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A multi-state Markov chain model for rainfall to be used in optimal 

operation of rainwater harvesting systems 

 

Abstract 

Consideration of rainfall dynamics can rationalize the operation of rainwater harvesting systems. 

This study aims at establishing a methodology to construct a Markov chain model for time series 

of rainfall in temperate climates that optimal operation of rainwater harvesting systems is cast 

in the framework of stochastic dynamic programming. Due to the seasonal climate, the model 

is time-varying but stationary in each month. The states of the Markov chain are ranges of 

rainfall depths in 10 minutes. Transition probabilities determining the dynamics of the Markov 

chain are to be estimated for each month. The occurrence of dry states is frequent enough to 

estimate the transition probabilities from a dry state empirically. While, on the condition that a 

wet state is observed, the rainfall depth in the next 10 minutes is assumed to obey to the gamma 

distribution with two parameters. New formulae, including two exponent parameters, are 

proposed to relate the conditional mean and variance with the parameters of the gamma 

distribution. The values of the exponent parameters are identified from sequential searches so 

that the monthly average rainfall depths in 10 minutes become consistent with the observed 

ones. Then, a complete set of transition probabilities achieving the mean-reverting property is 

obtained to establish the Markov chain model. Examples of operating a hypothetical rainwater 

harvesting system are presented to demonstrate the utility of the Markov chain model in 

application to optimal management of water resources and stormwater retention in the 

framework of stochastic dynamic programming. The mean-reverting smooth transition 

probabilities also contribute to stabilizing the optimal policy. 
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1. Introduction  

 

Rainwater harvesting (RWH) is a technology to collect runoff from a relatively small 

watershed such as the roof of a building into a reservoir or a storage tank, aiming at the 

development of renewable water resources to support ecosystem services and human well-being 

(Barron, 2009). The water harvested during rainfall events can be utilized for satisfying indoor 

and outdoor demands such as non-potable domestic water supply, gardening in households, and 

washing of pavements and vehicles (Fernandes et al., 2015). Although water quality control is 

the major constraint in potable water production (Alim et al., 2020), utilizing RWH systems for 

urban agriculture is expected to contribute to at least eight of the United Nations’ 17 Sustainable 

Development Goals (Amos et al., 2020). The RWH technology is expected to serve for 

stormwater retention as well, for instance, reducing site runoff or flood peaks in urban sewage 

systems (Burns et al., 2015).   

Rainfall data is the primary key input for considering the operation of RWH systems. 

Mitchell (2007) discussed the accuracy of computer-simulated dynamics of RWH systems with 

different intervals of time series and operational algorithms. The design of optimal tank size for 

RWH systems should consider the spatial distribution of rainfall patterns (Fonseca et al., 2017). 

The length and the temporal resolution of rainfall time series to be based on, as well as the 

operation algorithm, significantly influence the performance assessment of RWH systems 

(Zhang et al., 2020). However, these studies in the literature lack mathematical rigor in the 

contexts of stochastic processes and their optimal control, which would determine the rational 

design and operation of RWH systems.   



3 
 

A Markov chain is a discrete-time stochastic model defined on a space of states, 

equipped with transition probabilities from a state to another at the next time stage. Application 

of Markov chains in hydrological engineering includes runoff processes (Lu and Berliner, 1999), 

standard precipitation index (Paulo et al., 2005), climate change (Cioffi et al., 2017), different 

weather indices (Lennartsson et al., 2008), agricultural drought (Biamah et al., 2005), and 

weather generation as in the celebrated WGEN model of Richardson and Wright (1984). 

Transition probability defining a discrete-time Markov chain involving hydrological 

phenomena such as precipitation is derived from a model using a probability distribution among 

Pareto, Lognormal, Weibull, and Gamma distributions (Papalexiou et al., 2013). Applicability 

of different probability distributions has been examined by many researchers, including the 

very early study conducted by Markovic (1965). In real-time decision making based on 

observation, or currently available information, assuming and utilizing Markovian properties 

are very advantageous in the operation of reservoirs or tanks. Labadie (2004), Rani and Moreira 

(2010), and Ahmad et al. (2014) reviewed a variety of methods for determining suitable policies 

for reservoir operation. Among these methods, dynamic programming (DP) is one of the most 

widely used approaches for seeking the optimal policy for reservoir operation. The rationale of 

the DP approach is the Bellman’s principle of optimality (Bellman, 1957). Yakowitz (1982) 

reviewed the application of DP techniques to many real-world water resource problems, where 

the Bellman equations governing the value functions are nonlinear. Developments in computer 

technology have allowed the DP approach to be applied to increasingly complex stochastic 

problems (Tejada-Guibert et al., 1993; Tejada-Guibert et al., 1995), referred to as stochastic DP 

(SDP). Lee and Labadie (2007) demonstrated the applicability of the SDP approach coupled 

with reinforcement learning for modeling a complex river basin system with two reservoirs. 

Shokri et al. (2013) determined the optimal policy for the operation of a single reservoir using 

SDP to meet water demand and to flush sediment simultaneously. Mabaya et al. (2017) derived 
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reservoir operation rules considering the dual uncertainties of the reservoir storage volume and 

the pollution due to agrochemicals. Further review of reservoir optimization was also conducted 

by El-Shafie et al. (2014). More comprehensive hydrological and water requirement dynamics 

oriented for the operation of RWH systems can be described with continuous-time Markov 

process models using stochastic differential equations (Unami and Mohawesh, 2018; Unami et 

al., 2015; Unami et al., 2013). Unami et al. (2013) considered stochastic water demand in a 

micro-dam irrigation scheme. Unami et al. (2015) proposed to utilize the Langevin equation for 

representing the general water flow dynamics in RWH systems, and Unami and Mohawesh 

(2018) showed that the mean-reverting property of the Langevin equation plays an essential 

role in establishing well-posedness of optimal control problems for operating RWH systems. 

This paper proposes a methodology to construct a Markov chain model from time series 

data of rainfall in order to consider its sequential dynamics, aiming application to optimal 

operation of a hypothetical RWH system in a study area of Japan. The area is locally known to 

be anomalously dry but is not well covered by Automated Meteorological Data Acquisition 

System (AMeDAS), the high-resolution surface observation network developed by Japan 

Meteorological Agency (2020). The key feature of the methodology, which cannot be found in 

the literature, is that the Markov chain model with multiple states can be constructed from 

limited data sources. Therefore, an automated weather station was operated in the study area to 

obtain time series data, from which the Markov chain model and then the RWH system are 

developed. Firstly, empirical transition probabilities of rainfall are calculated from the observed 

time series data. Then, the estimation of transition probabilities is attempted for cases of lacking 

enough number of data. Although many methods such as the Fourier series fitting by Jimoh and 

Webster (1999) have been developed for smoothing spurious oscillations of probabilities in 

hydrology, we consider the use of the gamma distribution that has an advantage of high 

adaptability with only two parameters. Appropriate values of the parameters are sequentially 
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searched so that the resulting monthly average rainfall depths become consistent with the 

observed ones in terms of a metric analogous to the norm in the space of functions of bounded 

variations. Then, the estimated transition probabilities are incorporated into a discrete-time SDP 

problem to compute the optimal policy for making the decision on withdrawal of water from 

the tank in the hypothetical RWH system which is assumed to be installed in the study area. To 

assure the adequacy of the SDP problem and its numerical solution, stability analysis is 

implemented as provided in Appendix B. Two examples of the hypothetical RWH system are 

presented. The first one assumes the typical dimensions of an RWH system in a household. The 

second one consists of a watershed of a plastic pan and a storage tank of a PET bottle to actually 

implement an in situ experiment. 

While, this paper does not address to impacts of climate change on the performance of 

RWH systems, as in Haque et al. (2016), Zhang et al. (2019), and Adham et al. (2019). The 

length of the time series data of rainfall is as short as six years, during which the variability of 

the climate is considered the minimum. Nevertheless, the methodology successfully constructs 

the Markov chain model from the short time series data. Operation of RWH systems based on 

SDP as a means of climate change adaptation shall be discussed in future studies, using similar 

approaches as in Turner et al. (2017), which dealt with hydropower dams, and in Fadhil (2018), 

which dealt with a multipurpose dam.  

 

2. Materials and methods 

 

2.1. Study area and data acquisition  

 

The study area, which is referred to as the Imago area, has been established in Shiga 

Prefecture, Japan (Unami and Kawachi, 2005), and its location is shown in the satellite images 
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(a) and (b) of Figure 1. As can be seen in the satellite image (c) of Figure 1, the Imago area 

extends over the Nunobiki hill with inland valleys, mostly covered by tea plantations and 

pastures on the ridges, forests in the slopes, and paddy fields in the valley bottoms (Mabaya et 

al., 2016). According to the local people’s perception, the precipitation in the Imago area is 

anomalously less in comparison with the neighboring areas. An irrigation project for drought 

mitigation was implemented during the 1960s, including the development of the canal system 

to convey water from an adjacent basin to a newly constructed irrigation dam and then to the 

paddy fields in the Imago area. Buildings such as houses, warehouses, and cattle sheds are 

scattered, and their number is increasing in these decades. A significant change of the land use 

after the energy crisis ensuing from the nuclear catastrophe in 2011 is the installation of 

photovoltaic (PV) power stations converting the forests and the farmlands. Though there is no 

relevant research on PV power stations affecting stormwater runoff processes, as thoroughly 

reviewed in Dimond and Webb (2017), it can be easily inferred that such effects are not 

negligible. These trends in land use imply increases in domestic and livestock water demands 

as well as the intensification of stormwater runoff, which can be mitigated with the RWH 

technology applied to the buildings or the PV panels. 

The automated weather station equipped with a VAISALA WXT520 weather 

transmitter was operated from June 4th, 2014 to June 8th, 2020 in a tea plantation at the 

coordinates 34°57'40.0"N 136°13'18.0"E, recording different weather elements every 10 

minutes (photo (d) of Figure 1). The resolution   of the rainfall sensor is 0.01 mm. The annual 

rainfall depths were 1421.04 mm, 1445.08 mm, 1456.36 mm, 1645.82 mm, and 1429.94 mm, 

corresponding to the years 2015, 2016, 2017, 2018, and 2019, respectively. The maximum of 

the observed 10-minute rainfall depths during that whole period of six years was 15.54 mm, 

which was recorded at 17:30 of September 6th, 2014. However, the monthly rainfall is higher in 

June and July rather than September. A tangible drought period occurred in mid-August of 2016, 
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and a significant stormwater event destroyed a plot of paddy field on October 6th, 2017. From 

these episodes, the period is considered to represent rainfall dynamics, including extremes, even 

though it is too short in the context of statistical hydrology.  

While, the nearest AMeDAS station is the Tsuchiyama station, located at the 

coordinates 34°56'20.1"N 136°16'46.0"E. The distance between the two stations is 5824 m. The 

annual rainfall depths observed at the Tsuchiyama station were 1631.5 mm, 1449.0 mm, 1613.0 

mm, 1832.5 mm, and 1654.0 mm, corresponding to the years 2015, 2016, 2017, 2018, and 2019, 

respectively. The maximum of the observed 10-minute rainfall depths during that period was 

14.0 mm, which was recorded at 10:30 of September 8th, 2016. These values indicate that the 

rainfall dynamics in the Imago area is quite different from that around the Tsuchiyama station. 
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Figure 1: Images describing the Imago area in Shiga Prefecture, Japan: (a) satellite image of 

Japan, (b) satellite image of Shiga Prefecture, (c) satellite image of the Imago area, 

(d) photo of the automated weather station in a tea plantation, the images (a-c) were 

obtained from Google Earth on May 12th, 2020. 

 

2.2. Construction of Markov chain model 

 

In this subsection, we define the multi-state Markov chain model with mathematical 

rigor. The probability of transition from a state to another is assumed to be year-periodic and 

constant for each month. The transition probabilities from a wet state are assumed obeying to a 

gamma distribution, achieving the mean-reverting property of the rainfall depths. The gamma 

distribution for each wet state and each month is identified so that the resulting monthly average 

rainfall depths become consistent with the observed ones in terms of a metric analogous to the 

norm in the space of functions of bounded variations. 

The state space   of a Markov chain is defined as the set whose elements are the states. 

An  -valued sequence of random variables tX  for t  is called an  -valued Markov chain 

or a Markov chain on  , if 

                  1 0 0 1 1 1, ,...,t t t t t tP X X X X P X X               (1) 

for all t  and 0 , , ,t   , where  P A B  represents the conditional probability of the 

event A  given the event B . This equation (1) is usually referred to as the Markov property of 

the Markov chain tX . 

In our application, the states are the ranges of rainfall depths in the time interval t  = 

10 minutes at the site, which are countable, that is, 

 ,
2 2i

r r
i r i r              

  (2) 
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for i  with the increment r  of the states. The Markov chain tX  is equal to i , which is 

the state representing the i th range of rainfall depths, if the rainfall depth from the time 

 1t t   to the time t t  is in i . The transition probability 

  1ij t j t iP P X X      (3) 

where j  is the state after the transition, ijP  is assumed to be year-periodic and constant for 

each month k. 

A process to estimate the transition probabilities is proposed below. Empirical transition 

probabilities ( )k
ijP  are estimated as 

 
( )

( )
( )

k
ijk

ij k
il

l

N
P

N



   (4) 

where ( )k
ijN  is the number of transitions from the state i  to the state j occurred in the month 

k. The denominator ( )k
il

l

N  of (4), is equal to the total number of data such that t iX   in the 

month k. This empirical estimation is valid for transitions from the state 0 , which is the dry 

state, where ( )
0

k
l

l

N  is large enough. While, as there are very few or no observed cases of 

t iX   for 0i  , empirical transition probabilities for 0i   exhibit spurious oscillations with 

respect to the state number j  after transition or cannot be calculated. Hence, we examine an 

alternative method to assume that the rainfall depth r from the time t t  to the time  1t t  , 

namely in the next t , for each i  obeys to the gamma distribution whose cumulative density 

function is 

  
1

0

( , ) exp( )
d

( ) ( )

x

t i

x r r
P r x X r

     
 

 
   

    (5) 
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where x  is a generic rainfall depth,   is the shape parameter,   is the scale parameter,   is 

the Gamma function,   is the lower incomplete gamma function given by 

    
0

( , ) ( ) exp( )
( 1)

n

n

x
x x x

n
 

     






  
   .  (6) 

The parameters   and   satisfy 

 
 2
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t i

t i

r X

r X






   
   

  (7) 

and 

 
E

Var
t i

t i

r X

r X





   
   

,  (8) 

respectively. Now, to determine the values of the parameters   and   using (7) and (8), the 

conditional expectation and variance need to be evaluated from the available observed time 

series data. For that purpose, we arbitrarily propose the formulae 

 
   

E

wet
wet

E E
E

p

t i

i r
r X r
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  (9) 

and 

 
   

Var

wet
wet

Var Var
E

p

t i

i r
r X r

r


 
        

 
  (10) 

where Ep  and Varp  are exponent parameters,  wet 0E E tr r X       is the expectation of 

rainfall depths in the next t  on the condition that a wet state is observed for each month, and 

 wet 0Var Var tr r X       is the variance of rainfall depths in the next t  on the condition 

that a wet state is observed for each month. These formulae (9) and (10) imply that the 

conditional expectation and variance are monotone, convex functions of the conditioning 

rainfall depth, which is approximately represented by i r . Each of the exponent parameters 
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controls the convexity of the monotone function. The formula (9) also hypothesizes that the 

rainfall depth in the next t  is reverting to the monthly mean  wetE r  if E 1,p   as the left-

hand side of (9) becomes larger and smaller than  wetE r  when the conditioning rainfall depth 

is smaller and larger than  wetE r , respectively. As an obvious property of transition 

probabilities, the matrix kP  whose ij-entry is ( )k
ijP  for each month k has the maximum 

eigenvalue 1. The corresponding eigenvector represents equilibrium occurrence probabilities 

of the states, from which the estimated average rainfall depth E
kr  in 10 minutes is evaluated for 

each month k, if the representative rainfall depth of each state is specified. Then, the exponent 

parameters Ep  and varp  are identified from sequential searches to minimize the deviation BVr

defined as 

      
12 12

E O E E O O
BV mod 1,12 mod 1,12

0 0

k k

k k k kk k
k k

r r r r r r r
 

 
 

         (11) 

where O
kr  is the observed average rainfall depth in 10 minutes for each month k. This metric of 

error, inspired by the norm in the space of functions of bounded variations, takes both of 

absolute errors and total variations in the monthly average rainfall depths into account. 

 

2.3. Application to optimal operation of a hypothetical RWH system  

 

In order to demonstrate the utility of the Markov chain model, the optimal operation of 

a hypothetical RWH system is considered in the context of SDP, where the Bellman equation 

is solved temporally backward to obtain an optimal policy maximizing the expected reward in 

the future. The representative rainfall depth of each state i  is specified as i r , which is the 

same as the approximating conditional rainfall depth in the formulae (9) and (10). Figure 2 is a 

schematic sketch of such a system with a tank whose watershed is the roof of a house. The 
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water balance equation governing the storage volume tS  of the tank at the time t t  is written 

as 

 1 out int tS S Q Q      (12) 

where outQ  is the volume of water withdrawn from the tank at the time t t  and inQ  is the 

volume of water actually harvested as an inflow into the tank from the time t t  to the time 

 1t t  . The withdrawal is controlled as 

  out
w

0 if 0

min , if 1t

u
Q

Q S u


  

  (13) 

where  0,1u  is the decision variable, and wQ  is a prescribed maximum volume of water 

which can be withdrawn from the tank at a time. Namely, a valve installed to an outlet of the 

tank is closed if 0u   and is open if 1u  . While, it is assumed that 

     in e max outmin max ,0 , tQ A j r r S S Q       (14) 

where eA  is the effective surface area of the watershed, 1t jX   , r  is a threshold of rainfall 

depth yielding runoff, and maxS  is the maximum storage of the tank. Therefore, 1tS   in (12) 

depends on u  and j  and is represented as  1 ,tS u j . The volume spillQ  of spilling water which 

cannot be harvested is 

     spill spill 1 e in, , , , max max ,0 ,0t t tQ Q t S X u X A j r r Q       (15) 

An SDP problem of practical interest is to maximize the conditional expectation of the 

storage TS  at a specified terminal time T t , as well as to minimize that of the total volume of 

spilling water from the time 0  to the time T t , by choosing an optimal u  from  0,1  at each 

time t t   0 t T   depending on tS  and on the state i  where t iX  . Such a map from 

 , ,t tt S X  to u  is referred to as a policy  . Here, a reward function to include the two 

conflicting objectives is set as 



13 
 

    spill 1, , , , , ,
T

t t T
t

f t S X Q S X u X S


  








   ,  (16) 

and the conditional expectation to be maximized, under the policy  , is denoted by 

 E , , .t tf t S X     The first term of (16) represents the total volume of spilling water from the 

time t t  to the time T t , while the second term does the storage TS  at the terminal time T t

to be maximized in order to meet any water demand which may occur after T t . According to 

the Bellman’s principle of optimality (Gross, 2016), the value function 

  ( , , ) sup E , ,t t tt S i f t S X


       (17) 

where t iX   solves the Bellman equation 

 
 

     spill 1
0,1

( , , ) max , , , , 1, , ,t ij t t
u

j

t S i P Q t S i u j t S u j j

 
     

 
   (18) 

for any time t t , any storage tS , and any state i . The trivial terminal condition is prescribed 

as 

 ( , , )T TT S i S    (19) 

for any i  , and therefore the computation of (18) is implemented temporally backward as 

schematized in Figure 3. 
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Figure 2: Schematic sketch of the hypothetical RWH system 

 

 

Figure 3: Computational scheme of the Bellman equation 
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3. Results and discussions 

 

3.1. Estimation of transition probabilities 

 

From the observed time series data of rainfall depths in 10 minutes during the period from 

June 04, 2014 to June 08, 2020, the number ( )k
ijN  of transitions for each combination of i, j, and 

k is counted. The increment r of the states is set as 0.1 mm, and thus the states of rainfall depths 

greater than 2r  = 0.05 mm in 10 minutes are regarded as wet. Due to the uneven distribution 

of data over different i  and j , the methods described in subsection 2.2 are adapted to determine

( )k
ijP . For 0,i  ( )k

il
l

N  is more than 42 10  for each month, and ( ) ( )
0 0 = k k

j jP P  as estimated with 

(4) is considered acceptable. Transitions between two dry states are significantly large in number 

for each month. For 0,i   the assumption of (5) is made for each month, including the 

parameters   and   determined by the exponent parameters identified with the formulae (9) 

and (10). For practical computation, the number of states is limited to rn  = 400, and the 

transition probability 
max

( )k
ijP , where maxj  is a transited state such that 

max

( ) ( )k k
ij ijP P  for all j , is 

redefined as  

 
max

max

max

( ) ( ) ( )

0 1

1
rj j j n

k k k
ij ij ij

j j j

P P P
 

  

      (20) 

for each i . Sequential searches were initially performed in the region E0.5 1.0p   and 

Var0.50 1.50p    with an increment of 0.1 for both parameters. Then, with ad hoc 

refinements of the region and the increments, the optimal values E 0.936p   and Var 0.910p 

achieving BV 0.08836r   were obtained. The first and the second terms of the right-hand side 

of (11) are 0.04209 and 0.04627, respectively, and the resulting value of average annual rainfall 
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is 1492.20 mm, which is close to the observed 1488.08 mm. The process of sequential searches 

is depicted in Figure 4. Table 1 summarizes the monthly values of ( )
00  kP , which is identical to 

the empirically estimated ( )
00

kP , the key statistics  wetE r ,  wetVar r , and O
kr , as well as the 

optimized E
kr . In the summer months from June to September, the continuation of dry states is 

generally less probable as ( )
00  kP is smaller. The large values of the key statistics imply that 

intense and irregular rainfall is most significant in August among the summer months. Very 

good agreement between O
kr  and the optimized E

kr  can be seen in the months of May, July, and 

August. As evident from this identification procedure, the validity of the optimized values of 

the exponent parameters is not universal but limited to this particular case of time series data, 

r , and the number of states for computation.  

 

Figure 4: The values of the deviation BVr  for different pairs of the exponent parameters 
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Table 1: ( )
00  kP ,  wetE r ,  wetVar r , O

kr , and the optimized E
kr  for each month 

 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

( )
00  kP  0.9920 0.9924 0.9900 0.9858 0.9901 0.9855 0.9863 0.9873 0.9856 0.9878 0.9908 0.9910 

 wetE r  0.2790 0.2976 0.3383 0.3756 0.4577 0.4880 0.5940 0.8217 0.6863 0.5895 0.2780 0.3347 

 wetVar r 0.1213 0.1360 0.1429 0.2285 0.4614 0.7510 1.0650 1.5237 1.5086 0.6740 0.1246 0.1841 

O
kr  0.01128 0.01146 0.02141 0.02845 0.02227 0.03748 0.04053 0.04988 0.04674 0.04033 0.01284 0.01503 

E
kr  0.01423 0.01384 0.02400 0.03308 0.02170 0.03359 0.04053 0.04949 0.04232 0.02953 0.01903 0.01829 

 

 

3.2. Demonstrative examples of the hypothetical RWH system 

 

 SDP is a more rational approach to optimal control problems than simulation, explicitly 

presenting optimal policies as maps from the state variables to the decision variables. The SDP 

problem formulated in subsection 2.3 is computationally solved to demonstrate the utility of 

the Markov chain model. In order to assure the validity of the SDP problem and its numerical 

solution, stability analysis is implemented for the Bellman equation (18) in terms of the 

Lipschitz continuity of the Bellman mapping as detailed in Appendix B. Such analysis is 

required for the SDP problem here, because it is discrete-time stochastic and differs from the 

continuous-time stochastic one (Unami and Mohawesh, 2018) and from discrete-time 

deterministic one (Unami et al., 2019) in the earlier studies. 

 The first demonstrative example of the hypothetical RWH system referred to as Case 1, 

assumes the dimensions of e 200A   m2, max 2S   m3, w 2Q   m3, and 1r   mm. Setting 

144T   time stages makes the terminal time T t  = 24 hours. The domain of storage volume 

is divided into 100 subdomains of an equal volume of  0.02 m3. Figure 5 shows the optimal 

policy at the initial time computed over the storage volume-rainfall depth state domain for each 
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month. Generally, the valve should be closed while the rainfall depth is less, considerably 

depending on the storage volume; the upper limits of the rainfall depth to close the valve are 

mostly monotone decreasing functions of the storage volume. The valve should be closed even 

if there is no rain and the tank is full in the months of January and February, but not in the other 

months. For more quantitative discussion, the values of the computed value function for 0 0S   

and different states of i  = 0, 10, 20, 50, 100, and 399 are shown in Table 2. In contrast to the 

optimal policy, the value function is the least sensitive to the storage volume at the initial time 

0, and therefore the values for 0 0S   are not presented. The values of (0,0,0) , which is the 

maximized expectation of the reward function on the condition that the tank is empty and no 

rain in t  is observed at 0t  , vary differently from any quantity among the months in Table 

1, due to the subtle trade-off between spilling and storage of water. For larger conditional 

rainfall depths, the annual patterns of (0,0, )i  exhibit monomodal variation with the bottom 

in August, where the rainfall is the most intense and irregular, with the slight anomaly in 

December as in  wetE r  and  wetVar r  if 20i  . This can be explained by the dominance of 

the spilling water in the reward function, which is more likely due to the higher possibility of 

high rainfall depths in the summer months.  
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Figure 5: The optimal policy at the initial time 0 computed over the domain of storage volume 

(m3) and rainfall depth state for each month: Case 1.  

 

Table 2: Representative values of the computed value function for each month 

 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

Φ(0, 0, 10) 0.6878 0.6888 0.6771 0.6830 0.6296 0.4863 0.3539 0.1751 0.2229 0.5391 0.6785 0.6951 

Φ(0, 0, 20) 0.6814 0.6801 0.6692 0.6542 0.5308 0.3065 0.1121 -0.1432 -0.0903 0.3880 0.6712 0.6761 

Φ(0, 0, 50) 0.6119 0.5976 0.5886 0.4743 0.1073 -0.3525 -0.7229 -1.1959 -1.1164 -0.1972 0.5970 0.5413 

Φ(0, 0, 100) -0.2075 -0.2637 -0.3070 -0.6007 -1.3074 -2.0167 -2.6263 -3.4441 -3.2463 -1.8723 -0.2298 -0.4360 

Φ(0, 0, 399) -12.19 -12.47 -12.95 -13.63 -14.92 -15.44 -16.51 -18.55 -17.15 -16.41 -12.20 -13.05 

 

 The second demonstrative example of the hypothetical RWH system referred to as Case 

2, consists of a plastic pan and a storage tank of a PET bottle. The pan and the bottle determine 

the dimensions of e 0.216A   m2, max 2S   L, w 2Q   L, and 0r   mm. The terminal time is 
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set as T t  = 2 hours with 12T   time stages. The domain of storage volume is divided into 

100 subdomains of an equal volume of 20 mL. Figure 6 shows the optimal policy at each time 

stage for the month of July computed over the storage volume-rainfall depth state domain. 

Similarly to the first example, the upper limits of the rainfall depth to close the valve appear as 

mostly monotone decreasing functions of the storage volume at each time stage. The differences 

in the optimal policy are irregular among the time stages and noticeable at the last two time 

stages 10t  and 11t  . The in situ experiment was implemented beside the automated 

weather station in the study area on July 3rd, 2020, setting 16:10 (GMT+09:00) as the initial 

time, with fully manual operation, as can be seen in the video provided as supplementary 

material. Table 3 shows the performance of the hypothetical RWH system along the trajectory 

actually realized. As the optimal policy directed to close the valve  * 0u   for all the time 

stages, no positive outQ  occurred. The spillage of water from the tank did not occur as well.  

 

Figure 6: The optimal policy at each time stage for the month of July computed over the domain 

of storage volume (L) and rainfall depth state: Case 2. 
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Table 3: Performance of the hypothetical RWH system of Case 2 realized in the in situ 
experiment 

t  tS  (L) i  ( , , )tt S i  (L) *u  inQ  (L) 

0 0.011 1 0.253 0 0.038 

1 0.049 2 0.351 0 0.030 

2 0.079 1 0.298 0 0.050 

3 0.129 2 0.411 0 0.037 

4 0.166 2 0.441 0 0.120 

5 0.286 6 0.681 0 0.118 

6 0.404 5 0.743 0 0.079 

7 0.483 4 0.786 0 0.033 

8 0.516 2 0.733 0 0.030 

9 0.546 1 0.688 0 0.020 

10 0.566 1 0.720 0 0.038 

11 0.604 2 0.963 0 0.005 

12 0.609 0 0.609 Sum 0.598 
 

4. Conclusions  

 

The Markov chain model for rainfall has been established for the anomalously dry Imago 

area of Shiga Prefecture, Japan, considering the probability law of transition from one state to 

another. Empirical transition probabilities from a dry state were computed from the observed time 

series data, while those from a wet state were estimated with the gamma distribution. The new 

formulae to determine the parameters in the gamma distribution included the two exponent 

parameters, taking the mean-reverting property of the rainfall depths into account. The exponent 

parameters were identified from the sequential searches to minimize the deviation BVr  so that 

the resulting monthly average rainfall depths become consistent with the observed ones. The 

eigenvector of the matrix of transition probabilities verified the identified values. The examples of 

operating the hypothetical RWH system are presented to demonstrate the utility of the Markov 

chain model in application to optimal management of water resources and stormwater retention in 
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the framework of SDP. In the computed optimal policies, the upper limits of the rainfall depth to 

close the valve appeared as mostly monotone decreasing functions of the storage volume. 

The proposed methodology to construct the Markov chain model from limited data sources 

is suitable for rainfall dynamics in temperate climates like Japan, where the smooth distribution of 

the transition probabilities over different i  and j  does not cause any serious problem. Another 

drastic methodology might be required to deal with singularity, such as abrupt onsets of dry or wet 

seasons occurring in arid and semi-arid climates. The treatment of (20) might overestimate the 

effect of the mean-reverting but would become negligible if rn  was large enough. The adequacy 

of i r  representing i  would also improve with larger rn  and smaller r . Another major 

limitation of this first-order Markov chain model is the incapability of capturing the memory effect 

of the time series. The authors are currently tackling more sophisticated reservoir operation 

problems based on Markov chain models of higher-order involving the fractional calculus (Unami 

et al., 2021). 

In practice, the operation of RWH systems, according to scientifically deduced optimal 

policies, will achieve a better trade-off between water supply and flood control. Therefore, 

government subsidies for the RWH technology shall put more emphasis on implementing such 

optimal policies, rather than on installing the RWH facilities as currently subsidized in some local 

governments in Japan. 
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Appendix A. Data availability 

 

The data that support the findings of this study are available from the corresponding author 

upon reasonable request. 

 

 

Appendix B. Stability analysis for the Bellman equation 

 

In order to assure the validity of the SDP problem and its numerical solution, stability 

analysis is implemented for the Bellman equation (18) in terms of the Lipschitz continuity of 

the Bellman mapping here. 

For each t  such that 0 t T  , the Bellman equation (18) prescribes the Bellman 

mapping ( , )tv S i  as 

 
 

     ( ) 1
spill

0,1
( , ) max , , , , ,t k t

ij
u

j

v S i P Q S u j v S u j j



 
   

 
   (21) 

where 

    spill spill, , , , , ,Q S u j Q t S i u j   (22) 

and 

      out in, , , , ,S u j S Q S u Q S u j    .  (23) 

For t T , let 

 ( , )Tv S i S   (24) 

as in the terminal condition (19) of the Bellman equation. 
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An upper bound of  ,tv S i , not depending on S , is denoted by  tb i  for 0 t T  . At 

the terminal time,   max
Tb i S . An upper bound of  spill , ,Q S u j , depending on neither S  nor 

u , is denoted by  Qb j . Let QL  be a Lipschitz constant satisfying 

    ( ) Q
spill A spill B A Bsup , , , ,k

ij
i j

P Q S u j Q S u j L S S     (25) 

and SL  be another Lipschitz constant satisfying  

     S
A B A B, , , ,S u j S u j L S S      (26) 

for any pair of AS  and BS  in  max0, S . 

 

Theorem 1.  Q
eb j A j r  , Q 1L  , and 1SL  . 

Proof. Let  e max ,0q A j r r   . Without loss of generality, we assume B AS S  for 

 A B max, 0,S S S . 

If 0u  , then out 0Q  ,    in maxmin ,Q S q S S  ,  and    spill , , max ,0Q S u j q q  . 

Thus,  spill , ,Q S u j q  and    spill A spill B, , , , 0Q S u j Q S u j  . Note that   in ( )S S Q S    

and    A B A B in A in B( ) ( )S S S S Q S Q S      . There are three cases regarding  inQ S : 

 Case q-0-1: max A max Bq S S S S      

 Case q-0-2: max A max BS S q S S      

 Case q-0-3: max A max BS S S S q      

Consequently,   in AQ S ,  in BQ S , and    A BS S   are calculated as in the table below: 

 Case q-0-1 Case q-0-2 Case q-0-3 

 in AQ S  q  
max AS S  max AS S  

 in BQ S  q  q  
max BS S  

   A BS S   A BS S  max BS S q  1) 0  
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1) Case q-0-2: max B0 S S q   ; 

Case q-0-2: max Aq S S    , max B A BS S q S S     

 
Since    A B A B0 S S S S      for all of the three cases,    A B A BS S S S    . 

If 1u  , then    out out wmin ,Q Q S Q S  . There are three cases regarding  inQ S : 

 Case wQ -a: w B AQ S S    

 Case wQ -b: B w AS Q S    

 Case wQ -c: B A wS S Q   

Consequently,  out AQ S ,  out BQ S ,   max A out AS S Q S  , and   max B out BS S Q S   are 

calculated as in the table below: 

  out AQ S   out BQ S    max A out AS S Q S     max B out BS S Q S   

Case wQ -a wQ  wQ  max A w maxS S Q S    max B w maxS S Q S    

Case wQ -b wQ  BS  max A w maxS S Q S    maxS  

Case wQ -c AS  BS  maxS  maxS  

 

Furthermore, there are four cases regarding  inQ S : 

 Case q-1-1: max A w max B w maxq S S Q S S Q S         

 Case q-1-2: max A w max B w maxS S Q q S S Q S         

 Case q-1-3: max A w max B w maxS S Q S S Q q S         

 Case q-1-4: max A w max B w maxS S Q S S Q S q        

Consequently, eight variables are calculated as in the tables below: 
 

     in A max A out Amin ,Q S q S S Q S    

 Case q-1-1 Case q-1-2 Case q-1-3 Case q-1-4 

Case wQ -a q  
max A wS S Q   max A wS S Q   max A wS S Q   

Case wQ -b q  
max A wS S Q   max A wS S Q   max A wS S Q   
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Case wQ -c q  q  q  
maxS  

 

     in B max B out Bmin ,Q S q S S Q S    

 Case q-1-1 Case q-1-2 Case q-1-3 Case q-1-4 

Case wQ -a q  q  
max B wS S Q   max B wS S Q   

Case wQ -b q  q  
max B wS S Q   maxS  

Case wQ -c q  q  q  
maxS  

 

    spill A in A, , max ,0Q S u j q Q S   

 Case q-1-1 Case q-1-2 Case q-1-3 Case q-1-4 

Case wQ -a 0  max A wq S S Q   2) max A wq S S Q   2) max A wq S S Q   2) 

Case wQ -b 0  max A wq S S Q   2) max A wq S S Q   2) max A wq S S Q   2) 

Case wQ -c 0  0  0  maxq S  

 

    spill B in B, , max ,0Q S u j q Q S   

 Case q-1-1 Case q-1-2 Case q-1-3 Case q-1-4 

Case wQ -a 0  0  max B wq S S Q   3) max B wq S S Q   3) 

Case wQ -b 0  0  max B wq S S Q   3) maxq S  

Case wQ -c 0  0  0  maxq S  

 

   spill A spill B, , , ,Q S u j Q S u j  

 Case q-1-1 Case q-1-2 Case q-1-3 Case q-1-4 

Case wQ -a 0  max A wq S S Q   2,4) A BS S  A BS S  

Case wQ -b 0  max A wq S S Q   2,4) A BS S  A wS Q 5) 

Case wQ -c 0  0  0  0  

 

     A A out A in AS S Q S Q S     

 Case q-1-1 Case q-1-2 Case q-1-3 Case q-1-4 

Case wQ -a A wS Q q   maxS  maxS  maxS  

Case wQ -b A wS Q q   maxS  maxS  maxS  

Case wQ -c q  q  q  
maxS  

 

     B B out B in BS S Q S Q S     
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 Case q-1-1 Case q-1-2 Case q-1-3 Case q-1-4 

Case wQ -a B wS Q q   B wS Q q   maxS  maxS  

Case wQ -b q  q  
maxS  maxS  

Case wQ -c q  q  q  
maxS  

 

   A BS S   

 Case q-1-1 Case q-1-2 Case q-1-3 Case q-1-4 

Case wQ -a A BS S  max B wS S Q q   6) 0  0  

Case wQ -b A wS Q 7) maxS q 8) 0  0  

Case wQ -c 0  0  0  0  
2) Case q-1-2/3/4: max A w0 q S S Q    ; 

Case wQ -a/b: max A w0 S S Q   , max A wq S S Q q     
3) Case q-1-3/4: max B w0 q S S Q    ; 

Case wQ -a/b: max B w0 S S Q   , max B wq S S Q q     
4)  Case q-1-2: max A w A Bq S S Q S S      
5)  Case wQ -b: . w BQ S   ., A w A BS Q S S    
6) Case q-1-2: max B w0 S S Q q    ; 

Case q-1-2: max A wq S S Q     , max B w A BS S Q q S S      
7)  Case wQ -b: w AQ S , A w0 S Q  ; 

Case wQ -b: w BQ S   , A w A BS Q S S    
8) Case q-1-2: maxq S , max0 S q  ; 

Case q-1-2: max A wq S S Q     , max A w A BS q S Q S S      

 
Since  spill0 , ,Q S u j q  ,    spill A spill B A B0 , , , ,Q S u j Q S u j S S    , and 

   A B A B0 S S S S      for all of the twelve cases,  spill , ,Q S u j q , 

   spill A spill B A B, , , ,Q S u j Q S u j S S   , and    A B A BS S S S    . 

Finally, we conclude that  Q
eb j A j r  , Q 1L  , and S 1L  . □ 

 

The stability of the Bellman equation is stated as the Lipschitz continuity of the Bellman 

mapping shown in the Theorem 2 below. 
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Theorem 2. The Bellman mapping 0 ( , )v S i  at 0t   is Lipschitz continuous with respect to S  

and i . Namely, there exist real Lipschitz constants L  and B  such that 

 0 0
A A B B A B A B( , ) ( , )v S i v S i L S S B i i       (27) 

for any pair of AS  and BS  in  max0, S  and for any pair of Ai  and Bi  in . 

Proof. Assume A B( , ) ( , )t tv S i v S i  and let  *u  be the optimal decision variable when  AtS S

such that      ( ) * 1 *
A spill A A( , ) , , , , ,t k t

ij
j

v S i P Q S u j v S u j j   . If there exists a real 

number sL  such that A B A B( , ) ( , )s s sv S i v S i L S S    for t s T  , then 

 

     
    
      

   

A B A B

( ) * 1 *
A spill B B

( ) * *
spill A spill B

( ) 1 * 1 *
A B

( ) * *
spill A spill B

( )

( , ) ( , ) ( , ) ( , )

( , ) , , , , ,

, , , ,

, , , , , ,

, , , ,

t t t t

t k t
ij

j

k
ij

j

k t t
ij

j

k
ij

j

k
ij

v S i v S i v S i v S i

v S i P Q S u j v S u j j

P Q S u j Q S u j

P v S u j j v S u j j

P Q S u j Q S u j

P



 



 

  

   

  

 

 











     
   

 

1 * 1 *
A B

Q ( ) 1 * *
A B A B

Q S 1
A B A B

Q S 1
A B

, , , , , ,

, , , ,

t t

j

k t
ij

j

t

t

v S u j j v S u j j

L S S P L S u j S u j

L S S L L S S

L L L S S
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implying that 

 Q S 1 Q S St T t
T

t t T

t

L L L L L L L L






 






      (29) 

where 1tL T t    because  Q 1L   and S 1L   as in Theorem 1, and because of 1TL  . 

Assume that  sb i  is finite for t s T  . Then,  
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( ) * 1 *
spill

( ) * 1 *
spill

( ) Q 1

( , ) , , , , ,

, , , , ,

t k t
ij

j

k t
ij

j

k t
ij

j

v S i P Q S u j v S u j j

P Q S u j v S u j j

P b j b j











  

 

 







  (30) 

from where it turns out that 

 
1Q 1 Qt T t

T
t t T

k k k k
t






  






     
 
b b b b bP P P P   (31) 

where  Q Qb i

 
   
 
 

b





, and  t tb i

 
   
 
 

b





. Let  Q ( ) Qsup k
ij

i j

B P b j   and  ( )supt k t
ij

i j

B P b j  . 

With  Q
eb j A j r   as in Theorem 1, it can be seen that QB  and thus tB  are finite if and only 

if E 1p   and that tB  linearly increases with respect to  T t . Assume A B( , ) ( , )t tv S i v S i  

and let *u  be the optimal decision variable when  Ai i such that 

     A

( ) * 1 *
A spill( , ) , , , , ,t k t

i j
j

v S i P Q S u j v S u j j   . Then, 

 

     
       

     
    

B

A B

A B

A B

A B A B

( ) * 1 *
A spill

( ) ( ) * 1 *
spill

( ) ( ) * 1 *
spill

( ) ( ) Q 1

( , ) ( , ) ( , ) ( , )

( , ) , , , , ,

, , , , ,

, , , , ,

t t t t

t k t
i j

j

k k t
i j i j

j

k k t
i j i j

j

k k t
i j i j

j

v S i v S i v S i v S i

v S i P Q S u j v S u j j

P P Q S u j v S u j j

P P Q S u j v S u j j

P P b j b j















  

   

   

  

  









.  (32) 

Furthermore, 

 

    

           
A B

A B

( ) ( ) Q 1

( ) Q 1 ( ) Q 1 Q 12

k k t
i j i j

j

k t k t t
i j i j

j j

P P b j b j

P b j b j P b j b j B B



  

 

     



 
  (33) 

but if A Bi i  then 
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A B

( ) ( ) Q 1 0k k t
i j i j

j

P P b j b j   .  (34) 

Therefore, 

  Q 1
A B A B( , ) ( , ) 2t t tv S i v S i B B i i    .  (35) 

Finally, the left-hand side of the asserted inequality (27) is evaluated as 

 

   

0 0 0 0 0 0
A A B B A A B A B A B B

0 0 0 0
A A B A B A B B

Q 1
A B A B

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

1 2 t

v S i v S i v S i v S i v S i v S i

v S i v S i v S i v S i

T S S B B i i

    

   

     

,  (36) 

and the inequality holds with 1L T   and  Q 12 tB B B   . The both Lipschitz constants L  

and B  linearly increase with respect to T , and they are finite whenever T  is finite. □ 
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