier work (Unami 21 
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and Kawachi, 2005). Here, we consider linear autoregressive models with exogenous input 22 

(ARX models), which comprehend the conventional unit hydrograph method and autoregressive 23 

models, as well as their continuous time counterparts expressed as fractional differential 24 

equations.  25 

ARX models applied to rainfall-runoff processes forecast the runoff discharges one sampling 26 

time ahead on the basis of linear combinations of the readily available values of hydrological 27 

variables (Osman et al., 2019). Conventional techniques have been developed to determine 28 

regression coefficients achieving the best fitting between model outputs and observations in the 29 

sense of least squares (Box et al., 1994). Other criteria such as absolute error and coefficient of 30 

efficiency are widely used for ad hoc evaluation of model performance (Cheng et al., 2017). A 31 

more rigorous but not well understood approach is to search a set of regression coefficients 32 

yielding envelope to tightly bound observed time series data in the sense of least absolute error. 33 

This can be achieved with the common simplex method of linear programming (LP) (Vedula 34 

and Mujumdar, 2005) when the rainfall-runoff event is of finite length in time, without 35 

necessitating any complex calibration procedure such as Duan et al. (1992), Duan et al. (2006), 36 

or Gautam and Holz (2001). 37 

It is also not well known that a continuous time counterpart of a linear ARX model is 38 

expressed in the form of a linear differential equation including terms of fractional derivatives 39 

(Spolia et al., 1980), which well reproduce the effect of hysteresis, or memory effect, as in the 40 

autoregressive part. Differential equations including terms of fractional derivatives have been 41 

employed for modelling different practical phenomena such as population dynamics (Bushnaq et 42 

al., 2018a), HIV/AIDS infection (Bushnaq et al., 2018b), and infiltration of water into soil 43 

(Fernández-Pato et al., 2018). A rainfall-runoff model with a fractional differential equation has 44 

been developed in the pioneering work of Guinot et al. (2015).  45 

This paper presents a constructive approach to obtaining linear rainfall-runoff models with 46 
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fractional derivatives from time series data acquired at an observation point in a barren 47 

catchment in the Lisan Peninsula of the Dead Sea at the bottom of the Jordan Rift Valley. Water 48 

current in the catchment is ephemeral due to the extreme arid environment, and the 49 

rainfall-runoff events are clearly distinguishable from each other. Complexity of the 50 

rainfall-runoff processes there stems from the presence of salt layers, overhanging cliffs, caverns, 51 

and sinkholes in the karst system (Closson et al., 2007), and the fractional differential equations 52 

are expected to model pathological phenomena with memory effect there such as hysteresis in 53 

soil moisture retention, non-Darcy flows in the karst system, and discontinuous surface flows 54 

which may be of zero-depth. Time series data with a sampling interval of 1 minute have been 55 

successfully acquired for thirteen (13) rainfall-runoff events of finite lengths ranging from 69 56 

minutes to 718 minutes, occurred in five (5) rainy seasons. This minuteness of available 57 

information makes it difficult to follow the innocent approaches based on the conventional 58 

statistical hydrology, which has been useful if the spatio-temporal scale is large; there are 59 

successful case studies in arid and semi-arid regions such as Ajami et al. (2017) on multiple 60 

stations across Australia, Bai et al. (2014) on headstreams of Tarim River in Northwest China, 61 

and Bahmed and Bouzid-Lagha (2020) on an Algerian ephemeral stream. Thus, we introduce the 62 

approach to consider perturbation from a linear nominal model. Firstly, the bounding linear 63 

ARX models are obtained for each rainfall-runoff event, using the simplex method of LP 64 

minimizing the mean absolute error. Then, their continuous time counterparts are established as 65 

fractional differential equations. Finally, the bounding linear rainfall-runoff models with 66 

fractional derivatives are examined in the system-theoretic framework, where the response of 67 

the runoff discharge to the rainfall intensity is evaluated in the frequency domain (Jarad and 68 

Abdeljawad, 2018). Furthermore, a nominal model from which actual phenomena perturb is 69 

arranged. Such models representing dynamic causality in hydrological phenomena are definitely 70 

useful for design and operation of water control structures. There has been significant 71 
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development in the research field of deterministic fractional optimal control problems to obtain 72 

the Pontryagin maximum principles (Agrawal, 2004; Kamocki, 2014a; Kamocki, 2014b; 73 

Kamocki and Majewski, 2015), however, the approach developed here leads to a challenging 74 

fractional optimal control problem involving stochastic processes. 75 

 76 

2. Materials and methods 77 

 78 

2.1 Study site 79 

 80 

The Jordan Rift Valley refers to the depression below the sea level extending over the range 81 

of latitudes 30-33 N and longitudes 35-36 E, including Lake Tiberias to the north and the Dead 82 

Sea in the middle, surrounded by Jordanian Highlands and Judaean Mountains (Van Afferden et 83 

al., 2010). Figure 1 shows the topography of the region including the Jordan Rift Valley, 84 

depicted with the SRTM digital elevation data (Farr et al., 2007). Situated in the lee side of the 85 

Judean mountains with a westerly descending dry and hot wind, the environment of the Jordan 86 

Rift Valley is subject to an arid climate (Tarawneh and Kadıoğlu, 2003). Hadadin and Tarawneh 87 

(2007) reported that the water level of the Dead Sea was significantly receding at a rate of about 88 

1 m per year. This receding rate is almost constant during these decades, and the water level is 89 

431 m below the sea level as of 2020. Currently, the dried-up southern part of the Dead Sea is 90 

mainly used for salt evaporation ponds to produce potash, while the other dried-up land may be 91 

used as farmlands if the constraints of aridity and salinity are solved (Unami et al., 2015). Figure 92 

1 also shows the location of the study site in the Lisan Peninsula of the Dead Sea, and Figure 2 93 

provides a close-up view, where the position of the observation point (red dot), delineation of its 94 

catchment area (yellow line), and the position of an auxiliary raingauge (green dot) are indicated. 95 

The catchment area is a barren land of 1.12 km
2
, and hydraulic structures have been constructed 96 
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at the outlet in order to collect ephemeral water current: flash floods are harvested at a gutter 97 

cutting across a 16 m wide valley bottom and then guided to a reservoir through a conveyance 98 

channel of 60 m long (Unami and Mohawesh, 2018). The conveyance channel is equipped with 99 

a spillway to release excess backwater from the reservoir. Figure 3 is a photo of the catchment 100 

area near the outlet including the gutter of the flash flood harvesting structure. The salt layers 101 

have been eroded to form the overhanging cliffs and caverns, as can be seen in the photo. 102 

Substantial rainfall-runoff events occur only during the rainy season from October to May, 103 

sometimes causing disastrous floods. The harvested water of flash floods is desalinated and used 104 

for irrigation of perennial crops (Unami et al., 2020). Table 1 summarizes the basic 105 

meteorological data obtained at the study site from the observation detailed in the next 106 

subsection, in terms of the rainfall depth D (mm) for each month from October 2014 through 107 

July 2019, the total rainfall depth for each water year, the monthly and annual maximum, mean, 108 

and minimum values of air temperature T (℃). 109 

 110 

Figure 1: The topography of the region including the Jordan Rift Valley and the location of 111 

the study site. 112 

 113 

Figure 2: Close-up view of the study site in the Lisan Peninsula of the Dead Sea. 114 

 115 

Figure 3: Photo of the catchment area near the outlet with the gutter. 116 

 117 

Table 1: Basic meteorological data of rainfall depth D (mm) and air temperature T (℃) 118 

obtained at the study site for each water year. 119 

 120 

2.2 Data collection of rainfall and runoff time series 121 

 122 

As shown in the photos of Figure 4, the observation point has been set up over the 123 
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conveyance channel of 1.6B   m wide rectangular cross-section, at the coordinates 31 15 33.2 124 

N 35 29 20.2 E which falls on the point 2.4 m upstream from the downstream end, operating 125 

with a Campbell data logger connected to a VAISALA multi-weather sensor and a Campbell 126 

water level sensor. The data logging interval is normally 10 minutes, but it switches to 1 minute 127 

if the rainfall depth in the last 10 minutes is equal to or greater than 0.2 mm. If there is no 128 

rainfall for 12 hours, then the logging interval returns back to 10 minutes. This observation 129 

system has been operating since late September of 2014. As a result of numerical experiment 130 

based on the two-dimensional shallow water equations (Sharifi et al., 2015), a functional 131 

relationship between the observed water depth h  (m) and runoff discharge Q  (m
3
/s) is 132 

determined as 133 

 
0.269993.4996Q AR   (1) 134 

where A Bh  is the cross-sectional area, and  2R A B h   is the hydraulic radius. The 135 

auxiliary raingauge is of a tipping-bucket type and located at the coordinates 31 15 41.2 N 35 29 136 

39.5 E, 566 m apart from the observation point. 137 

 138 

Figure 4: Measurement system at the observation point 139 

 140 

2.3 Linear ARX models and parameter identification 141 

 142 

The observed rainfall-runoff events are ephemeral and clearly distinguishable from each 143 

other. For each rainfall-runoff event, we consider discrete time series consisting of rainfall 144 

intensity tr  (constant from the time 1t   until the time t ) and runoff discharge tQ  (at the 145 

time t ). A linear ARX model with the orders rn  and Qn  is written as 146 
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where tx  are the regression coefficients, to estimate the runoff discharge 
1

ˆ
tQ 

 at the time 148 

1t  . It is assumed that 0tr   and 0tQ   if 0t   or t N , where the length N  of the 149 

rainfall-runoff event is finite. The regression coefficients tx  for all t , as well as the linear 150 

ARX model (2) itself, are referred to as lower bounding and upper bounding if ˆ
t tQ Q  and 151 

ˆ
t tQ Q , respectively. The lower and upper bounding linear ARX models restrict the perturbation 152 

of the actual causal relationship between tr  and tQ . A standard LP problem is formulated to 153 

identify the best set of lower bounding regression coefficients L

tx  minimizing the objective 154 

function  
0

ˆ
t N

t t

t

Q Q




 , which is expressed in canonical form as 155 

 Maximize , subject to  and T L L LA  c x x b x 0   (3) 156 

where L
x  is a r Qn n -dimensional vector whose t th entry is L
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While, the best set of upper bounding regression coefficients U

tx  maximizing the objective 159 

function  
0

ˆ
t N

t t

t

Q Q




  solves the LP problem 160 

 Minimize , subject to  and T U U UA  c x x b x 0   (5) 161 

where U
x  is a r Qn n -dimensional vector whose t th entry is U

tx , which is indeed the dual of 162 

(3). Then, the simplex algorithm is applicable to solving both of (3) and (5). Conversely, the 163 

approach here is not transferable to the rainfall-runoff processes with permanent streamflows as 164 

the dimension of the LP problem becomes infinite. 165 
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 166 

2.4 Fractional differential equations to approximate linear ARX models 167 

 168 

A continuous time counterpart of a linear ARX model is expressed in the form of a linear 169 

differential equation including terms of fractional derivatives, which well reproduce the effect of 170 

hysteresis as in the autoregressive part. The lower and upper bounding linear ARX models are 171 

represented as 172 

 1
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respectively. Discretized fractional derivatives are employed for approximating the left hand 176 

sides of (6) and (7). According to Oldham and Spanier (1974), the  -th fractional derivatives 177 

of Q  as a smooth function of the time t, whose unit is taken as the sampling interval of the 178 

discrete time series data, are approximated as 179 
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for 0 1   and 181 
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which are linear combinations of 1t kQ   . Here, the fractional orders are chosen as Qk n   183 

for 0, , Qk n , so that the left hand sides of (6) and (7) are consistently approximated as 184 
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where B represents L and U, respectively, with 186 
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where M  is the    1 1Q Qn n    matrix whose  ,i j th entry is 
,Qj n ic , B

a  is the  1Qn 188 

-dimensional vector whose k th entry is B

ka . Then, bounding linear rainfall-runoff models with 189 

fractional derivatives are represented as transfer functions 190 
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  (12) 191 

where s  is the complex frequency in the Laplace transform.  192 

 193 

3. Results and discussions 194 

 195 

Numerical computations in this section are implemented with the units (min) for the time, 196 

(mm/hour) for the rainfall intensity r , and (L/s) for the runoff discharge Q . However, the 197 

gains of transfer functions are converted to runoff coefficients (%) for presentation in Figures 7, 198 

8, and 9. 199 

 200 

3.1 Acquired data sets 201 

 202 

Time series data with the sampling interval of 1 minute has been successfully acquired for 203 

thirteen rainfall-runoff events with total runoff volume more than 100 m
3
, as shown in Table 2 204 

summarizing the starting time, the ending time, the length N, the total rainfall depth D
o
 at the 205 
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observation point, the total rainfall depth D
a
 at the auxiliary raingauge, the total runoff volume V, 206 

the maximum runoff discharge Qmax, and the bulk runoff coefficient C for each rainfall-runoff 207 

event, whose date of occurrence is used as the event ID number. There were other 2 significant 208 

rainfall-runoff events on April 12, 2015 and on February 22, 2016, but the observation system 209 

failed to record them due to technical problems. The difference between the two total rainfall 210 

depths in each event implicates spatial variability of rainfall distribution within the catchment 211 

area. 212 

 213 

Table 2: Observed rainfall-runoff events with total runoff volume more than 100 m
3
. 214 

 215 

3.2 Identification of model parameters 216 

 217 

The order of the linear ARX model is consistently set as rn N  for the exogenous part, 218 

while two cases of 1Qn   and 2Qn   are examined for the autoregressive part. There is no 219 

technical difficulty in solving the LP problems for cases of 2Qn  , but this study focuses on 220 

those fundamental two cases. According to the methods described in the subsections 2.3 and 2.4, 221 

the model parameters are identified. For all events and for both cases of 1Qn   and 2Qn  , all 222 

r

L

n kx   ( 0 Qk n  ) become zero, implying that the lower bounding models are of unit 223 

hydrograph (UH) type without autoregressive part. The values of 
r

U

n kx   and Ua  are shown in 224 

Table 3. The events 09JAN2016, 13APR2016, 17FEB2018, and 07FEB2019 yield the upper 225 

bounding models of UH type, where 0
r

U

n kx    ( 0 Qk n  ). Positive values of 
r

U

nx  appear in 226 

the events 26OCT2015, 26APR2018, 25MAR2019a, and 25MAR2019b, where 
r

U

nx  for the 227 

case of 2Qn   is identical to that for the case of 1Qn   and 1 0
r

U

nx   . Though the ARX 228 
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models are the same, the approximating fractional differential equations are different between 229 

the cases of 1Qn   and 2Qn  . This type shall be referred to as ARX-1 type. Substantial 230 

differences can be seen between the cases of 1Qn   and 2Qn   for the events 12DEC2014, 231 

11JAN2015, 14JAN2015, 16FEB2017, and 10MAR2017, which are categorized as ARX-2 type. 232 

However, the event 14JAN2015 is significantly different from the others, as the upper bounding 233 

models are unstable ( 1
r

U

nx   and then 0 0Ua  ) for the case of 1Qn   but they become stable 234 

for the case of 2Qn  . 235 

 236 

Table 3: Identified parameters of upper bounding models. 237 

 238 

3.3 Evaluation of the models 239 

 240 

This subsection contains results and discussions overviewed as follows. Firstly, 241 

performances of the linear ARX models are evaluated in terms the errors between the observed 242 

runoff discharges tQ  and the estimated runoff discharges ˆ
tQ  as in (2), using different five 243 

indices. Then, several representative events are examined in the time domain, before focusing 244 

on the terms of fractional derivatives in the frequency domain. Finally, the nominal model is 245 

defined to deal with all the events as its perturbations. Utility of the nominal model is addressed 246 

in the context of the control theory in fractional calculus.   247 

For evaluation of performances of the linear ARX models, the five indices are defined as 248 
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  (17) 254 

where tQ  is the mean of the observed runoff discharges tQ . The index 1E  is the mean 255 

absolute error, which is indeed minimized in the LP problems. The indices 2E  and E  are the 256 

mean squared error and the maximum absolute error, respectively. The index TVE  represents 257 

the error of total variation, which is more appropriate than 2E  and E  when dealing with 258 

time series in broader sense (Unami et al., 2019). The index NSE is the Nash–Sutcliffe 259 

Efficiency coefficient, which is the most utilized index in hydrological applications involving 260 

correlations between observed and estimated values (Biondi et al., 2012). Table 4 shows the 261 

values of the indices for the upper bounding linear ARX models. Table 5 shows the values of the 262 

indices for the lower bounding linear ARX models, as well as changes in the values of Table 4 263 

from the case of 1Qn   to the case of 2Qn  . It is trivial that there is no change in all the 264 

indices by Qn  for the events of UH type and ARX-1 type and that 1E -values do not increase 265 

when Qn  increases from 1 to 2 for the events of ARX-2 type, as can be confirmed in Table 5. 266 

Indeed, the 1E -values decrease for all the events of ARX-2 except 14JAN2015, where the 1E267 

-values does not change. No definite effect of Qn  can be found on the 2E -values and on the 268 

E -values. It should be noted that the TVE -values decrease for all the events of ARX-2. The 269 

NSE-values are close to unity for the upper bounding linear ARX models, indicating high 270 
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correlations between the observed runoff discharges and the estimates, but diverse for the lower 271 

bounding linear ARX models. The event 09JAN2016 has an exceptional linear property such 272 

that the NSE-values are high both for the lower and the upper bounding linear ARX models. The 273 

NSE-values do not indicate an explicit dependency on the types. 274 

 275 

Table 4: Performance indices of the upper bounding linear ARX models.  276 

 277 

Table 5: Performance indices of the lower bounding linear ARX models and changes in 278 

performance indices of the upper bounding linear ARX models by increasing Qn  279 

from 1 to 2. 280 

 281 

For the sake of brevity, 13APR2016 of UH type, 26APR2018 of ARX-1 type, 10MAR2017 282 

of ARX-2 type changing 1E -values the most, 16FEB2017 of ARX-2 type changing TVE -values 283 

the most, and 14JAN2015 of ARX-2 type stabilized by 2Qn   are chosen as representative 284 

events for discussion. In Figure 5, rainfall intensity (dark blue bar), observed runoff discharge 285 

(red line), and the region of runoff discharge bounded by the estimates of the two linear ARX 286 

models with 1Qn   (green area) are depicted in the time domain for the events 13APR2016, 287 

26APR2018, 10MAR2017, 16FEB2017, and 14JAN2015. Similarly, Figure 6 shows the 288 

observed time series and the bounded region with 2Qn   for the events 10MAR2017, 289 

16FEB2017, and 14JAN2015, which are of ARX-2 type. The runoff discharge of the event 290 

13APR2016 was extraordinarily large, but the linear ARX models are of UH type implying 291 

straightforward linear input-output relationship between rainfall and runoff. There are many 292 

peaks of rainfall and runoff in the event 26APR2018 of ARX-1 type, where linearity is still 293 

noticeable. There are two evident spikes of rainfall intensity with similar wave forms in the 294 

event 10MAR2017 of ARX-2 type, but the response of runoff is rather irregular. Such 295 
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nonlinearity is more dominant in the events 16FEB2017 and 14JAN2015. Differences between 296 

the bounded regions with 1Qn   and 2Qn   are minor in the events 10MAR2017 and 297 

16FEB2017 and almost invisible in the event 14JAN2015, though the linear ARX models are 298 

substantially different. The lower bounding linear ARX model for the event 16FEB2017 is 299 

almost vanishing. 300 

 301 

Figure 5: Rainfall intensity, observed runoff discharge, and the region of runoff discharge 302 

bounded by the estimates of the two linear ARX models with 1Qn   for the events 303 

13APR2016, 26APR2018, 10MAR2017, 16FEB2017, and 14JAN2015. 304 

 305 

Figure 6: Rainfall intensity, observed runoff discharge, and the region of runoff discharge 306 

bounded by the estimates of the two linear ARX models with 2Qn   for the events 307 

10MAR2017, 16FEB2017, and 14JAN2015. 308 

 309 

Comparisons are made among the lower and the upper bounding linear rainfall-runoff 310 

models of 1Qn   and 2Qn   which may include terms of fractional derivatives. Figure 7 311 

shows the gains  1BP   of the transfer functions (12) for the representative events 312 

13APR2016, 26APR2018, 10MAR2017, 16FEB2017, and 14JAN2015, for the frequency   313 

between 302   and 102  . The bulk runoff coefficient C in Table 2 is regarded as the bulk gain 314 

and thus depicted in these figures as well. There is no difference between the cases of 1Qn   315 

and 2Qn   for the event 13APR2016 of UH type, including no fractional derivative. It is 316 

indefinite whether the gains of the upper bounding linear rainfall-runoff models increase or 317 

decrease when Qn  increases from 1 to 2 for the events of ARX-1 type and ARX-2 type. 318 

However, the unreasonably high gains larger than the bulk runoff coefficient for the event 319 

14JAN2015 are resolved by the stabilization with 2Qn  . It is also remarked that 320 

approximating linear ARX models of ARX-1 type with fractional differential equation with the 321 
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three orders 0, 1 2 , and 1 makes (11) ill-conditioned. Therefore, we opt for the case of 1Qn   322 

to approximate linear ARX models of ARX-1 type. 323 

 324 

Figure 7: Comparison among the lower and the upper bounding linear rainfall-runoff models 325 

of 1Qn   and 2Qn   for the events 13APR2016, 26APR2018, 10MAR2017, 326 

16FEB2017, and 14JAN2015. 327 

 328 

The gains of the bounding linear rainfall-runoff models with fractional derivatives for all 329 

events are summarized in Figures 8 and 9. Terms of fractional derivatives indeed appear in the 330 

upper bounding models of ARX-2 type only. The event 13APR2016 is extraordinary because the 331 

gains of both the lower and the upper bounding models are large even in higher frequency 332 

domains. The other events of large gains of the upper bounding models are 26APR2018, 333 

16FEB2017, 11JAN2015, and 26OCT2015, but the gains of their lower bounding models are 334 

very small. The gains of the upper bounding models for the events of ARX-2 type attain notable 335 

peaks at the frequency   between 152   and 52  , due to the terms of fractional derivatives. 336 

It can be seen that each of the upper bounding models functions as a low-pass filter that 337 

diminishes fluctuations of high frequencies in the rainfall-runoff process. Now, in order to 338 

encompass all the events, we consider envelopes to bound the gains of the upper bounding 339 

models for all the events from above. The infimums of the gains of the lower bounding models 340 

for all the events are so small that envelopes for them are not discussed. A transfer function 341 

model attaining such an envelope is expected to serve as a nominal model in stochastic problems 342 

such as flood risk assessment or real time operation of water harvesting facilities, particularly in 343 

arid environments. An ad hoc example of such a transfer function  P s  including a term of 344 

fractional order 1 2  is given by 345 

   1 2

1

0.025 0.020 0.020
P s

s s


 
,  (18) 346 
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and its gains are plotted in Figure 9 as well. The actual transfer function  BP s  of each upper 347 

bounding rainfall-runoff model is thus represented as 348 

      BP s W s P s   (19) 349 

where  W s  is a transfer function of the perturbation whose maximum absolute value of gain 350 

is less than unity. The validity of  P s  as the nominal model is the upper bounding properties, 351 

which are tested by operating the discrete-time domain counterpart of  P s  on the time series 352 

data of rainfall in each of the events. For this purpose of validation, the approximation (8) of the 353 

fractional derivative is performed with Qn N  and 1rn  , in contrast to the linear ARX 354 

models’ construction where 1Qn   or 2 and rn N . Figure 10 compares the observed values 355 

with the values that the nominal model generates in terms of the metrics V, Qmax, the total 356 

variation  
1

1

0

TV
t N

t t

t

Q Q Q
 





   of the runoff discharge, and the maximum variation 357 

  1
0 1

MV max t t
t N

Q Q Q
  

   of the runoff discharge, confirming that the upper bounding 358 

properties are achieved in all the metrics. The gain of  P s  at 0  , which is equal to 40 and 359 

is equivalent to 12.86 % in terms of runoff coefficient, represents the runoff coefficient for a 360 

constant rainfall intensity r . This value, which is 32.9 % larger than the historical maximum 361 

bulk runoff coefficient of 9.68 % observed in the event 13APR2016, can be utilized for 362 

determining design flood discharges at analogous locations for specified rainfall intensities. As 363 

the gain of  P s  substantially decreases when   , rainfall intensities of sub-minute 364 

durations are considered insignificant. The historical maximum rainfall intensity in 1 minute at 365 

the study site is 116.4 (mm/hour) observed in the event 17FEB2018, and the design flood 366 

discharge according to that method becomes 4656 (L/s), which would be more reasonable than 367 
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the historical maximum maxQ  = 1816 (L/s), observed in the event 13APR2016, multiplied by 368 

an arbitrary safety ratio. 369 

 370 

Figure 8: Gains of the lower bounding linear rainfall-runoff models for all events. 371 

 372 

Figure 9: Gains of the upper bounding linear rainfall-runoff models with fractional derivatives 373 

for all events and an ad hoc example of their envelopes. 374 

 375 

Figure 10: Validation of the nominal model in terms of the metrics V, Qmax,  TV Q , and 376 

 MV Q . 377 

 378 

Further utility of the nominal model is in the application of the control theory in fractional 379 

calculus. The dynamical system corresponding to the transfer function  P s  of (18) is  380 

 
1 2

1 2

0.00 1.00 0d

1.25 1.00 50.0d

y y

z z rt

      
       

      
  (20) 381 

where y  and z  are the state variables. The initial value problem for (20) with the initial 382 

condition 0y z   at 0t   has a unique solution for the rainfall intensity r  being a 383 

summable function in a finite time domain, according to Theorem 4.1 of Idczak and Kamocki 384 

(2011), which gives an explicit form of the unique solution and verifies the stability of (20) as 385 

well. With (19), the runoff discharge  Q t  in the time domain is constrained as 386 

      
0

d
t

Q t w y t      (21) 387 

where  w t  is the inverse Laplace transform of  W s . Therefore, it is well-defined to 388 

formulate a fractional optimal control problem for real time operation of a water harvesting 389 

facility as below. 390 

 391 
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Problem: Let  u t  be the discharge of flow being harvested from a flash flood at the time t . 392 

The harvested flow is assumed to be immediately stored in a reservoir; the storage volume of the 393 

reservoir at the time t , which is denoted by  S t , is related to  u t  as 394 

      
0

0 d
t

S t S u     .  (22) 395 

The rainfall intensity  r r t  is assumed to be a càdlàg stochastic process whose probability 396 

law is provided. The transfer function  W s  of the perturbation is assumed to be specified so 397 

that its maximum absolute value of gain becomes less than unity. The initial time 0t   is set as 398 

the time of 0Q   as well as 0r   but also  
0

lim 0
t

r t


 . Let T  be the first exit time such 399 

that 400 

     inf 0 0 and 0T t r t Q t    .  (23) 401 

The discharge  u t  is considered as the control variable constrained in a set of admissible 402 

control. The optimal control problem is to find 403 

         , , ,u t u t r t Q t S t ,  (24) 404 

as a function of the four variables, so as to maximize the functional 405 

         , , , EuJ t r t Q t S t S T    ,  (25) 406 

which is the expectation of the storage volume in the reservoir when the rainfall-runoff flood 407 

event is over. 408 

 409 

This problem statement is quite general for ephemeral flows as the probability that the first exit 410 

time T  is finite is equal to 1. However, the Pontryagin maximum principles obtained so far are 411 

not applicable to this stochastic problem, which shall be tackled in future studies.  412 

 413 
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4. Conclusions 414 

 415 

A general methodology to construct bounding linear rainfall-runoff models with fractional 416 

order derivatives was presented and applied to the time series data acquired at the observation 417 

point in the barren catchment of the Jordan Rift valley. The short sampling interval of 1 minute 418 

motivated us to study conceptual discrete time models as well as their continuous time 419 

counterparts. 420 

The ARX models representing dynamic causality between rainfall and runoff comprehend 421 

the conventional unit hydrograph method and autoregressive method, and an advantage of the 422 

bounding linear ARX models is that the parameter identification process is complete with the 423 

simplex algorithm of LP if the length of each rainfall-runoff event is finite. Innovation in the 424 

methodology is the introduction of fractional derivatives into continuous time counterparts of 425 

the linear ARX models, and that approximation procedure is applicable to perennial 426 

rainfall-runoff processes as well. 427 

The bounding linear rainfall-runoff models were identified for the thirteen events and 428 

evaluated. However, only the terms of fractional order 1 2  were considered. The models were 429 

categorized into the three types, according to the substantial fractional orders. The all lower 430 

bounding models are of UH type, and some of them are almost vanishing. The most significant 431 

effect of fractional derivatives is stabilization of the upper bounding model for the event 432 

14JAN2015 of type ARX-2. As usual in the system-theoretic framework, the fractional order 433 

differential equations were regarded as input-output systems whose transfer functions were 434 

evaluated in terms of gains. Finally, the nominal model was arranged to estimate the design 435 

flood discharge and to formulate the fractional optimal control problem for real time operation 436 

of a water harvesting facility. Such applications of nominal models shall be disseminated to 437 

practical problems of risk assessment and water resources management in future studies, linked 438 
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with research on stochastic fractional optimal control.  439 
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Table 1: Basic meteorological data of rainfall depth D (mm) and air temperature T (℃) obtained at the study site for each water year. 

  AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL Annual 

D (mm) 

2014-2015   6.58 10.51 21.11 29.35 21.80 4.30 10.59 0.00 0.00 0.00 104.71 

2015-2016 0.00 1.09 27.47 2.82 6.99 13.09 26.18 10.35 21.81 0.02 0.00 0.16 109.98 

2016-2017 0.00 0.00 3.79 0.47 11.41 4.63 26.27 14.50 1.65 0.37 0.30 0.00 63.39 

2017-2018 0.03 0.04 0.03 1.22 3.65 19.19 25.98 0.17 23.79 4.60 0.89 0.06 79.65 

2018-2019 0.06 0.18 3.60 9.70 1.20 1.53 15.07 29.21 5.8 0.00 0.00 0.00 66.35 

T (℃) 
Maximum 46.3 42.7 39.4 33.7 27.7 25.6 30.8 35.3 42.3 45.0 43.8 47.1 47.1 

Mean 34.4 32.5 28.3 22.7 17.8 15.9 18.0 21.6 25.4 29.6 32.2 34.3 26.1 

Minimum 25.9 21.6 17.4 9.1 6.4 4.2 4.5 10.4 12.0 18.3 21.2 23.6 4.2 
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Table 2: Observed rainfall-runoff events with total runoff volume more than 100 m
3
. 

Event ID Start End N D
o
 (mm) D

a
 (mm) V (m

3
) Qmax (L/s) C (%) 

12DEC2014 19:15 04:38+ 564 13.81 12.0 307.49 63 1.99 

11JAN2015 01:15 08:32 390 8.52 10.5 289.23 48 3.03 

14JAN2015 22:52 03:18+ 267 8.59 8.4 309.39 86 3.22 

26OCT2015 08:08 10:42 155 10.28 7.8 593.02 232 5.15 

09JAN2016 02:39 04:36 118 6.79 2.7 191.19 140 2.51 

13APR2016 15:32 16:40 69 8.47 3.4 917.84 1815 9.68 

16FEB2017 10:46 20:34 589 16.97 10.4 323.32 84 1.70 

10MAR2017 21:33 01:14+ 222 10.85 5.4 316.78 150 2.61 

17FEB2018 07:48 09:53 126 6.38 4.4 290.12 167 4.06 

26APR2018 16:58 04:55+ 718 23.40 14.7 865.60 246 3.30 

07FEB2019 05:41 11:27 347 6.00 6.0 174.38 51 2.59 

25MAR2019a 01:30 03:58 149 8.86 6.0 365.69 259 3.69 

25MAR2019b 09:59 12:03 125 3.36 3.6 135.90 54 3.61 
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Table 3: Identified parameters of upper bounding models. 

Event ID 

1Qn   2Qn   

r

U

nx  
0

Ua  1

Ua  
r

U

nx  1r

U

nx   
0

Ua  1 2

Ua  
1

Ua  

12DEC2014 0.573552 0.42645 0.57355 0.296595 0.326290 0.19810 0.44871 0.59115 

11JAN2015 0.764036 0.23596 0.76404 0.636273 0.152438 -0.17274 0.96261 0.17310 

14JAN2015 1.002204 -0.00220 1.00220 0.978113 0.022239 -0.59070 1.47977 -0.15810 

26OCT2015 0.567514 0.43249 0.56751 0.567514 0.000000 0.08996 0.85858 -0.11754 

09JAN2016 0.000000 1.00000 0.00000 0.000000 0.000000 1.00000 0.00000 0.00000 

13APR2016 0.000000 1.00000 0.00000 0.000000 0.000000 1.00000 0.00000 0.00000 

16FEB2017 0.937808 0.06219 0.93781 0.325317 0.520431 -0.04209 0.49217 0.97349 

10MAR2017 0.821041 0.17896 0.82104 0.736143 0.121345 -0.30179 1.11370 0.09023 

17FEB2018 0.000000 1.00000 0.00000 0.000000 0.000000 1.00000 0.00000 0.00000 

26APR2018 0.951410 0.04859 0.95141 0.951410 0.000000 -0.52564 1.43937 -0.19704 

07FEB2019 0.000000 1.00000 0.00000 0.000000 0.000000 1.00000 0.00000 0.00000 

25MAR2019a 0.584142 0.41586 0.58414 0.584142 0.000000 0.06330 0.88374 -0.12098 

25MAR2019b 0.408625 0.59138 0.40863 0.408625 0.000000 0.34475 0.61820 -0.08463 
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Table 4: Performance indices of the upper bounding linear ARX models.  

 1Qn  , upper bounding 2Qn  , upper bounding 

Event ID 1E  2E  E  TVE  NSE 1E  2E  E  TVE  NSE 

12DEC2014 1.565 7.898 23.134 722.093 0.957 1.549 8.670 26.458 631.920 0.953 

11JAN2015 3.463 18.105 15.502 962.179 0.840 3.416 17.472 15.508 912.356 0.845 

14JAN2015 2.770 13.440 12.278 552.868 0.976 2.769 13.346 12.055 545.175 0.976 

26OCT2015 4.691 151.583 72.812 865.296 0.973 4.691 151.583 72.812 865.296 0.973 

09JAN2016 1.432 28.304 37.157 210.674 0.975 1.432 28.304 37.157 210.674 0.975 

13APR2016 47.068 19197.300 757.115 5547.450 0.798 47.068 19197.300 757.115 5547.450 0.798 

16FEB2017 2.284 13.264 15.589 695.178 0.967 2.236 13.139 14.877 527.160 0.968 

10MAR2017 4.310 66.889 41.852 641.710 0.928 4.201 63.070 49.056 632.411 0.932 

17FEB2018 1.712 81.778 78.933 235.691 0.969 1.712 81.778 78.933 235.691 0.969 

26APR2018 4.452 62.171 43.093 1516.090 0.969 4.452 62.171 43.093 1516.090 0.969 

07FEB2019 2.545 19.545 30.068 628.764 0.821 2.545 19.545 30.068 628.764 0.821 

25MAR2019a 3.780 72.605 50.390 352.085 0.977 3.780 72.605 50.390 352.085 0.977 

25MAR2019b 1.517 8.126 13.540 196.720 0.969 1.517 8.126 13.540 196.720 0.969 

 

Table 4
Click here to download Table: MazrahHYDROL-R1_Table4.docx
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Table 5: Performance indices of the lower bounding linear ARX models and changes in performance indices of the upper bounding linear 

ARX models by increasing Qn  from 1 to 2. 

 1Qn   and 2Qn  , lower bounding Change by 2Qn  , upper bounding 

Event ID 1E  2E  E  TVE  NSE 1E  2E  E  TVE  NSE 

12DEC2014 5.613 166.217 60.900 610.677 0.098 -0.016 0.772 3.324 -90.173 -0.004189 

11JAN2015 9.775 194.248 43.210 687.923 -0.721 -0.047 -0.633 0.006 -49.823 0.005604 

14JAN2015 14.520 704.442 83.139 363.182 -0.271 0.000 -0.094 -0.223 -7.693 0.000169 

26OCT2015 17.469 2934.520 221.547 806.570 0.469 0.000 0.000 0.000 0.000 0.000000 

09JAN2016 2.117 50.560 43.919 306.518 0.956 0.000 0.000 0.000 0.000 0.000000 

13APR2016 85.599 41845.700 1290.490 6212.390 0.559 0.000 0.000 0.000 0.000 0.000000 

16FEB2017 9.122 486.232 84.053 350.208 -0.202 -0.048 -0.125 -0.712 -168.018 0.000309 

10MAR2017 13.013 907.619 135.284 590.776 0.026 -0.109 -3.819 7.204 -9.299 0.004098 

17FEB2018 5.742 682.348 159.947 412.262 0.740 0.000 0.000 0.000 0.000 0.000000 

26APR2018 18.554 2306.780 244.600 1042.360 -0.154 0.000 0.000 0.000 0.000 0.000000 

07FEB2019 5.349 124.078 47.743 381.591 -0.137 0.000 0.000 0.000 0.000 0.000000 

25MAR2019a 25.462 3662.110 254.667 763.074 -0.163 0.000 0.000 0.000 0.000 0.000000 

25MAR2019b 4.905 163.235 48.134 217.040 0.381 0.000 0.000 0.000 0.000 0.000000 
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