Carcinogenesis

OXFORD UNIVERSITY PRESS

SNAIL regulates gastric carcinogenesis through CCN3 and NEFL

Journal:	Carcinogenesis
Manuscript ID	CARCIN-2020-00184.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	12-Nov-2020
Complete List of Authors:	CHEN, RU; Kyoto Daigaku, Graduate school of medicine Takaishi, Shigeo; Kyoto Daigaku, Graduate School of Medicine Masuo, Kenji; Kyoto Daigaku, Graduate school of medicine Yokoyama, Shoko; Kyoto Daigaku, Graduate school of medicine yogo, akitada; Kyoto Daigaku, Graduate School of Medicine Sugiyama, Aiko; Kyoto Daigaku, Graduate school of medicine Seno, Hiroshi; Kyoto Daigaku, Department of Gastroenterology and Hepatology Yoshizawa, Akihiko; Kyoto Daigaku, Department of Diagnostic Pathology
Keywords:	Gastric Cancer, Cancer Stem Cells, EMT, spheroid

4 5 6	1	SNAIL regulates gastric carcinogenesis through CCN3 and NEFL
7		
8 9	2	Role of SNAIL/CCN3/NEFL axis in gastric cancer
11 12	3	Ru Chen ^{1,2} , Kenji Masuo ^{1,2} , Akitada Yogo ^{1,3} , Shoko Yokoyama ¹ , Aiko Sugiyama ¹ , Hiroshi
13 14 15	4	Seno ^{1,2} , Akihiko Yoshizawa ⁴ , Shigeo Takaishi ^{1,*}
16 17 18	5	1: DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto
19 20	6	University, Kyoto, Japan.
21 22 23	7	2: Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto
24 25 26	8	University, Kyoto, Japan.
27 28	9	3: Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School
29 30 31	10	of Medicine, Kyoto University, Kyoto, Japan.
32 33 34	11	4: Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan.
35 36 37	12	*Corresponding author: Shigeo Takaishi; takaishi.shigeo.7w@kyoto-u.ac.jp
38 39 40	13	
41 42 43	14	
44 45 46	15	
47 48 40	16	
50 51	17	
52 53 54 55	18	
50 57 58 59		1

Abstract

20	Among cancer cells, there are specific cell populations of whose activities are comparable
21	to those of stem cells in normal tissues, and for whom the levels of cell dedifferentiation are
22	reported to correlate with poor prognosis. Information concerning the mechanisms that
23	modulate the stemness like traits of cancer cells is limited. Therefore, we examined five
24	gastric cancer cell lines and isolated gastric oncospheres from three gastric cancer cell lines.
25	The gastric cancer cells that expanded in the spheres expressed relatively elevated
26	proportion of CD44, which is a marker of gastric cancer stem cells, and displayed many
27	properties of cancer stem cells, for example: chemoresistance, tumorigenecity and
28	epithelial-mesenchymal transition (EMT) acquisition. SNAIL, which is a key factor in
29	EMT, was highly expressed in the gastric spheres. Microarray analysis in gastric cancer cell
30	line HGC27 showed that CCN3 and NEFL displayed the greatest differential expression by
31	knocking down of SNAIL; the former was up-regulated and the latter down-regulated,
32	respectively. Down-regulation of CCN3 and up-regulation of NEFL gene expression
33	impaired the SNAIL-dependent EMT activity: high tumorigenicity, and chemoresistance in
34	gastric cancer cells. Thus, approach that disrupts SNAIL/CCN3/NEFL axis may be credible
35	in inhibiting gastric cancer development.
36	Keywords: Gastric Cancer; Cancer Stem Cells; EMT; spheroid
37	
38	
39	

1	
2	
3	
4	
5	
6	
7	
/ 0	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
30	
27	
3Z	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
55	
50 57	
5/	
58	
59	
60	

40 Introduction

41	Gastric cancer is one of the most common cancers in East Asia and Eastern Europe
42	[1]. It is important to critically assess the current advances in our understanding of gastric
43	cancer and to establish novel and innovative therapeutic strategies. A vast body of literature
44	has been published on specific aspects of cancer initiating cells and on putative cancer stem
45	cells (CSCs) which possess properties of stem cells distinct from differentiated progeny
46	cancer cells [2]. Discovering significant genes and signaling pathways involving gastric
47	cancer stemness could be helpful approaches to discovering novel therapeutic options.
48	During malignancy transformation, a critical process named the epithelial-
49	mesenchymal transition (EMT) commonly occurs, and cells usually undergo a rapid change
50	from differentiated and polarized epithelial state into an invasive mesenchymal composition
51	[3]. During the development of diverse solid tumors, stem cell like traits were reported to
52	be related to EMT. For example, after breast cancer cells acquired stem cell like features,
53	the passaged mammosphere cells manifest with similar features to breast cancer stem cells,
54	indicating a fundamental link between malignancy propagation and stem cell characteristics
55	[4-6]. Among all the major EMT transcription factors, SNAIL, a zinc-finger protein, whose
56	activities in relation to the downregulation of E-cadherin in colon cancer have previously
57	been reported [7, 8]; binds to the E-boxes in the CDH1 gene promoter and represses
58	transcription of the CDH1 gene [9]. So far SNAIL has been reported to contribute in many
59	malignancy progression, and its' function in gastric cancer needs to be uncovered further as
60	well. The precise mechanism of SNAIL-induced cell dedifferentiation and how this gene

1	
2	
3	
4	
5	
7	
, 8	
9	
10	
11	
12	
13	
14 15	
16	
17	
18	
19	
20	
21	
22	
23	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37	
38 20	
39 40	
41	
42	
43	
44	
45	
46 47	
47 48	
49	
50	
51	
52	
53	
54 57	
55 56	
50 57	
58	
59	
60	

61	can provide stem cell like traits in gastric cancer cells remain open to debate and to be
62	further clarified. The discovery of genes under SNAIL regulation that could also be an
63	instrumental breakthrough and lead to the establishment of novel therapeutic strategies in
64	EMT-related stemness and malignancy. In the present study, we extracted CCN3 and NEFL
65	as targets in the downstream of SNAIL, and determined the association of these two factors
66	with stem cell like activity in gastric cancer cells.
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	

1

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 ⊇1	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
31	
25	
35	
36	
37	
38	
39	
40	
<u>4</u> 1	
12	
42 42	
43	
44	
45	
46	
47	
48	
<u>4</u> 0	
50	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	

60

79 Materials and Methods:

Human gastric cancer cell lines were purchased from RIKEN (https://cell.brc.riken.jp/ja/quality/str), JCRB cell bank (https://cellbank.nibiohn.go.jp/about-qc_english/), and ATCC (https://www.atcc.org/Services/Testing_Services/Cell_Authentication_Testing_Service.asp x), in which STR analysis is performed in these cell line banks to ensure the authentication

Cell culture, tissue collection and sphere growth

of human cell lines, and were cultured according to the instructions provided by the

87 manufacturer. Cell lines including human gastric cancer cell lines (HGC27, NCI-N87, GSU,

88 MKN74, MKN45, NUGC3 and IM95), and embryonic kidney 293T cells were cultured in

89 DMEM (Nacalai Tesque, Japan) supplemented with 10% fetal bovine serum (HyClone

90 Defined Fetal Bovine Serum (FBS), USA) and penicillin-streptomycin mixed solution

91 (10,000u/ml, Nacalai Tesque, Japan). For RNA extraction from each cell line, NucleoSpin

92 RNA Plus (Takarabio, Japan) was used following the manufacturer's instructions. The

93 preparation of paraffin-embedded blocks was performed as follows: slices of tumor formed

94 from each of the cell lines were immersed in 4% paraformaldehyde (Nacalai Tesque, Japan)

to allow the assembling of paraffin-embedded blocks. Cells were cultured in homemade

stem cell medium (DMEM/F12 supplemented with B27 Supplement (ThermoFisher), 10

97 ng/mL recombinant basic fibroblast growth factor (bFGF, ThermoFisher), 10 ng/mL

98 epidermal growth factor (EGF, ThermoFisher), and 1% penicillin-streptomycin) to obtain

99 spheres. A total of 1×10^4 cells per milliliter were seeded in culture medium for stem cell

and incubated in ultra-low attachment plates for 5 days. Spheres larger than 80 µm in diameter were counted using Cell3Imager (InSphero AG and Dainippon SCRREEN, Kyoto, Japan). TrypLE Express (ThermoFisher) or Trypsin-EDTA (FUJIFILM Wako, Japan) were used to separate cells from the floating spheres and adherent cells to allow cell counting and other experiments.

In vivo tumorigenicity assay

All procedures involving animals were conducted in accordance with the Institutional Animal Welfare Guidelines of Kyoto University. NOD/SCID mice were purchased from the Charles River Laboratories (Yokohama, Japan) and were maintained according to the Guidelines for Laboratory Animals in the Kyoto University. The tumorigenicity assay was performed by subcutaneous injection of 1×10^4 designated cells into the flanks of 8- to 10-week-old NOD/SCID mice. Mice were sacrificed and examined for tumor harvest once the tumor had reached pre-determined size (2.5cm maximum). Tumor size was measured with calipers once a week after the injection. Lentivirus production, short-hairpin RNA-mediated human SNAIL gene knockdown and stable clone establishment The lentivirus package system: pMDLg/pRRE (Addgene, plasmid #12251), pRSV-Rev (Addgene, plasmid #12253) and pMD2.G (Addgene, plasmid #12259) together with the shRNA plasmid targeting the human SNAIL gene as well as the control vector: pLKO.1puro (Addgene, plasmid #8453) were co-transfected into 293T cells by

Lipofectamine 3000 (Invitrogen). SNAIL-targeting short-hairpin RNA (MISSION shRNA)

3 4		
5 6	121	duplex (A: 5-TGCTCCACAAGCACCAAGAGTC-3; B: 5-
7 8	122	CCACTCAGATGTCAAGAAGTAC-3) and NEFL-targeting short-hairpin RNA
9 10 11	123	(MISSION shRNA) (5-CGACAGCTTGATGGACGAAAT-3) were purchased from
12 13	124	Sigma-Aldrich Co. LCC. (St. Louis, MO, USA). About 48 to 72 hours later, virus
14 15	125	supernatant was collected for concentration. For shRNA knockdown, HGC27 and IM95
16 17 18	126	cells were seeded onto 6-well plates and infected with optimal virus concentrations
19 20	127	supplemented with 6 µg/mL Polybrene (Sigma, St. Louis, MO, USA), then incubated for
21 22	128	12 hours before replacing with fresh medium. Cells were then selected by puromycin
23 24	129	(INVIVOGEN, Japan) at the concentration of 1.8 μ g/ml (HGC27) and 4 μ g/ml (IM95) for
25 26 27	130	2 weeks.
28 29 30	131	Transient transfection
31 32 33	132	Lipofectamine 3000 reagent was used for the introduction of overexpression vectors
34 35	133	to establish stable lines, including the NEFL (Sino Biol.HG13214-UT), CCN3 (Sino
36 37	134	Biol.HG10264-UT) and SNAIL (Sino Biol.HG16844-UT) overexpression vectors and
38 39 40	135	matched control vector (Sino Biol.CV011), all of which were purchased from Sino
40 41 42	136	Biological Inc. (Wayne, PA, USA). Selections were carried out via hygromycin B (Nacalai
43 44	137	Tesque, Japan); resistance and transfection efficiency were verified through real-time qPCR.
45 46 47 48	138	Microarray data and bioinformatics analysis
49 50	139	Total RNA from each sample was extracted using NucleoSpin RNA Plus kit,
51 52	140	forwarded with Affymetrix Human Genome U133 Plus 2.0 Array (HuGene2.9st, Japan)
55 55	141	analysis. RNA extraction, microarray hybridization, and feature selection were performed
56 57		
58 59		7

142	according to the manufacturer's protocol. Microarray data can be download from the GEO
143	database (<u>https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145867</u>).
144	Bioinformatics and genetic network construction were performed in R Studio (version
145	1.2.1335) mainly using RMA [10] from the affy package [11] and the GoPlot package
146	(https://CRAN.R-project.org/package=GOplot) [12]. Treemaps were created using
147	REVIGO webtool (http://revigo.irb.hr/index.jsp) [13]. Gene enrichment analysis was
148	performed using DAVID 2010 Bioinformatics Resources (<u>http://david.abcc.ncifcrf.gov/</u>)
149	[14].
450	
150	Reverse transcription and real-time quantitative PCR
151	Using the PrimeScript II 1st strand cDNA Synthesis Kit (Takarabio, Japan), 3
152	micrograms of total RNA were transformed into first-strand complementary DNA synthesis
153	following directions provided by the manufacturer. Human pre-messenger RNA sequences
154	were obtained from NCBI gene (www.ncbi.nlm.nih.gov/gene/) before using NCBI blast
155	(https://blast.ncbi.nlm.nih.gov/Blast.cgi) to design primers in PCR. All the primer
156	sequences used in this study can be checked in Table S1. Real-time quantitative PCR
157	(qPCR) was performed to evaluate the expression levels using SYBR Green Master Rox
158	(Roche, Sigma-Aldrich), and were analyzed using the StepOnePlus real-time system
159	(Applied Biosystems). The endogenous expression level of GAPDH was used to obtain the
160	expression levels of other genes via $\triangle \Delta Ct$ methods.
161	Drug resistance and CCK8 assay
	8
	142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

Cells were seeded at the concentration of 1×10^4 cells/ml in 96-well plates and incubated overnight before application of various concentration of chemotherapy drugs (1µM to 200µM 5-FU (KYOWA KIRIN, Japan)). After 96 hours, medium was discarded and CCK8 assay solution (Dojindo molecular technologies) was added to cells and incubated for 1 hour at 37°C. The plate was then read by a microplate reader (OD450; Infinite F50, TECAN). Western blotting assay Proteins were extracted from relevant cell lines using ice-cold RIPA buffer (Nacalai Tesque, Japan) after washing with 1x phosphate-buffered saline (PBS). Later proteins were separated in 10-20% gels (SuperSep Ace, Fujifilm Wako, Japan) and then transferred onto PVDF membranes (Immobilon-P, Merck M), and blocked using skimmed milk (Fujifilm Wako, Japan). The collection of primary antibodies used in this study were Snail (ab53519; Abcam), CCN3 (ab191425; Abcam), NEFL (ab223343; Abcam), and E-cadherin (24E10, Cell Signaling Technology), Vimentin (D21H3, Cell Signaling Technology), CD24 (ab199140 Abcam). Proteins were incubated with the primary antibodies over night at 4°C. They were then stained with anti-mouse, anti-rabbit or anti-goat secondary antibodies (Jackson Laboratory) for 60 minutes at room temperature. Thereafter they were incubated with chemiluminescent HRP substrate (WBKLS0500, Merck M) for 5 minutes. Chemiluminesence signals were collected via the Fujifilm LAS-3000 (Fuji, Japan) as per the manufacturer's instructions. Immunocytochemistry and fluorescence assay

13	83	Cells were seeded onto 8-well culture slides (#354118, Falcon) overnight before
13	84	fixation with 4% PFA for 10 minutes at room temperature followed by 1x PBS washes.
13	85	Cells were permeabilized with 0.5% Triton X-100/PBS for 5 minutes at room temperature,
13	86	washed with 1x PBS, and blocked in 5% BSA (Sigma) in PBS for 60 minutes before
13	87	incubating with Snail (20C8, ThermoFisher) primary antibodies followed by the secondary
13	88	antibodies Alxea Fluor 594 (ThermoFisher). Slides were mounted in VECTASHIELD
13	89	Mounting Medium with DAPI (H-1200; VECTOR Lab, Japan). Fluorescence images were
1	90	visualized with Keyence fluorescence microscope.
1	91	Immunohistochemistry staining
19	92	Human gastric cancer tissue array (MLB Life Science Japan) and tumor specimens
19	93	from mice gastric tumors were deparaffinized, rehydrated and placed in 3% (v/v) H ₂ O ₂ -
1	94	methanol for 15 min at room temperature. The slides were then immersed in blocking
1	95	solution (Non-specific Staining Blocking Reagent; Dako-Cytomation, Kyoto, Japan) for 15
1	96	min and incubated with the primary antibodies listed below at 4 ^o C overnight. Antigen–
1	97	antibody complexes were detected with a secondary antibody (Histofine Simple Stain
1	98	MAX PO (R) for rabbit monoclonal, or (G) for goat polyclonal (Nichirei, Tokyo, Japan)
1	99	and visualized using 3,30-diaminobenzidine (0.5 mg/ml in Tris-buffered saline). The list of
2	00	primary antibodies and dilution ratios were as follows: 1. Anti-SNAIL antibody (goat
2	01	polyclonal, ab53519, Abcam), 1: 1,000; 2. Anti-CCN3 antibody (rabbit monoclonal,
2	02	ab191425, Abcam), 1:100; 3. Anti-NEFL antibody (rabbit monoclonal, ab223343, Abcam),
2	03	1:400.

1 2		
3		
4 5 6 7	204	Flow cytometry
8 9	205	Incubation buffer was prepared as $1x PBS + 2\% FBS$. Single cell suspensions were
10 11 12	206	washed with cooled incubation buffer, and re-suspended in $1x PBS + 2\% FBS$ on ice for 30
13 14	207	minutes for antibody blocking: anti-CD24-FITC (ML5; Bio-legend, San Diego, CA),
15 16	208	CD44-FITC (BJ18; Bio-legend, San Diego, CA) and DAPI (422801, Bio-legend, San
17 18 19	209	Diego, CA). Cells were suspended in 0.5 mL incubation 1x PBS + 2% FBS to reach a final
20 21	210	concentration of 10 ⁶ cells/ml. Data were collected by the BD FACSCanto II or BD
22 23	211	FACSVerse flow cytometer (Becton-Dickinson, Franklin Lakes, NJ) and analyzed with
24 25 26	212	FlowJo software (TreeStar, San Carlos, CA). Cell debris was excluded from the analysis
27 28	213	based on scatter signals, and fluorescent compensation was adjusted when double stained.
29 30 31	214	Statistical Analyses
32 33 34	215	Independent sample t tests were performed to compare the continuous variation of
35 36	216	two groups, and the student's test was applied for comparisons of variables. $P < 0.05$ was
37 38 39	217	considered significant. All data are reported as mean ±SEM.
40 41 42	218	
43 44 45	219	
46 47 48	220	
49 50	221	
51 52 53 54 55	222	
56 57 58		11
59		

Results

224 Gastric Spheres Cultured Under Serum-Free Conditions Manifest Stem Cell

Properties

Self-renewal capability is a major property of stem cells, and can be accurately assessed via sphere formation [15]. Gastric cancer cell lines produce stem like sphereforming cells when cultured under B-27(+) bFGF(+) EGF(+) serum-free medium (CSC serum-free medium) in ultra-low attachment culture dishes [16]. The original gene expression profiles and tumor morphologies in cancer cells are well reflected with spheres cultured in the CSC serum-free condition [17]. We assessed the sphere-forming capacity of five gastric cancer cell lines for initial culture (cells were collected from attached condition and seeded in CSC serum-free medium) and passage culture (cells were collected from formed spheres and seeded in CSC serum-free medium), and found that three cell lines had the ability to form spheres (Figure 1A). Those spheres all originated from single cell and not by mere cell herds or aggregations, which was ensured by seeding single cells in 96 well plates and spheres managed to develop after several weeks (data not shown). Sphere-forming capacity of passaged cells (passage culture) was stronger compared with that of parental cells (initial culture), when the same number of cells were seeded in CSC serum-free medium (Figure 1B). To further confirm whether malignant cells possess additional stemness traits, 1 x 10⁴ NCI-N87 cells were transplanted into the flanks of NOD/SCID mice. Histological analysis of xenografts exhibited an epithelial-like morphology irrespective of whether they were generated by parental or sphere cells (Figure 1C & S1);

2 3		
4		
5 6 7	244	however, sphere cells were more efficient at producing bulky tumors in NOD/SCID mice
7 8 9	245	compared with parental monolayer cells (Figure 1D).
10 11	246	
12 13 14	247	Gastric Spheres Express EMT-associated Factors
15 16 17	248	Acquisition of stemness traits in malignant cells is commonly achieved through
18 19 20	249	undergoing EMT process, thus tracking the activities of EMT-associated factors will help
21 22	250	uncovering mechanism behind the obtained stemness. Four key EMT factors were
23 24 25	251	examined in this study, and higher mRNA expression of EMT factors (TWIST1, 2, SNAIL,
26 27	252	and SLUG) were found in spheres compared with parental cells (Figure 2A). HGC27 cells,
28 29	253	which form spheres most efficiently, highly expressed TWIST1 and SNAIL mRNAs
30 31 32	254	compared with other two sphere-forming cell lines, NCI-N87 and NUGC3. Consistent with
33 34	255	this, immunofluorescence images indicated highest protein expression of SNAIL in HGC27
35 36	256	cells (Figure 2B). The role of TWIST1 has been extensively investigated in previous EMT-
37 38 39	257	associated researches [18]; therefore, HGC27 and SNAIL were chosen as the target cell line
40 41	258	and molecule pair in the current study.
42 43 44	259	
45 46 47	260	SNAIL Regulates Tumorigenicity in Gastric Cancer Cells
48 49 50	261	In order to investigate whether SNAIL regulates stemness and tumorigenicity in
51 52	262	gastric spheres, we determined phenotypic alteration after lentivirus-mediated short-hairpin
53 54 55	263	RNA-interfered knockdown of SNAIL (shRNA-SNAIL k.d.). Realtime quantitative PCR

Page 14 of 79

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ ว1	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
22	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
17	
ד∠ ⊿2	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
)) F(
20	
5/	
58	
59	
60	

1

264	indicated successful knockdown effects using shRNA-SNAIL in HGC27 cell lines and
265	spheres (Figure 3A). Western blotting showed a similar tendency of 29 Da SNAIL protein
266	expression (Figure 3B). Epithelial and mesenchymal traits of HGC27 were measured using
267	antibodies against E-cadherin and Vimentin, representative proteins for epithelial and
268	mesenchymal phenotypes, respectively. Up-regulation of E-cadherin with down-regulation
269	of Vimentin by SNAIL knockdown indicated the event of mesenchymal-to-epithelial
270	transition in HGC27 cell lines (Figure 3B). The most conspicuous phenomenon observed
271	was that the shape of formed sphere in the CSC serum-free medium switched from having
272	smooth margins into jagged and sharp edges by the SNAIL knockdown (Figure 3C).
273	Previous studies reported a CD44+/CD24- subpopulation of gastric cancer contains gastric
274	cancer stem cells [19]. As showed in Figure 3D, the fluorescence activated cell sorter
275	analysis revealed that 91.0% of the HGC27 cell line was CD44+/CD24-, while knockdown
276	of SNAIL in this cell line almost completely eliminates this population. This suggested that
277	gastric cancer stem cells are maintained, at least in part, by the presence of SNAIL.
278	Stemness such as self-renewability in cancer cells is associated with the capacity of
279	forming spheres out of the transformed epithelial cells [20]. Therefore, we compared sphere
280	forming capacity between parental HGC27 and stable SNAIL knockdown HGC27 cells
281	cultured in monolayer conditions. The number and area of sphere were significantly
282	decreased by SNAIL knockdown, suggesting a reduced ability to self-renewal (Figure 3E).
283	Consistent with this, when $1 \ge 10^4$ cells were transplanted into the flanks of NOD/SCID
284	mice, although histological analysis did not show any significant alterations, stably SNAIL

3 4		
5 6	285	knockdown HGC27 cells were less efficient at producing bulky tumors compared with
7 8 9	286	parental HGC27 cells (Figure 3F).
10 11 12	287	Lower expression of SNAIL was referred to as increased sensitivity upon chemo-
12 13 14	288	treatment due to diminished self-renewability in malignancy [21]. In our experimental
15 16	289	condition, stable SNAIL knockdown HGC27 cells were more susceptible to 5-fluorouracil
17 18 19	290	(5-FU) treatment compared with parental HGC27 cells (Figure 3G).
20 21 22	291	Together, these findings SNAIL regulates tumorigenecity, possibly stemness at least
22 23 24	292	in part, in gastric cancer cells.
25 26 27	293	
28 29 30	294	SNAIL-regulating Genes in Gastric Cancer Cells
31 32 33	295	To unveil the mechanisms underlying phenotypic modifications induced by
34 35	296	knockdown of SNAIL in HGC27 cells, gene expression microarray analysis on a HGC27-
36 37	297	SNAIL knockdown and parental HGC27 cells was performed. Under the alteration of
38 39	298	SNAIL expression, distributed genes movement were shown in Figure 4A. Of those genes,
40 41 42	299	a total of 1656 and 1832 probe sets ($ FC \ge 2$) were specifically upregulated or
43 44	300	downregulated in stable HGC27-SNAIL knockdown cells respectively (Figure 4B).
45 46	301	Statistically overrepresented functional processes were obtained through enriched genes
47 48 40	302	querying in the Gene Ontology (GO) database ($P < 0.05$; Figure 4C). The main processes
49 50 51	303	enriched in up-/down-regulated genes include those pertaining to multiple binding and
52 53 54	304	cellular processes. It is suggested that instead of individual activation, genes tend to
55 56 57		
58 59		15

305	collaborate in genetic networks, thus we subjected the enriched GO processes that were
306	selected as meaningful to REVIGO analysis, which is a useful web tool that summarizes
307	long lists of GO terms. Several GO terms formed a treemap of the most significant
308	processes: cell motility, chemotaxis, adhesion, neural regeneration, and cell death, as well
309	as those involved in EMT (Figure 4D). Within this network, chemotaxis was a focal node
310	and in the broader group of terms under the chemotaxis title, the regeneration process was
311	chosen as a target to be studied in greater depth due to the possible role of neuron
312	development and supervision in malignancy progression. qRT-PCR confirmed down- and
313	up-regulation of CCN3 (also known as NOV or IGFBP9): Cellular Communication
314	Network factor 3, and NEFL: Neurofilament Light peptide mRNA expression by SNAIL
315	knockdown in HGC27cells (Figure 4E).
316	
317	CCN3 and NEFL Expression in Gastric Cancers
318	The occurrence of distant metastases and poor survival outcome has been reported
319	relevant with high SNAIL protein in gastric cancer patients [22]. CCN3 belongs to the
320	CCN family (cysteine-rich protein 61 (CYR61), connective tissue growth factor (CTGF),
321	nephroblastoma overexpressed (NOV)). Limited information is known concerning the
322	functional correlation between EMT with CCN3 and NEFL in cancers. There have been
323	reports of increased expression of CCN3 in prostate and cervical cancers [23, 24]. CCN3
324	was demonstrated to promote EMT by activating the FAK/Akt/HIF-1 α pathway in prostate
325	cancer [25]. NEFL has been implicated in carcinogenesis as a putative suppressor gene in

326	neuron related inhibition of both cell proliferation and invasion in head and neck squamous
327	cell carcinoma [26]. Using data of transcript level of SNAIL, CCN3 and NEFL from The
328	Cancer Genome Altas (TCGA) stomach adenocarcinoma project, each gene expression in
329	gastric cancers and normal gastric tissues were shown in Figure 5A. There were no
330	correlations in mRNA expression levels between SNAIL and either CCN3 or NEFL, and
331	no correlation between CCN3 and NEFL (Figure 5B). Immunohistochemistry analysis was
332	then performed on a paraffin-embedded human gastric cancer tissue array ($n = 30$,
333	purchased from MBL Life Science, Japan). CCN3 expression was detected in 96.7%
334	(29/30), NEFL expression was positive in 86.7% (26/30) and SNAIL expression occurred
335	in 26.7% of tumor tissues (8/30). Representative staining with positive and negative images
336	for SNAIL/CCN3/NEFL are shown in Figure 5C. Compared with Figure S2 of normal
337	gastric tissues, CCN3 antibody only stained positive in some fibroblasts and myofibroblasts
338	besides malignant parts; while NEFL also stained positive in neurofilament as reported
339	elsewhere.
340	
341	CCN3 and NEFL are Critical for SNAIL-Induced Stemness
342	We initially investigated how CCN3 and NEFL function by introducing their
343	expression vectors into SNAIL knockdown HGC27 cells and parental HGC27 cells
344	respectively, and those effects were confirmed with western blotting (Figure 6A). Forced
345	expression of SNAIL or CCN3 in sh-SNAIL knockdown HGC27 cells resulted in
346	significantly increased number of formed spheres (Figure 6B-a & b); while that of NEFL

4		
5 6 7	347	caused diminished sphere formation ability in parental HGC27 cells (Figure 6B-c).
, 8 9	348	Furthermore, the chemoresistance against 5-FU of each pair of cells was also measured.
10 11	349	The results were consistent with alterations to sphere formation capacity: the proliferation
12 13	350	rates of HGC27-shSNAIL, HGC27-NEFL, and HGC27-shSNAIL-CCN3 cells were
14 15	351	reduced more rapidly when 5-FU was added in a dose-dependent manner (Figure 6C). The
16 17 18	352	fact that HGC27-shSNAIL stable knockdown cells produced significantly reduced tumor
19 20	353	masses compared with SNAIL re-introduced rescue cells was proved via xenograft assays
21 22	354	in vivo (data not shown). To further evaluate the role of NEFL molecule during EMT
23 24 25	355	process, gastric cancer cell line IM95 was selected from several candidate cell lines due to
25 26 27	356	high NEFL expression level. Several observations can be witnessed after knockdown of
28 29	357	NEFL in IM95: steady knockdown of NEFL using shRNA in IM95 cell was established
30 31	358	and verified (Figure 6D-a & b), with enhanced mesenchymal and decreased epithelial
32 33 24	359	indexes of vimentin and E-cadherin discovered from knockdown of NEFL respectively
34 35 36	360	(Figure 6D-b), and increased chemo-resistance effect throughout proliferation assay with
37 38	361	5FU addition as well (Figure 6D-c).
39 40	262	
41 42 42	502	
43 44 45	363	
46 47	364	
48 49	365	
50 51 52	505	
53 54	366	
55 56		
57		

4 5

3 4		
5 6 7	367	Discussion
8 9	368	In this study, we established three spheres enriched in CD44+ gastric cancer cells.
10 11 12 13 14 15 16 17 18	369	The spheres displayed EMT phenotype, high tumorigenecity, and chemoresistance against
	370	5-FU treatment. SNAIL, one of the key regulators of EMT, was upregulated in the spheres,
	371	and CCL3 and NEFL were further extracted as downstream targets of SNAIL by
	372	microarray analyses. Re-introduced expression of CCN3 and NEFL partially impaired the
19 20 21	373	SNAIL-dependent CSC like activity, tumorigenicity, and chemoresistance in HGC-27
22 23	374	gastric cancer cells, rescpectively.
24 25 26	375	Previous studies have uncovered that CD44, EPCAM, CD133, CD24, CD166 or
27 28	376	Aldh are CSC markers in certain circumstances and are enriched in spheres generated from
29 30 31	377	gastric cancer cell lines or clinical tissues [27, 28]. Although it stills opens to be discussed
32 33	378	whether all CD44+ cells are CSCs, the CD44+ subpopulation is reported to previal in
34 35	379	cancer cells after spheres are formed. In this study, we also showed that the CD44+
36 37 38	380	subpopulation was enriched in gastric spheres.
39 40	381	In a mammospheres formation assay, expression of EMT-associated factors, such as
41 42 43	382	TWIST1/2, SNAIL, and SLUG in breast cancer cells are up-regulated and associated with
44 45	383	the acquisition of CSC properties and greater metastatic ability after EMT process [29].
46 47	384	These EMT-associated molecules are involved in multiple signaling pathways in other
48 49 50	385	types of cancers. In the present study, expression of TWIST1 and SNAIL were significantly
50 51 52	386	elevated in gastric spheres, especially in HGC27-derived spheres. The role of TWIST1 in
53 54 55 56 57 58	387	EMT processes during gastric carcinogenesis has been extensively investigated [30, 31],

388	while that of SNAIL has not been researched as much as TWIST1. Therefore, we focused
389	on the functional analyses of SNAIL and its downstream targets in gastric carcinogenesis.
390	Indeed, we showed that knockdown of SNAIL resulted in acquisition of EMT-phenotype
391	and loss of CD44+ cell population. It also led to the impaired growth of gastric cancer
392	xenografts and chemoresistance against 5-FU treatment. These data are consistent with
393	discoveries reported in other solid malignancies [32-34], and indicates crucial roles of
394	SNAIL in regulating CSC properties.
395	To further explore the underlying mechanisms of SNAIL-mediated gastric
396	carcinogenesis, we performed microarray analyses which revealed transcriptome alterations
397	by knockdown of SNAIL. GO terms formed a treemap of the most significant processes:
398	cell motility, chemotaxis, adhesion, neural regeneration, and cell death, as well as those
399	involved in EMT. Among the components from the network of chemotaxis, for example,
400	sox2 has been reported as the key regulator in CSCs and is over expressed in various
401	tumors. Other significant genes included TGFB1 and NOTCH1; both belong to the Notch
402	signaling pathway, which plays an important role in angiogenesis and CSC self-renewal
403	[35]. Indeed, most of the significant GO terms identified are implicated in well-known
404	signaling processes. Genes from the regeneration process were also included in EMT
405	process with significant biological functions. Among them, CCN3 is described in prostate
406	cancer [23]. Meanwhile, NEFL, was found to be expressed in a wide range of malignancies
407	as a tumor suppressor gene [36]. Based on study interest, CCN3 and NEFL were here
408	chosen as two possible downstream targets of SNAIL that seem to function in stemness in
409	gastric cancer.

1	
2	
3	
4	
5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
1/	
15	
15	
10	
17	
18	
19	
20	
21	
22	
23	
20	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
21	
24	
35	
36	
37	
38	
39	
40	
41	
42	
42	
11	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
J3 Γ^	
54	
55	
56	
57	
58	
59	
60	

429

410	CCN3 belongs to the three-member family of cysteine-rich regulatory proteins and
411	has been found in various cancer cells and surrounding tissues, suggesting that in the cancer
412	microenvironment, it is likely that CCN3 may act as a EMT-regulatory factor [37].
413	Consistent with this, CCN3 requires its C-terminal domain for bone metastatic function,
414	and is correlated with aggressive disease progression in prostate cancer [38]. In
415	hepatocellular carcinoma, after being secreted from hepatic cells, CCN3 gained its' activity
416	in various processes during EMT via HSCs (Hepatic stellate cells) [39]. A previous study
417	has also shown that increased expression level of CCN3 expression lead to local invasion
418	and distant metastases in gastric cancer [40, 41]. In this study, we showed that a link
419	between CCN3 expression and gastric stemness properties, and have further shown that low
420	levels of CCN3 in HGC27 cells result in reduced stemness and tumorigenicity. Therefore,
421	approaches that capable of reducing CCN3 expression have the potential to suppress EMT
422	and to be novel therapies against gastric cancer.
423	NEFL, which practically maintains the neuronal caliber and functions as a regulator
424	in intracellular transport to axons and dendrites, has also be implicated in various
425	carcinogenesis [42]. NEFL acts as a tumor suppressor in non-small cell lung cancer
426	(NSCLC), inhibiting invasion and metastasis, while methylation may destroy its protective
427	effect [43]. In NSCLC and breast cancer, patients with higher expression of NEFL mRNA
428	transcript had a better five-year disease-free survival [36]. In contrast to these reports, our

430 behind the contrasting outcomes maybe due to the fact that in the advanced stage of

study showed that NEFL might enhance the tumor development in xenografts. The reason

431 malignancy, cancer cells tend to become much fiercer in metastatic potential and

2 3		
4 5 6	432	phenotypes, thus the invasions are nowhere to be hold arrested by merely cytoprotective
7 8	433	genes expression alterations [44]. In either case, NEFL in digestive system cancers such as
9 10 11	434	gastric cancer may play distinct roles in a context-dependent manner.
12 13	435	In conclusion, we showed that SNAIL regulates the expressions of CCN3 and
14 15 16	436	NEFL genes in human gastric cancer cells, and that these in turn control the CSC activities.
17 18	437	Strategies that disrupt this possible circle may be possible to treat gastric cancer in future.
19 20 21	438	Double antagonists targeting both CCN3/NEFL-SNAIL axis may weaken the malignant
22 23	439	progression and dual RNAi study should be considered before RNAi compound
24 25 26	440	development. Also, protein secretion of the target molecule that plays important roles in
20 27 28	441	malignancy can be traced and intentionally attacked through clonal antibody. Multiple
29 30	442	channels of further application as therapeutic agents may be helpful for patients with gastric
31 32 33	443	cancer.
34 35	444	
36 37 38	445	Competing Interests:
40 41	446	We have received research funds under contract from Sumitomo Danippon Pharma Co.,
42 43 44	447	Ltd.
45 46	448	
47 48 49 50	449	Acknowledgement:
50 51 52		
53 54 55		
55 56 57		
58 59		22

1		
2		
4		
5 6	450	The authors thank M Nishikawa, Kyoto Institute of Nutrition & Pathology, Inc., and K
/ 8 0	451	Kokuryo, the Center for Anatomical, Pathological and Forensic Medical Research, Kyoto
9 10 11	452	University Graduate School of Medicine, for immunohistochemistry staining.
12 13	453	
14 15		
16	454	
17 18		
19	455	
20		
21 22	456	
23	450	
24 25	453	
25 26	457	
27		
28	458	
29 30		
31	459	
32		
33 34	460	
35		
36	461	
37 38	461	
39		
40	462	
41 42		
43	463	
44		
45 46	464	
47		
48	465	
49 50	405	
51		
52	466	
53 54		
55	467	
56		
57 58		23
59		25
60		

2
3
4
5
5
6
7
8
9
10
10
11
12
13
14
15
16
10
17
18
19
20
21
∠ ı วา
22
23
24
25
26
27
27
28
29
30
31
32
22
22
34
35
36
37
38
20
29
40
41
42
43
44
7-T / E
45
46
47
48
49
50
JU г1
21
52
53
54
55
56
50
57
58
59
60

468 **References:**

- 1. Rawla P, Barsouk A.Epidemiology of gastric cancer: global trends, risk factors and
- 470 prevention. Prz Gastroenterol. 2019; 14: 26–38.
 - 471 2. Afify SM, Seno M. Conversion of stem cells to cancer stem cells: undercurrent of cancer
 - 472 initiation. Cancers (Basel). 2019; 11: 345.

473 3. Jolly MK, Celià-Terrassa TDynamics of phenotypic heterogeneity associated with EMT

- 474 and stemness during cancer progression. J. Clin. Med. 2019, 8, 1542.
- 475 4. Hollier BG, Tinnirello AA, Werden SJ, Evans KW, Taube JH, Sarkar TR, et al.

476 Tinnirello, FOXC2 expression links epithelial-mesenchymal transition and stem cell

477 properties in breast cancer. Cancer Res. 2013; 73: 1981–1992.

478 5. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-

479 mesenchymal transition generates cells with properties of stem cells. Cell. 2008; 133: 704–
480 715.

6. Guen VJ, Chavarria TE, Kröger C, Ye X, Weinberg RA, Lees JA. EMT programs

482 promote basal mammary stem cell and tumor-initiating cell stemness by inducing primary

483 ciliogenesis and Hedgehog signaling. PNAS. 2017; 114: E10532–E10539.7. Wang Y, Shi J,

Chai K, Ying X, P Zhou B. The role of snail in EMT and tumorigenesis. Curr Cancer Drug
Targets. 2013; 13: 963–972.

Carcinogenesis

2	
3	
4	
5	
ر	
6	
7	
8	
9	
10	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
22	
33	
34	
35	
36	
27	
57	
38	
39	
40	
41	
12	
42	
43	
44	
45	
46	
47	
4/	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
50	
57	
58	
59	
60	
50	

486	7. Cristina Peña, José Miguel García, Javier Silva, Vanesa García, Rufo Rodríguez, Isabel
487	Alonso, et al. E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon
488	cancer: clinicopathological correlations. Human Molecular Genetics. 2005; 14: 3361-3370.
489	8. Brzozowa M, Michalski M, Wyrobiec G, Piecuch A, Dittfeld A, Harabin-Słowińska M,
490	et al. The role of Snail1 transcription factor in colorectal cancer progression and metastasis.
491	Contemp Oncol (Pozn). 2015; 19: 265–270.
492	9. Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal
493	transition through epigenetic and post-translational modifications. Mol Cancer. 2016; 15:
494	18.
495	10. Tusher VG, Tibshirani R, Chu G.Significance analysis of microarrays applied to the
496	ionizing radiation response. Proc Natl Acad Sci USA. 2001; 98 (9): 5116-5121.
497	11. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy-analysis of Affymetrix GeneChip
498	data at the probe level. Bioinformatics. 2004 12; 20: 307–315.25. Huang DW, Sherman BT,
499	Lempicki RA.Systematic and integrative analysis of large gene lists using DAVID
500	Bioinformatics Resources. Nature Protoc. 2009; 4: 44–57.
501	12. Walter, Wencke, Fatima Sanchez-Cabo, and Mercedes Ricote. GOplot: an R package
502	for visually combining expression data with functional analysis. Bioinformatics. 2015; 31:
503	2912-2914.
504	13. Fran Supek ,Matko Bošnjak,Nives Škunca,Tomislav Šmuc. REVIGO Summarizes and
505	Visualizes Long Lists of Gene Ontology Terms. PLoS ONE. 2011 July 18.

2	
3	
4	
5	
6	
7	
/ 0	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
עו סכ	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
12	
11	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
51	
54	
55	
56	
57	
58	
59	

60

1

14. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward 506 the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009; 37: 1-507 508 13.

509 15. Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene. 2004; 23:

510 7274–82.28. Ni SJ, Zhao LQ, Wang XF, Wu ZH, Hua RX, Wan CH, et al. CBX7 regulates 511

stem cell-like properties of gastric cancer cells via p16 and AKT-NF-κB-miR-21 pathways.

512 J Hematol Oncol. 2018; 11: 17.

513 16. Seon Ok Min, Sang Woo Lee, Seon Young Bak, Kyung Sik Kim. Ideal sphere-forming culture conditions to maintain pluripotency in a hepatocellular carcinoma cell lines. Cancer 514 Cell Int. 2015; 15:95. 515

17. Ishiguro T, Ohata H, Sato A, Yamawaki K, Enomoto T, Okamoto K. Tumor-derived 516 517 spheroids: Relevance to cancer stem cells and clinical applications. Cancer Sci. 2017; 108: 518 283–289.

18. Chang Ohk Sung, Keun-Woo Lee, Songying Han, and Seok-Hyung Kim. Twist1 Is Up-519 Regulated in Gastric Cancer-Associated Fibroblasts with Poor Clinical Outcomes. Am J 520 521 Pathol. 2011; 179: 1827–1838.

522 19. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, et al.

523 Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 2009; 27: 1006–1020. 524

1 2 3 4			
5 6 7	525	20. Lim S, Becker A, Zimmer A, Lu J, Buettner R, Kirfel J. SNAI1-mediated epithelial-	
7 8 9	526	mesenchymal transition confers chemoresistance and cellular plasticity by regulating genes	J
10 11 12	527	involved in cell death and stem cell maintenance. PLoS ONE. 2013; 8.	
13 14	528	21. Smith, Bethany N, and Valerie A Odero-Marah. The role of Snail in prostate cancer.	
15 16 17	529	Cell adhesion & migration. 2012; 6: 433-41.	
18 19	530	22. Klaudia Skrzypek, Marcin Majka. Interplay among SNAIL Transcription Factor,	
20 21 22	531	MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Regulation of Tumor	
22 23 24 25	532	Growth and Metastasis. Cancers. 2020; 12:1.	
26 27	533	23. Maillard M, Cadot B, Ball RY, Sethia K, Edwards DR, Perbal B, et al. Differential	
28 29	534	expression of the ccn3 (nov) proto-oncogene in human prostate cell lines and tissues. Mol	
30 31 32	535	Pathol. 2001; 54: 275–280.	
33 34 25	536	24. Zhang T, Zhao C, Luo L, Xiang J, Sun Q, Cheng J, et al. The clinical and prognostic	
35 36 37	537	significance of CCN3 expression in patients with cervical cancer. Adv Clin Exp Med. 2013	3;
38 39 40	538	22: 839–45.	
41 42	539	25. Chen PC, Tai HC, Lin TH, Wang SW, Lin CY, Chao CC, et al. CCN3 promotes	
43 44	540	epithelial-mesenchymal transition in prostate cancer via FAK/Akt/HIF-1 α -induced twist	
45 46 47	541	expression. Oncotarget. 2017; 8: 74506–74518.	
48 49 50	542	26. Huang Z, Zhuo Y, Shen Z, Wang Y, Wang L, Li H, et al. The role of NEFL in cell	
50 51 52	543	growth and invasion in head and neck squamous cell carcinoma cell lines. J Oral Pathol	
53 54 55	544	Med. 2014; 43:191–198.	
56 57			
58 59		2	7

3 4		
5 6	545	27. Phu Hung Nguyen, Julie Giraud, Lucie Chambonnier, Pierre Dubus, Linda Wittkop,
7 8	546	Geneviève Belleannée, et al. Characterization of Biomarkers of Tumorigenic and
9 10 11	547	Chemoresistant Cancer Stem Cells in Human Gastric Carcinoma. Clin Cancer Res. 2017;
12 13	548	23: 6.
14 15 16	549	28. Xiao-Long Chen, Xin-Zu Chen, Yi-Gao Wang, Du He, Zheng-Hao Lu,
17 18 19	550	Kai Liu, et al. Clinical significance of putative markers of cancer stem cells in
20 21 22 23	551	gastric cancer: A retrospective cohort study. Oncotarget. 2016; 7: 38.
24 25	552	29. I. K. Guttilla, K. N. Phoenix, X. Hong, J. S. Tirnauer, K. P. Claffey, B. A. White.
26 27	553	Prolonged mammosphere culture of MCF-7 cells induces an EMT and repression of the
28 29 30	554	estrogen receptor by microRNAs. Breast Cancer Res Treat. 2012; 132:75-85.
31 32	555	30. Jianxin Qian, Yizhou Luo, Xiaoqiang Gu, Wang Zhan, and Xi Wang. Twist1 Promotes
33 34 35	556	Gastric Cancer Cell Proliferation through Up-Regulation of FoxM1. PLoS One. 2013; 8:
36 37	557	e77625.
38 39 40	558	31. Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Höfler H, Becker KF.
41 42	559	Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and
43 44 45	560	twist in gastric cancer. Am J Pathol. 2002; 161: 1881-91.
46 47	561	32. Arti Yadav, Bhavna Kumar, Jharna Datta, Theodoros N. Teknos, and Pawan Kumar.
48 49 50	562	IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal
51 52 53	563	transition via the JAK-STAT3-SNAIL signaling pathway. Mol Cancer Res; 2011; 9.
54 55		
56 57		
эх 59 60		28

Page 29 of 79

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
27	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
50 57	
57 50	
50 50	
60	

564	33. Cornelia Kröger, Alexander Afeyan, Jasmin Mraz, Elinor Ng Eaton, Ferenc Reinhardt,
565	et al. Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer
566	cells. PNAS. 2019; 116: 7353-7362.
567	34. Osorio, L. A., Farfán, N. M., Castellón, E. A., Contreras, H. R. SNAIL transcription
568	factor increases the motility and invasive capacity of prostate cancer cells. Molecular
569	Medicine Reports. 2016; 13: 778-786.
570	35. Venkatesh V, Nataraj R, Thangaraj GS, Karthikeyan M, Gnanasekaran A, et al.
571	Targeting Notch signaling pathway of cancer stem cells. Stem Cell Investig. 2018; 5: 5.
572	36. Li XQ, Li L, Xiao CH, Feng YM. NEFL mRNA Expression Level Is a Prognostic
573	Factor for Early-Stage Breast Cancer Patients. PLOS One. 2012; 7: e31146.
574	37. Kim H, Son S, Shin I. Role of the CCN protein family in cancer. BMB Rep. 2018; 51:
575	486–492.
576	38. Dankner M, Ouellet V, Desreumaux-Communal L, Schmitt E, Perkins D, Annis MG, et
577	al. CCN3 is a prognostic biomarker and functional mediator of prostate cancer bone
578	metastasis. AACR; Cancer Res 2019;79.
579	39. Li W, Liao X, Ning P, Cao Y, Zhang M, Bu Y, et al. Paracrine effects of CCN3 from
580	non-cancerous hepatic cells increase signaling and progression of hepatocellular carcinoma.
581	BMC Cancer. 2019; 19: 395.

3			
4 5			
6	582	40. Li J, Gao X, Ji K, Sanders AJ, Zhang Z, Jiang WG, et al. Differential expression of	
7 8 9	583	CCN family members CYR611, CTGF and NOV in gastric cancer and their association	
10 11	584	with disease progression. Oncol Rep. 2016; 36: 2517-2525.	
12 13 14	585	41. Tsu-Yao Cheng, Ming-Shiang Wu, Kuo-Tai Hua, Min-Liang Kuo, Ming-Tsan Lin, et a	ıl.
15 16	586	Cyr61/CTGF/Nov family proteins in gastric carcinogenesis. World J Gastroenterol. 2014;	
17 18 19	587	20: 1694-1700.	
20 21	588	42. Yuan A, Rao MV, Veeranna, Nixon RA. Neurofilaments at a glance. J Cell Sci. 2012;	
22 23 24	589	125: 3257–3263.	
25 26 27	590	43. Shen Z, Chen B, Gan X, Hu W, Zhong G, Li H, et al. Methylation of neurofilament	
28 29	591	light polypeptide promoter is associated with cell invasion and metastasis in NSCLC.	
30 31 32	592	Biochem Biophys Res Commun. 2016; 470: 627-634.	
33 34	593	44. Yokota J. Tumor progression and metastasis. Carcinogenesis. 2000; 21: 497-503.	
35 36 37 38	594		
39 40	595		
42 43	596		
44 45 46	597		
47 48 49	598		
50 51	599		
52 53 54	600		
55 56	000		
57 58 50		3	0
60			

2 3		
4 5 6	601	Legends:
7 8	602	Figure 1. Characteristics of gastric cancer cell lines spheres cultured under serum-free
9 10 11	603	condition.
12 13		
14 15	604	A. Photographic pictures of sphere morphology.
16 17 18	605	Initial and passage sphere assay were shown in upper and lower lane pattern respectively
19 20	606	with each cell line marked on top.
21 22 23	607	B. Sphere formed per $2x10^4$ seeded cells as an index of cell renewal capacity.
24 25	608	a: sphere count; b: volume summary of sphere formed. Results were expressed as mean \pm
26 27 28	609	SD, * p<0.05; ** p<0.01.
29 30 31	610	C. Enhanced in vivo tumor volume formed from spheres in mice at an injection
32 33 34	611	concentration of 4×10^4 cells.
35 36	612	D. Representative H&E slides from gastric cancer cell line NCI-N87 with their sphere
37 38 39	613	formed tumors. Scale bar=200µm.
40 41 42	614	
43 44 45	615	Figure 2. Stem cell properties and tumor malignancy in gastric cancer spheres.
46 47	616	A. Comparison of EMT factors on absolute mRNA expression levels in gastric cancer cell
48 49 50	617	lines.
51 52 53 54 55 56	618	B. Immunofluorescence of SNAIL expression in HGC27, IM95 and FU97 cell lines.
57 58 59		31

619	a. Cells in the gastric cancer cell lines were found to express SNAIL (imaged with red
620	fluorescent) in the nuclei;
621	b. Image with DAPI to identify the nuclei of gastric cancer cells;
622	c. Merged image superimposed on a differential interference contrast background confirms
623	co-localization. Scale bar=50µm.
624	
625	Figure 3. SNAIL is sufficient and essential for induction of self-renewal and malignancy in
626	gastric cancer cell line HGC27. (Knockdown is represented as k.d.).
627	A. Real-time quantitative PCR validation of SNAIL expression level in HGC27 and its
628	stable SNAIL knockdown cell lines.
629	B. Effects of SNAIL knockdown on the expression of E-cadherin and Vimentin in HGC27
630	cell line.
631	C. Morphology alteration of gastric cancer cell line HGC27 after SNAIL knockdown in
632	ultra-low attachment condition.
633	D. CD24 and CD44 FACS profiles of HGC27 and HGC27 SNAIL knockdown cell lines.
634	E. Sphere formed per $2x10^4$ seeded cells from HGC27 and HGC27 SNAIL knockdown cell.
635	F. Diminished in vivo tumorigenicity formed from HGC27 SNAIL knockdown cells in
636	NOD/SCID mice at an injection concentration of $4x10^4$ cells. H&E staining of
637	representative tumors, scale bar=200µm.
	32
	 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

2 3		
5	638	G. Decreased chemoresistance of HGC27 SNAIL knockdown cells compared with HGC27
7 8 9	639	when treated with 5-FU.
10 11 12	640	
13 14 15	641	Figure 4. Microarray analysis between HGC27 and its SNAIL knockdown samples.
16 17	642	A. Plot analysis of distribution visualization of differentially expressed genes comparing
18 19 20	643	SNAIL knockdown and control groups.
21 22 23	644	B. Bar plot detailing presented numbers of genes under SNAIL up/down regulation in two
24 25 26	645	conditions.
27 28	646	C. GO terms enrichment analysis of molecular function, cellular component and biological
29 30 31	647	process of differentially expressed genes (left to right).
32 33 34	648	D. The KEGG enrichment analysis of differentially expressed genes.
35 36 27	649	E. Real-time quantitative PCR validation of CCN3 and NEFL expression level in HGC27
38 39	650	and its stable SNAIL knockdown cell lines.
40 41 42	651	
43 44 45	652	Figure 5. Elevated expression of SNAIL and CCN3 in patients with stomach
46 47	653	adenocarcinoma.
48 49 50	654	A. mRNA transcript expression levels of SNAIL (a), CCN3 (b) and NEFL (c) are elevated
51 52 53	655	in patients with gastric cancer from TCGA-STAD database. Box in red: malignant tissue;
54 55	656	box in blue: normal tissue.
56 57 58		33
59 60		

657	B. No correlation existed between CCN3 and NEFL in gastric cancer patients from TCGA-
658	STAD database.
659	C. SNAIL, CCN3 and NEFL are highly expressed in human gastric cancer tissues.
660	Representative immunohistochemical staining (IHC) images of SNAIL, CCN3 and NEFL
661	in gastric cancer tissues. Scale bar = $50 \ \mu m$.
662	
663	Figure 6. CCN3 and NEFL correlate with self-renewal and chemoresistance traits in gastric
664	cancer cells.
665	A. Western blotting analysis of NEFL and CCN3 expression in associated cell lines.
666	B. Sphere formed per $2x10^4$ seeded cells as an index of cell renewal capacity.
667	a. HGC27 SNAIL knockdown vs. HGC27 SNAIL knockdown with SNAIL re-introduction;
668	b. HGC27 vs. HGC27 with NEFL introduction;
669	c. HGC27 SNAIL knockdown vs. HGC27 SNAIL knockdown with CCN3 re-introduction.
670	C. Chemoresistance alteration of SNAIL (a), CCN3 (b) and NEFL (c) introduction into
671	associated HGC27 cell lines when treated with 5-FU. Results are expressed as mean \pm SD,
672	* p<0.05; ** p<0.01.
673	D. Knockdown of NEFL promoted the mesenchymal traits in gastric cancer cell line IM95.
674	a. Real time qPCR validation of NEFL expression level in IM95 and its stable NEFL
675	knockdown cell lines.
	34

1 ว			
2 3			
4 5			
5 6 7	676	b. Effects of NEFL knockdown on the expression of E-cadherin and Vimentin in IM95 c	ell
8 9	677	line.	
10 11 12	678	c. Increased chemoresistance of IM95 NEFL knockdown cells compared with IM95 cells	S
12 13 14	679	when treated with 5-FU. Results are expressed as mean \pm SD, * p<0.05; ** p<0.01.	
15 16 17	680		
18 19 20	681	Figure S1. Enhanced in vivo tumor volume formed from spheres in mice at an injection	
21 22	682	concentration of 4 x 10^4 cells of HGC27 and NUGC3 cells. Representative H&E slides	
23 24 25	683	from gastric cancer cell lines with their sphere formed tumors. Scale bar= $200 \mu m$.	
25 26 27 28	684		
29 30	685	Figure S2. Representative immunohistochemical staining (IHC) images of CCN3 and	
31 32 33	686	NEFL in gastric normal tissues. Scale bar = 50 μ m.	
34 35 36 37 38 39 40 41 42 43 44	687		
45 46 47			
48 49			
50 51 52			
53 54			
55 56 57			
58 59			35
60			
2 3 4			
----------------	----	---	
5 6	1	_	
7 8 9	2	2	
10 11 12	3	;	
13 14 15	4	ŀ	
16 17	5	,	
18 19 20	6	;	
21 22 23	7	,	
24 25 26	8	3	
26 27 28	g)	
29 30 31	10)	
32 33	11	-	
35 36	12	2	
37 38 39	13	;	
40 41 42	14	ŀ	
43 44 45	15	,	
46 47 48	16	5	
49 50 51	17	,	
52 53 54	18	}	
55 56			
57 58			
59 60			

1 SNAIL regulates gastric carcinogenesis through CCN3 and NEFL

Role of SNAIL/CCN3/NEFL axis in gastric cancer

- Ru Chen^{1,2}, Kenji Masuo^{1,2}, Akitada Yogo^{1,3}, Shoko Yokoyama¹, Aiko Sugiyama¹, Hiroshi
- 4 Seno^{1,2}, <u>Akihiko Yoshizawa⁴</u>, Shigeo Takaishi^{1,*}
- 5 1: DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto
- 6 University, Kyoto, Japan.
- 2: Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto
- 8 University, Kyoto, Japan.
- 3: Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School
- 10 of Medicine, Kyoto University, Kyoto, Japan.
- 11 <u>4: Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan.</u>
- 2 *Corresponding author: Shigeo Takaishi; takaishi.shigeo.7w@kyoto-u.ac.jp

Carcinogenesis

2
3
4
5
6
0
/
8
9
10
11
10
12
13
14
15
16
17
10
18
19
20
21
22
22
∠ <i>J</i>
24
25
26
27
28
20
29
30
31
32
33
31
24
35
36
37
38
30
40
40
41
42
43
44
45
ч ЛС
40
47
48
49
50
51
51
52
53
54
55
56
57
57
58
59

19 Abstract

20	Among cancer cells, there are specific cell populations of whose activities are comparable
21	to those of stem cells in normal tissues, and for whom the levels of cell dedifferentiation are
22	reported to correlate with poor prognosis. Information concerning the mechanisms that
23	modulate the stemness-like traits of cancer cells is limited. Therefore, we here examined
24	five gastric cancer cell lines and isolated gastric oncospheres from three gastric cancer cell
25	lines. The gastric cancer cells that expanded in the spheres expressed relatively elevated
26	proportion of CD44, which is a marker of gastric cancer stem cells, and displayed many
27	properties of cancer stem cells, for example: chemoresistance, tumorigenecity and
28	epithelial-mesenchymal transition (EMT) acquisition. SNAIL, which is a key factor in
29	EMT, was highly expressed in the gastric spheres. Microarray analysis in gastric cancer cell
30	line HGC27 showed that CCN3 and NEFL displayed the greatest differential expression by
31	knocking down of SNAIL; the former was up-regulated and the latter down-regulated,
32	respectively. Down-regulation of CCN3 and up-regulation of NEFL gene expression
33	impaired the SNAIL-dependent EMT activity: high tumorigenicity and chemoresistance in
34	gastric cancer cells. Thus, approach that disrupts SNAIL/CCN3/NEFL axis may be credible
35	in inhibiting gastric cancer development.

- **Keywords:** Gastric Cancer; Cancer Stem Cells; EMT; spheroid
- 37

38 Introduction

Gastric cancer is one of the most common cancers in East Asia and Eastern Europe [1]. It is importancet to critically assess the current advances in our understanding of gastric cancer and to establish novel and innovative therapeutic strategies. A vast body of literature has been published on specific aspects of cancer initiating cells and on putative cancer stem cells (CSCs) which possess properties of stem cells distinct from differentiated progeny cancer cells [2]. Discovering significant genes and signaling pathways involving gastric cancer stemness could be helpful approaches to discovering novel therapeutic options. During malignancy transformation, a critical process named the epithelial-mesenchymal transition (EMT) commonly occurs, and cells usually undergo a rapid change from differentiated and polarized epithelial state into an invasive mesenchymal composition [3]. During the development of diverse solid tumors, stem cell like traits were reported to be related to EMT. For example, after breast cancer cells acquired stem cell like features, the passaged mammosphere cells manifest with similar features to breast cancer stem cells, indicating a fundamental link between malignancy propagation and stem cell characteristics [4-6]. Among all the major EMT transcription factors, SNAIL, a zinc-finger protein, whose activities in relation to the downregulation of E-cadherin in colon cancer have previously been reported [7, 8]; binds to the E-boxes in the *CDH1* gene promoter and represses transcription of the CDH1 gene [9]. So far, SNAIL has been reported to contribute in many malignancy progression, and its' function in gastric cancer needs to be uncovered further as well. The precise mechanism of SNAIL-induced cell dedifferentiation and how this gene

Carcinogenesis

can provide stem cell like traits in gastric cancer cells remain open to debate and to be further clarified. The discovery of genes under SNAIL regulation that could also be an instrumental breakthrough and lead to the establishment of novel therapeutic strategies in EMT-related stemness and malignancy. In the present study, we extracted CCN3 and NEFL as targets in the downstream of SNAIL, and determined the association of these two factors with stem cell like activity in gastric cancer cells.

66 Materials and Methods:

67 Cell culture, tissue collection and sphere growth

- 68 Human gastric cancer cell lines were purchased from RIKEN
- 69 (<u>https://cell.brc.riken.jp/ja/quality/str</u>), JCRB cell bank
- 70 (<u>https://cellbank.nibiohn.go.jp/about-qc_english/</u>), and ATCC
- 71 (https://www.atcc.org/Services/Testing_Services/Cell_Authentication_Testing_Service.asp
- \underline{x}), in which STR analysis is performed in these cell line banks to ensure the authentication
- of human cell lines, and were cultured according to the instructions provided by the
- 74 manufacturer. Cell lines including human gastric cancer cell lines (HGC27, NCI-N87, GSU,
- 75 MKN74, MKN45-and NUGC3, NUGC3 and IM95), and embryonic kidney 293T cells
- 76 were cultured in DMEM (Nacalai Tesque, Japan) supplemented with 10% fetal bovine
- serum (HyClone Defined Fetal Bovine Serum (FBS), USA) and penicillin-streptomycin
 - 78 mixed solution (10,000u/ml, Nacalai Tesque, Japan). For RNA extraction from each cell
- 79 line, NucleoSpin RNA Plus (Takarabio, Japan) was used following the manufacturer's
- 80 instructions. The preparation of paraffin-embedded blocks was performed as follows: slices
- of tumor formed from each of the cell lines were immersed in 4% paraformaldehyde
- 82 (Nacalai Tesque, Japan) to allow the assembling of paraffin-embedded blocks. Cells were
- cultured in homemade stem cell medium (DMEM/F12 supplemented with B27 Supplement
 - 84 (ThermoFisher), 10 ng/mL recombinant basic fibroblast growth factor (bFGF,
 - 85 ThermoFisher), 10 ng/mL epidermal growth factor (EGF, ThermoFisher), and 1%
- 86 penicillin-streptomycin) to obtain spheres. A total of 1×10^4 cells per milliliter were seeded

Carcinogenesis

in culture medium for stem cell and incubated in ultra-low attachment plates for 5 days. Spheres larger than 80 µm in diameter were counted using Cell3Imager (InSphero AG and Dainippon SCRREEN, Kyoto, Japan). TrypLE Express (ThermoFisher) or Trypsin-EDTA (FUJIFILM Wako, Japan) were used to separate cells from the floating spheres and adherent cells to allow cell counting and other experiments. In vivo tumorigenicity assay All procedures involving animals were conducted in accordance with the Institutional Animal Welfare Guidelines of Kyoto University. NOD/SCID mice were purchased from the Charles River Laboratories (Yokohama, Japan) and were maintained according to the Guidelines for Laboratory Animals in the Kyoto University. The tumorigenicity assay was performed by subcutaneous injection of 1×10^4 designated cells into the flanks of 8- to 10-week-old NOD/SCID mice. Mice were sacrificed and examined for tumor harvest once the tumor had reached pre-determined size (2.5cm maximum). Tumor size was measured with calipers once a week after the injection. Lentivirus production, short-hairpin RNA-mediated human SNAIL gene knockdown and stable clone establishment The lentivirus package system: pMDLg/pRRE (Addgene, plasmid #12251), pRSV-Rev (Addgene, plasmid #12253) and pMD2.G (Addgene, plasmid #12259) together with the shRNA plasmid targeting the human SNAIL gene as well as the control vector: pLKO.1puro (Addgene, plasmid #8453) were co-transfected into 293T cells by Lipofectamine 3000 (Invitrogen). SNAIL-targeting short-hairpin RNA (MISSION shRNA)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
12	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
54 25	
32	
30	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
5U 51	
ン I 5 つ	
52 52	
54	
55	
56	
57	
58	
59	
60	

108	duplex (A: 5-TGCTCCACAAGCACCAAGAGTC-3; B: 5-
109	CCACTCAGATGTCAAGAAGTAC-3) and NEFL-targeting short-hairpin RNA
110	(MISSION shRNA) (5-CGACAGCTTGATGGACGAAAT-3) were was purchased from
111	Sigma-Aldrich Co. LCC. (St. Louis, MO, USA). About 48 to 72 hours later, virus
112	supernatant was collected for concentration. For shRNA knockdown, HGC27 cells were
113	seeded onto 6-well plates and infected with optimal virus concentrations supplemented with
114	6 μg/mL Polybrene (Sigma, St. Louis, MO, USA), then incubated for 12 hours before
115	replacing with fresh medium. Cells were then selected by puromycin (INVIVOGEN, Japan)
116	at the concentration of 1.8 μ g/ml (HGC27) and 4 μ g/ml (IM95) for 2 weeks.
117	Transient transfection
118	Lipofectamine 3000 reagent was used for the introduction of overexpression vectors
119	to establish stable lines, including the NEFL (Sino Biol.HG13214-UT), CCN3 (Sino
120	Biol.HG10264-UT) and SNAIL (Sino Biol.HG16844-UT) overexpression vectors and
121	matched control vector (Sino Biol.CV011), all of which were purchased from Sino
122	Biological Inc. (Wayne, PA, USA). Selections were carried out via hygromycin B (Nacalai
123	Tesque, Japan); resistance and transfection efficiency were verified through real-time qPCR.
124	Microarray data and bioinformatics analysis
125	Total RNA from each sample was extracted using NucleoSpin RNA Plus kit,
126	forwarded with Affymetrix Human Genome U133 Plus 2.0 Array (HuGene2.9st, Japan)
127	analysis. RNA extraction, microarray hybridization, and feature selection were performed
128	according to the manufacturer's protocol. Microarray data can be download from the GEO

Carcinogenesis

2 3		
4 5 6	129	database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145867).
7 8 9	130	Bioinformatics and genetic network construction were performed in R Studio (version
10 11	131	1.2.1335) mainly using RMA [10] from the affy package [11] and the GoPlot package
12 13	132	(https://CRAN.R-project.org/package=GOplot) [12]. Treemaps were created using
14 15 16	133	REVIGO webtool (<u>http://revigo.irb.hr/index.jsp</u>) [13]. Gene enrichment analysis was
16 17 18	134	performed using DAVID 2010 Bioinformatics Resources (http://david.abcc.ncifcrf.gov/)
19 20	135	[14].
21 22 23	136	Reverse transcription and real-time quantitative PCR
24 25 26	137	Using the PrimeScript II 1st strand cDNA Synthesis Kit (Takarabio, Japan), 3
27 28	138	micrograms of total RNA were transformed into first-strand complementary DNA synthesis
29 30	139	following directions provided by the manufacturer. Human pre-messenger RNA sequences
31 32 33	140	were obtained from NCBI gene (www.ncbi.nlm.nih.gov/gene/) before using NCBI blast
34 35	141	(https://blast.ncbi.nlm.nih.gov/Blast.cgi) to design primers in PCR. All the primer
36 37	142	sequences used in this study can be checked in Table S1. Real-time quantitative PCR
38 39 40	143	(qPCR) was performed to evaluate the expression levels using SYBR Green Master Rox
40 41 42	144	(Roche, Sigma-Aldrich), and were analyzed using the StepOnePlus real-time system
43 44	145	(Applied Biosystems). The endogenous expression level of GAPDH was used to obtain the
45 46 47	146	expression levels of other genes via $\triangle \Delta Ct$ methods.
48 49 50	147	Drug resistance and CCK8 assay
51 52	148	Cells were seeded at the concentration of $\frac{1 \text{ x}}{10^4}$ cells/ml in 96-well plates and
53 54 55	149	incubated overnight before application of various concentration of chemotherapy drugs

(1µM to 200µM 5-FU (KYOWA KIRIN, Japan)). After 96 hours, medium was discarded
and CCK8 assay solution (Dojindo molecular technologies) was added to cells and
incubated for 1 hour at 37°C. The plate was then read by a microplate reader (OD450;
Infinite F50, TECAN).

154 Western blotting assay

Proteins were extracted from relevant cell lines using ice-cold RIPA buffer (Nacalai Tesque, Japan) after washing with 1x phosphate-buffered saline (PBS). Later proteins were separated in 10-20% gels (SuperSep Ace, Fujifilm Wako, Japan) and then transferred onto PVDF membranes (Immobilon-P, Merck M), and blocked using skimmed milk (Fujifilm Wako, Japan). The collection of primary antibodies used in this study were Snail (ab53519; Abcam), CCN3 (ab191425; Abcam), NEFL (ab223343; Abcam), and E-cadherin (24E10, Cell Signaling Technology), Vimentin (D21H3, Cell Signaling Technology), CD24 (ab199140 Abcam). Proteins were incubated with the primary antibodies over night at 4°C. They were then stained with anti-mouse, anti-rabbit or anti-goat secondary antibodies (Jackson Laboratory) for 60 minutes at room temperature. Thereafter they were incubated with chemiluminescent HRP substrate (WBKLS0500, Merck M) for 5 minutes. Chemiluminesence signals were collected via the Fujifilm LAS-3000 (Fuji, Japan) as per the manufacturer's instructions.

168 Immunocytochemistry and fluorescence assay

169 Cells were seeded onto 8-well culture slides (#354118, Falcon) overnight before
170 fixation with 4% PFA for 10 minutes at room temperature followed by 1x PBS washes.

1	
2	
2	
1	
5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
2∠ 22	
22 24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

171	Cells were permeabilized with 0.5% Triton X-100/PBS for 5 minutes at room temperature,
172	washed with 1x PBS, and blocked in 5% BSA (Sigma) in PBS for 60 minutes before
173	incubating with Snail (20C8, ThermoFisher) primary antibodies followed by the secondary
174	antibodies Alxea Fluor 594 (ThermoFisher). Slides were mounted in VECTASHIELD
175	Mounting Medium with DAPI (H-1200; VECTOR Lab, Japan). Fluorescence images were
176	visualized with Keyence fluorescence microscope.
177	Immunohistochemistry staining
178	Human gastric cancer tissue array (MLB Life Science Japan) and tumor specimens
179	from mice gastric tumors were deparaffinized, rehydrated and placed in 3% (v/v) $\rm H_2O_2-$
180	methanol for 15 min at room temperature. The slides were then immersed in blocking
181	solution (Non-specific Staining Blocking Reagent; Dako-Cytomation, Kyoto, Japan) for 15
182	min and incubated with the primary antibodies listed below at 4 °C overnight. Antigen-
183	antibody complexes were detected with a secondary antibody (Histofine Simple Stain
184	MAX PO (R) for rabbit monoclonal, or (G) for goat polyclonal (Nichirei, Tokyo, Japan)
185	and visualized using 3,30-diaminobenzidine (0.5 mg/ml in Tris-buffered saline). The list of
186	primary antibodies and dilution ratios were as follows: 1. Anti-SNAIL antibody (goat
187	polyclonal, ab53519, Abcam), 1: 1,000; 2. Anti-CCN3 antibody (rabbit monoclonal,
188	ab191425, Abcam), 1:100; 3. Anti-NEFL antibody (rabbit monoclonal, ab223343, Abcam),
189	1:400.
190	Flow cytometry

191	Incubation buffer was prepared as $1x PBS + 2\% FBS$. Single cell suspensions were
192	washed with cooled incubation buffer, and re-suspended in $1x PBS + 2\% FBS$ on ice for 30
193	minutes for antibody blocking: anti-CD24-FITC (ML5; Bio-legend, San Diego, CA),
194	CD44-FITC (BJ18; Bio-legend, San Diego, CA) and DAPI (422801, Bio-legend, San
195	Diego, CA). Cells were suspended in 0.5 mL incubation 1x PBS + 2% FBS to reach a final
196	concentration of 10 ⁶ cells/ml. Data were collected by the BD FACSCanto II or BD
197	FACSVerse flow cytometer (Becton-Dickinson, Franklin Lakes, NJ) and analyzed with
198	FlowJo software (TreeStar, San Carlos, CA). Cell debris was excluded from the analysis
199	based on scatter signals, and fluorescent compensation was adjusted when double stained.
200	Statistical Analyses
201	Independent sample t tests were performed to compare the continuous variation of
202	two groups, and the χ^2 test or Fisher exact student's test was applied for comparisons of
203	variables. $P < 0.05$ was considered significant. All data are reported as mean ±SEM.
204	

Results

1

Carcinogenesis

2	
2	
3	
4	
5	
6	
7	
, o	
0	
9	
10	
11	
12	
13	
14	
15	
15	
16	
17	
18	
19	
20	
21	
22	
25	
∠3 24	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
26	
20	
37	
38	
39	
40	
41	
42	
-1∠ ∕\⊃	
43	
44	
45	
46	
47	
48	
⊿0	
72	
50	
51	
52	
53	
54	
55	
55	
20	
5/	
58	
59	
60	

206	Gastric Spheres Cultured Under Serum-Free Conditions Manifest Stem Cell
207	Properties
208	Self-renewal capability is a major property of stem cells, and can be accurately
209	assessed via sphere formation [15]. Gastric cancer cell lines produce stem-like sphere-
210	forming cells when cultured under B-27 (+) bFGF (+) EGF (+) serum-free medium (CSC
211	serum-free medium) in ultra-low attachment culture dishes [16]. The original gene

212 expression profiles and tumor morphologies in cancer cells are well reflected in spheres 213 cultured in the CSC serum-free condition [17]. We assessed the sphere-forming capacity of five gastric cancer cell lines for initial culture (cells were collected from attached condition 214 and seeded in CSC serum-free medium) and passage culture (cells were collected from 215 216 formed spheres and seeded in CSC serum-free medium), and found that three cell lines had 217 the ability to form spheres (Figure 1A). Those spheres all originated from single cell and not by mere cell herds or aggregations, which was ensured by seeding single cells in 96 218 well plates and spheres managed to develop after several weeks (data not shown). Sphere-219 220 forming capacity of passaged cells (passage culture) was stronger compared with that of parental cells (initial culture), when the same number of cells were seeded in CSC serum-221 free medium (Figure 1B). To further confirm whether malignant cells possess additional 222 223 stemness traits, 1 x 10⁴ NCI-N87 cells were transplanted into the flanks of NOD/SCID mice. Histological analysis of xenografts exhibited an epithelial-like morphology 224 225 irrespective of whether they were generated by parental or sphere cells (Figure 1C & S1);

226	however, sphere cells were more efficient at producing bulky tumors in NOD/SCID mice
227	compared with parental monolayer cells (Figure 1D).
228	
229	Gastric Spheres Express EMT-associated Factors
230	Acquisition of stemness traits in malignant cells is commonly achieved through
231	undergoing EMT process, thus tracking the activities of EMT-associated factors will help
232	uncovering mechanism behind the obtained stemness. Four key EMT factors were
233	examined in this study, and higher mRNA expression of EMT factors (TWIST1, 2, SNAIL,
234	and SLUG) were found in spheres compared with parental cells (Figure 2A). HGC27 cells,
235	which form spheres most efficiently, highly expressed TWIST1 and SNAIL mRNAs
236	compared with other two sphere-forming cell lines, NCI-N87 and NUGC3. Consistent with
237	this, immunofluorescence images indicated highest protein expression of SNAIL in HGC27
238	cells (Figure 2B). The role of TWIST1 has been extensively investigated in previous EMT-
239	associated researches [18]; therefore, HGC27 and SNAIL were chosen as the target cell line
240	and molecule pair in the current study.
241	
242	SNAIL Regulates Tumorigenicity in Gastric Cancer Cells
243	In order to investigate whether SNAIL regulates stemness and tumorigenicity in
244	gastric spheres, we determined phenotypic alteration after lentivirus-mediated short-hairpin
245	RNA-interfered knockdown of SNAIL (shRNA-SNAIL k.d.). Realtime quantitative PCR

Page 49 of 79

Carcinogenesis

indicated successful knockdown effects using shRNA-SNAIL in HGC27 cell lienes and spheres (Figure 3A). Western blotting showed a similar tendency of 29 Da SNAIL protein expression (Figure 3B). Epithelial and mesenchymal traits of HGC27 were measured using antibodies against E-cadherin and Vimentin, representative proteins for epithelial and mesenchymal phenotypes, respectively. Up-regulation of E-cadherin with down-regulation of Vimentin by SNAIL knockdown indicated the event of mesenchymal-to-epithelial transition in HGC27 cell lines (Figure 3B). The most conspicuous phenomenon observed was that the shape of formed sphere in the CSC serum-free medium switched from having smooth margins into jagged and sharp edges by the SNAIL knockdown (Figure 3C). Previous studies reported a CD44+/CD24- subpopulation of gastric cancer contains gastric cancer stem cells [19]. As shown in Figure 3D, the fluorescence activated cell sorter analysis revealed that 91.0% of the HGC27 cell line was CD44+/CD24-, while knockdown of SNAIL in this cell line almost completely eliminates this population. This suggested that gastric cancer stem cells are maintained, at least in part, by the presence of SNAIL. Stemness such as self-renewability in cancer cells is associated with the capacity of forming spheres out of the transformed epithelial cells [20]. Therefore, we compared sphere forming capacity between parental HGC27 and stablye SNAIL knockdown HGC27 cells cultured in monolaver conditions. The number and area of sphere were significantly decreased by SNAIL knockdown, suggesting a reduced ability to self-renewal (Figure 3E). Consistent with this, when 1 x 10⁴ cells were transplanted into the flanks of NOD/SCID

266 mice, although histological analysis did not show any significant alterations, stably<u>e</u>

1 2 3		
4 5 6	267	SNAIL knockdown HGC27 cells were less efficient at producing bulky tumors in
7 8 9	268	compared with parental HGC27 cells (Figure 3F).
10 11	269	Lower expression of SNAIL was referred to as increased sensitivity upon chemo-
12 13 14	270	treatment due to diminished self-renewability in malignancy [21]. In our experimental
15 16	271	condition, stablye SNAIL knockdown HGC27 cells were more susceptible to 5-fluorouracil
17 18 19	272	(5-FU) treatment compared with parental HGC27 cells (Figure 3G).
20 21	273	Together, these findings SNAIL regulates tumorigenecity, possibly stemness at least
22 23 24	274	in part, in gastric cancer cells.
25 26 27	275	
28 29 30	276	SNAIL-regulating Genes in Gastric Cancer Cells
31 32 33	277	To unveil the mechanisms underlying phenotypic modifications induced by
34 35	278	knockdown of SNAIL in HGC27 cells, gene expression microarray analysis on a HGC27-
36 37 28	279	SNAIL knockdown and parental HGC27 cells was performed. Under the alteration of
39 40	280	SNAIL expression, distributed genes movement were shown in Figure 4A. Of those genes,
41 42	281	a total of 1656 and 1832 probe sets ($ FC \ge 2$) were specifically upregulated or
43 44 45	282	downregulated in stable HGC27-SNAIL knockdown cells, respectively (Figure 4B).
45 46 47	283	Statistically overrepresented functional processes were obtained through enriched genes
48 49	284	querying in the Gene Ontology (GO) database ($P < 0.05$; Figure 4C). The main processes
50 51 52	285	enriched in up-/down-regulated genes include those pertaining to multiple binding and
52 53 54 55	286	cellular processes. It is suggested that instead of individual activation, genes tend to
56 57		
58 59		15

Page 51 of 79

Carcinogenesis

287	collaborate in genetic networks, thus we subjected the enriched GO processes that were
288	selected as meaningful to REVIGO analysis, which is a useful web tool that summarizes
289	long lists of GO terms. Several GO terms formed a treemap of the most significant
290	processes: cell motility, chemotaxis, adhesion, neural regeneration, and cell death, as well
291	as those involved in EMT (Figure 4D). Within this network, chemotaxis was a focal node
292	and in the broader group of terms under the chemotaxis title, the regeneration process was
293	chosen as a target to be studied in greater depth due to the possible role of neuron
294	development and supervision in malignancy progression. For example, Sox2 has been
295	reported as the key regulator in CSCs and is over expressed in various tumors. Other
296	significant genes included TGFB1 and NOTCH1; both belong to the Notch signaling
297	pathway, which plays an important role in angiogenesis and CSC self-renewal [22]. Indeed,
298	most of the significant GO terms identified are implicated in well-known signaling
299	processes. Genes from this regeneration process were also included in EMT process with
300	significant biological functions. Among them, Cellular Communication Network factor 3
301	(CCN3; also known as NOV or IGFBP9) as described in prostate cancer [23]. Meanwhile,
302	Neurofilament Light Peptide (NEFL), was found to be expressed in a wide range of
303	malignancies as a tumor suppressor gene [24]qRT-PCR confirmed down- and up-
304	regulation of CCN3 (also known as NOV or IGFBP9): Cellular Communication Network
305	factor 3, and NEFL: Neurofilament Light peptide mRNA expression by SNAIL knockdown
306	in HGC27cells (Figure 4E).
307	

308 CCN3 and NEFL Expression in Gastric Cancers

The occurrence of distant metastases and poor survival outcome have been reported relevant with high SNAIL expression in gastric cancer patients [25]. CCN3 belongs to the CCN family (cysteine-rich protein 61 (CYR61)), connective tissue growth factor (CTGF), nephroblastoma overexpressed (NOV)). Limited information is known concerning the functional correlation between EMT with CCN3 and NEFL in cancers. There have been reports of increased expression of CCN3 in prostate and cervical cancers [23, 26]. CCN3 was demonstrated to promote EMT by activating the FAK/Akt/HIF-1a pathway in prostate cancer [27]. NEFL has been implicated in carcinogenesis as a putative suppressor gene in neuron related inhibition of both cell proliferation and invasion in head and neck squamous cell carcinoma [28]. Using data of transcript level of SNAIL, CCN3 and NEFL from The Cancer Genome Altas (TCGA) stomach adenocarcinoma project, each gene expression in gastric cancers and normal gastric tissues were shown in Figure 5A. There were no correlations in mRNA expression levels between SNAIL and either CCN3 or NEFL, and no correlation between CCN3 and NEFL (Figure 5B). Immunohistochemistry analysis was then performed on a paraffin-embedded human gastric cancer tissue array (n = 30, purchased from MBL Life Science, Japan). CCN3 expression was detected in 96.7% (29/30), NEFL expression was positive in 86.7% (26/30) and SNAIL expression occurred in 26.7% of tumor tissues (8/30). Representative staining with positive and negative images for Snail/CCN3/NEFL are shown in Figure 5C., showing the direct expression distribution in human gastric cancer tissue. Compared with Figure S2 of normal gastric tissues, CCN3

Carcinogenesis

329	antibody only stained positive in some fibroblasts and myofibroblasts besides malignant
330	parts; while NEFL also stained positive in neurofilament as reported elsewhere.
331	
332	CCN3 and NEFL are Critical for SNAIL-Induced Stemness
333	We initially investigated how CCN3 and NEFL function by introducing their
334	expression vectors into SNAIL knockdown HGC27 cells and parental HGC27 cells
335	respectively, and those effects were confirmed with western blotting (Figure 6A). Forced
336	expression of SNAIL or CCN3 in sh-SNAIL knockdown HGC27 cells resulted in
337	significantly increased number of formed spheres (Figure 6B-a & b); while that of NEFL
338	caused diminished sphere formation ability in parental HGC27 cells (Figure 6B-c).
339	Furthermore, the chemoresistance against 5-FU of each pair of cells was also measured.
340	The results were consistent with alterations to sphere formation capacity: the proliferation
341	rates of HGC27-shSNAIL, HGC27-NEFL, and HGC27-shSNAIL-CCN3 cells were
342	reduced more rapidly when 5-FU was added in a dose-dependent manner (Figure 6C). The
343	fact that HGC27-shSNAIL stable knockdown cells produced significantly reduced tumor
344	masses compared with SNAIL re-introduced rescue cells was proved via xenograft assays
345	in vivo (data not shown). To further evaluate the role of NEFL molecule during EMT
346	process, gastric cancer cell line IM95 was selected from several candidate cell lines due to
347	high NEFL expression level. Several observations can be witnessed after knockdown of
348	NEFL in IM95: steady knockdown of NEFL using shRNA in IM95 cell was established
349	and verified (Figure 6D-a & b), with enhanced mesenchymal and decreased epithelial

indexes of vimentin and E-cadherin discovered from knockdown of NEFL respectively

(Figure 6D-b), and increased chemo-resistance effect throughout proliferation assay with

to per period

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
2/	
28	
29	
30	
31	
3Z	
33 24	
24 25	
22	
20 27	
27 20	
20	
<u>40</u>	
40 41	
47	
42 43	
4J 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	

5FU addition as well (Figure 6D-c).

Carcinogenesis

1 2		
3 4		
5 6 7	354	Discussion
8 9	355	In this study, we established three spheres enriched in CD44+ gastric cancer cells.
10 11 12	356	The spheres displayed EMT phenotype, high tumorigenecity, and chemoresistance against
13 14	357	5-FU treatment. SNAIL, one of the key regulators of EMT, was upregulated in the spheres,
15 16	358	and CCL3 and NEFL were further extracted as downstream targets of SNAIL by
17 18 10	359	microarray analyses. Re-introduction of CCN3 and NEFL partially rescued and impaired
20 21	360	the SNAIL-dependent CSC like activity, tumorigenicity, and chemoresistance in HGC-27
22 23	361	gastric cancer cells, respectively.
24 25 26	362	Previous studies have uncovered that CD44, EPCAM, CD133, CD24, CD166 or
27 28	363	Aldh are CSC markers in certain circumstances and are enriched in spheres generated from
29 30 31	364	gastric cancer cell lines or clinical tissues [29, 30]. Although it stills opens to be discussed
32 33	365	whether all CD44+ cells are CSCs, the CD44+ subpopulation is reported to prevail in
34 35	366	cancer cells after spheres are formed. In this study, we also showed that the CD44+
36 37 38	367	subpopulation was enriched in gastric spheres.
39 40 41	368	In a mammospheres formation assay, expression of EMT-associated factors, such as
42 43	369	TWIST1/2, SNAIL, and SLUG in breast cancer cells are up-regulated and associated with
44 45	370	the acquisition of CSC propert <u>yies</u> and greater metastatic ability after EMT process [31].
46 47	371	These EMT-associated molecules are involved in multiple signaling pathways in other
48 49 50	372	types of cancers. In the present study, expression of TWIST1 and SNAIL were significantly
50 51 52	373	elevated in gastric spheres, especially in HGC27-derived spheres. The role of TWIST1 in
53 54 55	374	EMT processes during gastric carcinogenesis has been extensively investigated [32, 33],
57 58		20
59		

375	while that of SNAIL has not been researched as much as TWIST1 remains obscure.
376	Therefore, we focused on the functional analyses of SNAIL and its downstream targets in
377	gastric carcinogenesis. Indeed, we showed that knockdown of SNAIL resulted in
378	acquisition of EMT-phenotype and loss of CD44+ cell population. It also led to the
379	impaired growth of gastric cancer xenografts and chemoresistance against 5-FU treatment.
380	These data are consistent with discoveries reported in other solid malignancies [34-36], and
381	indicates crucial roles of SNAIL in regulating CSC properties.
382	To further explore the underlying mechanisms of SNAIL-mediated gastric
383	carcinogenesis, we performed microarray analyses which revealed transcriptome alterations
384	by knockdown of SNAIL. GO terms formed a treemap of the most significant processes:
385	cell motility, chemotaxis, adhesion, neural regeneration, and cell death, as well as those
386	involved in EMT. Among the components from the network of chemotaxis, \pm for example,
387	Sox2 has been reported as the key regulator in CSCs and is over expressed in various
388	tumors. Other significant genes included TGFB1 and NOTCH1; both belong to the Notch
389	signaling pathway, which plays an important role in angiogenesis and CSC self-renewal
390	[22]. Indeed, most of the significant GO terms identified are implicated in well-known
391	signaling processes. Genes from this regeneration process were also included in EMT
392	process with significant biological functions. Among them, Cellular Communication
393	Network factor 3 (CCN3; also known as NOV or IGFBP9) asis described in prostate cancer
394	[23]. Meanwhile, — Neurofilament Light Peptide (NEFL), was found to be expressed in a
395	wide range of malignancies as a tumor suppressor gene [24]. Based on study interest,

Carcinogenesis

396 CCN3 and NEFL were here chosen as two possible downstream targets of SNAIL that397 seem to function in stemness in gastric cancer.

CCN3 belongs to the three-member family of cysteine-rich regulatory proteins and has been found in various cancer cells and surrounding tissues, suggesting that in the cancer microenvironment, it is likely that CCN3 may act as a EMT-regulatory factor [37]. Consistent with this, CCN3 requires its C-terminal domain for bone metastatic function, and is correlated with aggressive disease progression in prostate cancer [38]. In hepatocellular carcinoma, after being secreted from hepatic cells, CCN3 gained its' activity in various processes during EMT via HSCs (Hepatic stellate cells) [39]. A previous study has also shown that increased expression level of CCN3 expression lead to local invasion and distant metastases in gastric cancer [40, 44]. In this study, we showed a link between CCN3 expression and gastric stemness properties, and have further shown that low levels of CCN3 in HGC27 cells result in reduced stemness and tumorigenicity. Therefore, approaches capable of reducing CCN3 expression may have the potential to suppress EMT and to be novel therapies against gastric cancer.

NEFL, which practically maintains the neuronal caliber and functions as a regulator
in intracellular transport to axons and dendrites, has also be implicated in various
carcinogenesis [41]. NEFL acts as a tumor suppressor in non-small cell lung cancer
(NSCLC), inhibiting invasion and metastasis, while methylation may destroy its protective
effect [42]. In NSCLC and breast cancer, patients with higher expression of NEFL mRNA
transcript had a better five-year disease-free survival [24]. In contrast to these reports, our

417	study showed that NEFL might enhance the tumor development in xenografts. The reason
418	behind the contrasting outcomes may be due to the fact that in the advanced stage of
419	malignancy, cancer cells tend to become much fiercer in metastatic potential and
420	phenotypes, thus the invasions are nowhere to be hold arrested by merely cytoprotective
421	genes expression alterations [43]. In either case, NEFL in digestive system cancers such as
422	gastric cancer may play distinct roles in a context-dependent manner.
423	In conclusion, we showed that SNAIL regulates the expression of CCN3 and NEFL
424	genes in human gastric cancer cells, and that these in turn control the CSC activities.
425	Strategies that disrupt this possible circle may be possible to treat gastric cancer in future.
426	Double antagonists targeting both CCN3/NEFL-SNAIL axis may weaken the malignant
427	progression and dual RNAi study should be considered before RNAi compound
428	development. Also, protein secretion of the target molecule that plays important roles in
429	malignancy can be traced and intentionally attacked through clonal antibody. Multiple
430	channels of further application as therapeutic agents may be helpful for patients with gastric
431	cancer.
432	
433	Competing Interests:
434	We have received research funds under contract from Sumitomo Danippon Pharma Co.,
435	Ltd.
436	
	23

1		
2		
3		
4		
5 6	437	References:
7 8	438	1. Rawla P, Barsouk A.Epidemiology of gastric cancer: global trends, risk factors and
9 10 11	439	prevention. Prz Gastroenterol. 2019; 14: 26-38.
12 13	440	2. Afify SM, Seno M. Conversion of stem cells to cancer stem cells: undercurrent of cancer
15 16	441	initiation. Cancers (Basel). 2019; 11: 345.
17 18 19	442	3. Jolly MK, Celià-Terrassa TDynamics of phenotypic heterogeneity associated with EMT
20 21	443	and stemness during cancer progression. J. Clin. Med. 2019, 8, 1542.
22 23 24	444	4. Hollier BG, Tinnirello AA, Werden SJ, Evans KW, Taube JH, Sarkar TR, et al.
25 26 27	445	Tinnirello, FOXC2 expression links epithelial-mesenchymal transition and stem cell
28 29	446	properties in breast cancer. Cancer Res. 2013; 73: 1981–1992.
30 31 32	447	5. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY,et al. The epithelial-
33 34	448	mesenchymal transition generates cells with properties of stem cells. Cell. 2008; 133: 704-
35 36 37	449	715.
38 39	450	6. Guen VJ, Chavarria TE, Kröger C, Ye X, Weinberg RA, Lees JA. EMT programs
40 41 42	451	promote basal mammary stem cell and tumor-initiating cell stemness by inducing primary
43 44	452	ciliogenesis and Hedgehog signaling. PNAS. 2017; 114: E10532-E10539.7. Wang Y, Shi J,
45 46 47	453	Chai K, Ying X, P Zhou B. The role of snail in EMT and tumorigenesis. Curr Cancer Drug
47 48 49 50 51 52 53 54 55 56	454	Targets. 2013; 13: 963–972.

3 4		
5 6	455	7. Cristina Peña, José Miguel García, Javier Silva, Vanesa García, Rufo Rodríguez, Isabel
7 8	456	Alonso, et al. E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon
9 10 11	457	cancer: clinicopathological correlations. Human Molecular Genetics. 2005; 14: 3361-3370.
12 13 14	458	8. Brzozowa M, Michalski M, Wyrobiec G, Piecuch A, Dittfeld A, Harabin-Słowińska M,
15 16	459	et al. The role of Snail1 transcription factor in colorectal cancer progression and metastasis.
17 18 19	460	Contemp Oncol (Pozn). 2015; 19: 265–270.
20 21	461	9. Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal
22 23 24	462	transition through epigenetic and post-translational modifications. Mol Cancer. 2016; 15:
25 26 27	463	18.
28 29	464	10. Tusher VG, Tibshirani R, Chu G.Significance analysis of microarrays applied to the
30 31 32	465	ionizing radiation response.Proc Natl Acad Sci USA. 2001; 98 (9): 5116–5121.
33 34	466	11. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy-analysis of Affymetrix GeneChip
35 36 37	467	data at the probe level. Bioinformatics. 2004 12; 20: 307–315.25. Huang DW, Sherman BT,
37 38 39	468	Lempicki RA.Systematic and integrative analysis of large gene lists using DAVID
40 41 42	469	Bioinformatics Resources. Nature Protoc. 2009; 4: 44–57.
43 44	470	12. Walter, Wencke, Fatima Sanchez-Cabo, and Mercedes Ricote. GOplot: an R package
45 46	471	for visually combining expression data with functional analysis. Bioinformatics. 2015; 31:
47 48 49	472	2912-2914.
50 51 52	473	13. Fran Supek ,Matko Bošnjak,Nives Škunca,Tomislav Šmuc. REVIGO Summarizes and
53 54 55	474	Visualizes Long Lists of Gene Ontology Terms. PLoS ONE. 2011 July 18.
56 57		
58 50		25

Carcinogenesis

14. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward

2 3 4	
5 6	475
7 8	476
9 10 11	477
12 13 14	478
15 16	479
17 18	480
19 20 21	481
22 23 24	482
24 25 26	483
27 28 20	484
29 30 31	485
32 33	486
34 35 36	487
37 38 39	488
40 41	489
42 43 44	490
45 46	491
47 48 49	492
49 50 51	493
52 53	
54 55 56	
57 58	
59 60	

the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009; 37: 1-477 13. 478 15. Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene. 2004; 23: 479 7274–82.28. Ni SJ, Zhao LQ, Wang XF, Wu ZH, Hua RX, Wan CH, et al. CBX7 regulates 480 stem cell-like properties of gastric cancer cells via p16 and AKT-NF-κB-miR-21 pathways. 481 J Hematol Oncol. 2018; 11: 17. 482 16. Seon Ok Min, Sang Woo Lee, Seon Young Bak, Kyung Sik Kim. Ideal sphere-forming culture conditions to maintain pluripotency in a hepatocellular carcinoma cell lines. Cancer 483 Cell Int. 2015; 15:95. 484 17. Ishiguro T, Ohata H, Sato A, Yamawaki K, Enomoto T, Okamoto K. Tumor-derived 485 486 spheroids: Relevance to cancer stem cells and clinical applications. Cancer Sci. 2017; 108: 487 283-289. 18. Chang Ohk Sung, Keun-Woo Lee, Songying Han, and Seok-Hyung Kim. Twist1 Is Up-488 Regulated in Gastric Cancer-Associated Fibroblasts with Poor Clinical Outcomes. Am J 489 490 Pathol. 2011; 179: 1827–1838. 491 19. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, et al. 492 Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 2009; 27: 1006–1020. 493

3 4		
5 6	494	20. Lim S, Becker A, Zimmer A, Lu J, Buettner R, Kirfel J. SNAI1-mediated epithelial-
/ 8 0	495	mesenchymal transition confers chemoresistance and cellular plasticity by regulating genes
9 10 11	496	involved in cell death and stem cell maintenance. PLoS ONE. 2013; 8.
12 13 14	497	21. Smith, Bethany N, and Valerie A Odero-Marah. The role of Snail in prostate cancer.
15 16 17	498	Cell adhesion & migration. 2012; 6: 433-41.
18 19	499	22. Venkatesh V, Nataraj R, Thangaraj GS, Karthikeyan M, Gnanasekaran A, et al.
20 21 22	500	Targeting Notch signaling pathway of cancer stem cells. Stem Cell Investig. 2018; 5: 5.
23 24 25	501	23. Maillard M, Cadot B, Ball RY, Sethia K, Edwards DR, Perbal B, et al. Differential
25 26 27	502	expression of the ccn3 (nov) proto-oncogene in human prostate cell lines and tissues. Mol
28 29 20	503	Pathol. 2001; 54: 275–280.
30 31 32	504	24. Li XQ, Li L, Xiao CH, Feng YM. NEFL mRNA Expression Level Is a Prognostic
33 34 35	505	Factor for Early-Stage Breast Cancer Patients. PLOS One. 2012; 7: e31146.
36 37	506	25. Klaudia Skrzypek, Marcin Majka. Interplay among SNAIL Transcription Factor,
38 39 40	507	MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Regulation of Tumor
41 42	508	Growth and Metastasis. Cancers. 2020; 12:1.
43 44 45	509	26. Zhang T, Zhao C, Luo L, Xiang J, Sun Q, Cheng J, et al. The clinical and prognostic
46 47	510	significance of CCN3 expression in patients with cervical cancer. Adv Clin Exp Med. 2013;
48 49 50 51	511	22: 839–45.
52 53 54		
55 56		

Carcinogenesis

2 3 4		
5 6	512	27. Chen PC, Tai HC, Lin TH, Wang SW, Lin CY, Chao CC, et al. CCN3 promotes
7 8 9	513	epithelial-mesenchymal transition in prostate cancer via FAK/Akt/HIF-1 α -induced twist
10 11	514	expression. Oncotarget. 2017; 8: 74506–74518.
12 13 14	515	28. Huang Z, Zhuo Y, Shen Z, Wang Y, Wang L, Li H, et al. The role of NEFL in cell
15 16	516	growth and invasion in head and neck squamous cell carcinoma cell lines. J Oral Pathol
17 18 19	517	Med. 2014; 43:191–198.
20 21	518	29. Phu Hung Nguyen, Julie Giraud, Lucie Chambonnier, Pierre Dubus, Linda Wittkop,
22 23 24	519	Geneviève Belleannée, et al. Characterization of Biomarkers of Tumorigenic and
25 26	520	Chemoresistant Cancer Stem Cells in Human Gastric Carcinoma. Clin Cancer Res. 2017;
27 28 20	521	23: 6.
30 31	522	30. Xiao-Long Chen, Xin-Zu Chen, Yi-Gao Wang, Du He, Zheng-Hao Lu,
32 33 34	523	Kai Liu, et al. Clinical significance of putative markers of cancer stem cells in
35 36 37 38	524	gastric cancer: A retrospective cohort study. Oncotarget. 2016; 7: 38.
39 40	525	31. I. K. Guttilla, K. N. Phoenix, X. Hong, J. S. Tirnauer, K. P. Claffey, B. A. White.
41 42	526	Prolonged mammosphere culture of MCF-7 cells induces an EMT and repression of the
43 44 45	527	estrogen receptor by microRNAs. Breast Cancer Res Treat. 2012; 132:75-85.
46 47 48	528	32. Jianxin Qian, Yizhou Luo, Xiaoqiang Gu, Wang Zhan, and Xi Wang. Twist1 Promotes
49 50	529	Gastric Cancer Cell Proliferation through Up-Regulation of FoxM1. PLoS One. 2013; 8:
51 52 53 54 55 56	530	e77625.
57		

2 3		
4 5 6	531	33. Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Höfler H, Becker KF.
7 8	532	Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and
9 10	522	truist in contribution Arm L Dathal 2002: 161: 1981 01
11 12	222	twist in gastric cancer. And J ramor. 2002, 101. 1881-91.
13 14	534	34. Arti Yadav, Bhavna Kumar, Jharna Datta, Theodoros N. Teknos, and Pawan Kumar.
15 16	535	IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal
17 18 19	536	transition via the JAK-STAT3-SNAIL signaling pathway. Mol Cancer Res; 2011; 9.
20 21	537	35. Cornelia Kröger, Alexander Afeyan, Jasmin Mraz, Elinor Ng Eaton, Ferenc Reinhardt,
22 23 24	538	et al. Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer
25 26 27	539	cells. PNAS. 2019; 116: 7353-7362.
28 29	540	36. Osorio, L. A., Farfán, N. M., Castellón, E. A., Contreras, H. R. SNAIL transcription
30 31	541	factor increases the motility and invasive capacity of prostate cancer cells. Molecular
32 33 34	542	Medicine Reports. 2016; 13: 778-786.
35 36 27	543	37. Kim H, Son S, Shin I. Role of the CCN protein family in cancer. BMB Rep. 2018; 51:
37 38 39	544	486–492.
40 41 42	545	38. Dankner M, Ouellet V, Desreumaux-Communal L, Schmitt E, Perkins D, Annis MG, et
43 44	546	al. CCN3 is a prognostic biomarker and functional mediator of prostate cancer bone
45 46 47	547	metastasis. AACR; Cancer Res 2019;79.
48 49 50	548	39. Li W, Liao X, Ning P, Cao Y, Zhang M, Bu Y, et al. Paracrine effects of CCN3 from
51 52	549	non-cancerous hepatic cells increase signaling and progression of hepatocellular carcinoma.
53 54	550	BMC Cancer. 2019; 19: 395.
55 56		
57 58		29

1 2	
3 4	
5 6 7	
/ 8 0	
10 11	
12 13	
14 15	
16 17	
18 19	
20 21	
22 23 24	
25 26	
27 28	
29 30	
31 32	
33 34 25	
36 37	
38 39	
40 41	
42 43	
44 45	
46 47	
48 49 50	
50 51 52	
53 54	
55 56	
57 58	
59 60	

551	40. Li J, Gao X, Ji K, Sanders AJ, Zhang Z, Jiang WG, et al. Differential expression of
552	CCN family members CYR611, CTGF and NOV in gastric cancer and their association
553	with disease progression. Oncol Rep. 2016; 36: 2517–2525.
554	41. Yuan A, Rao MV, Veeranna, Nixon RA. Neurofilaments at a glance. J Cell Sci.
555	2012;125: 3257–3263.
556	42. Shen Z, Chen B, Gan X, Hu W, Zhong G, Li H, et al. Methylation of neurofilament
557	light polypeptide promoter is associated with cell invasion and metastasis in NSCLC.
558	Biochem Biophys Res Commun. 2016; 470: 627-634.
559	43. Yokota J. Tumor progression and metastasis. Carcinogenesis. 2000; 21: 497-503.
560	44. Tsu-Yao Cheng, Ming-Shiang Wu, Kuo-Tai Hua, Min-Liang Kuo, Ming-Tsan Lin, et al.
561	Cyr61/CTGF/Nov family proteins in gastric carcinogenesis. World J Gastroenterol. 2014;
562	<u>20: 1694-1700.</u>

3		
4 5 6 7	563	Legends:
8 9	564	Figure 1. Characteristics of gastric cancer cell lines spheres cultured under serum-free
10 11 12	565	condition.
13 14 15	566	A. Photographic pictures of sphere morphology.
16 17 18	567	Initial and passage sphere assay were shown in upper and lower lane pattern respectively
19 20	568	with each cell line marked on top.
21 22 23	569	B. Sphere formed per $2x10^4$ seeded cells as an index of cell renewal capacity.
24 25 26	570	a: sphere count; b: volume summary of sphere formed. Results were expressed as mean \pm
27 28	571	SD, * p<0.05; ** p<0.01.
29 30 31	572	C. Enhanced in vivo tumor volume formed from spheres in mice at an injection
32 33 34	573	concentration of 4×10^4 cells.
35 36	574	D. Representative H&E slides from gastric cancer cell line NCI-N87 with their sphere
37 38 39	575	formed tumors. Scale bar=200µm.
40 41 42	576	
43 44 45	577	Figure 2. Stem cell properties and tumor malignancy in gastric cancer spheres.
46 47	578	A. Comparison of EMT factors on absolute mRNA expression levels in gastric cancer cell
48 49 50	579	lines.
51 52 53 54 55	580	B. Immunofluorescence of SNAIL expression in HGC27, IM95 and FU97 cell lines.
56 57 58		31
59		

Carcinogenesis

3 1		
4 5 6	581	a. Cells in the gastric cancer cell lines HGC27 were found to express SNAIL (imaged with
7 8 9	582	red fluorescent) in the nuclei;
10 11 12	583	b. Image with DAPI to identify the nuclei of HGC27gastric cancer cells;
13 14 15	584	c. Merged image superimposed on a differential interference contrast background confirms
16 17	585	co-localization. Scale bar=50µm.
18 19 20	586	
21 22 23	587	Figure 3. SNAIL is sufficient and essential for induction of self-renewal and malignancy in
24 25	588	gastric cancer cell line HGC27. (Knockdown is represented as k.d.).
26 27 28	589	A. Real-time quantitative PCR validation of SNAIL expression level in HGC27 and its
29 30 21	590	stable SNAIL knockdown cell lines.
32 33	591	B. Effects of SNAIL knockdown on the expression of E-cadherin and Vimentin in HGC27
34 35 36	592	cell line.
37 38 20	593	C. Morphology alteration of gastric cancer cell line HGC27 after SNAIL knockdown in
40 41	594	ultra-low attachment condition.
42 43 44	595	D. CD24 and CD44 FACS profiles of HGC27 and HGC27 SNAIL knockdown cell lines.
45 46 47	596	E. Sphere formed per $2x10^4$ seeded cells from HGC27 and HGC27 SNAIL knockdown cell.
48 49	597	F. Diminished in vivo tumorigenicity formed from HGC27 SNAIL knockdown cells in
50 51 52	598	NOD/SCID mice at an injection concentration of $4x10^4$ cells. H&E staining of
53 54 55	599	representative tumors, scale bar=200µm.
56 57		
58 59		32

4		
5 6	600	G. Decreased chemoresistance of HGC27 SNAIL knockdown cells compared with HGC27
7 8 9	601	when treated with 5-FU.
10 11 12	602	
13 14 15	603	Figure 4. Microarray analysis between HGC27 and its SNAIL knockdown samples.
16 17 19	604	A. Plot analysis of distribution visualization of differentially expressed genes comparing
18 19 20	605	SNAIL knockdown and control groups.
21 22 23	606	B. Bar plot detailing presented numbers of genes under SNAIL up/down regulation in two
24 25	607	conditions.
26 27 28	608	C. GO terms enrichment analysis of molecular function, cellular component and biological
29 30	609	process of differentially expressed genes (left to right).
31 32 33	610	D. The KEGG enrichment analysis of differentially expressed genes.
34 35 36	611	E. Real-time quantitative PCR validation of CCN3 and NEFL expression level in HGC27
37 38 39	612	and its stable SNAIL knockdown cell lines.
40 41 42	613	
43 44	614	Figure 5. Elevated expression of SNAIL and CCN3 in patients with stomach
45 46 47	615	adenocarcinoma.
48 49 50	616	A. mRNA transcript expression levels of SNAIL (a), CCN3 (b) and NEFL (c) are elevated
50 51 52	617	in patients with gastric cancer from TCGA-STAD database. Box in red: malignant tissue;
53 54 55	618	box in gray: normal tissue. * p<0.05.
56 57 58		
20		33

Carcinogenesis

2 3 4		
5 6	619	B. No correlation existed between CCN3 and NEFL in gastric cancer patients from TCGA-
7 8 9	620	STAD database.
9 10 11 12	621	C. SNAIL, CCN3 and NEFL are highly expressed in human gastric cancer tissues.
13 14 15	622	Representative immunohistochemical staining (IHC) images of SNAIL, CCN3 and NEFL
16 17	623	in gastric cancer tissues. Scale bar = $50 \ \mu m$.
18 19 20	624	
21 22 23	625	Figure 6. CCN3 and NEFL correlate with self-renewal and chemoresistance traits in gastric
24 25	626	cancer cells.
26 27 28	627	A. Western blotting analysis of NEFL and CCN3 expression in associated cell lines.
29 30 31	628	B. Sphere formed per $2x10^4$ seeded cells as an index of cell renewal capacity.
32 33 34	629	a. HGC27 SNAIL knockdown vs. HGC27 SNAIL knockdown with SNAIL re-introduction;
35 36 37	630	b. HGC27 vs. HGC27 with NEFL introduction;
38 39 40	631	c. HGC27 SNAIL knockdown vs. HGC27 SNAIL knockdown with CCN3 re-introduction.
41 42 43	632	C. Chemoresistance alteration of SNAIL (a), CCN3 (b) and NEFL (c) introduction into
44 45	633	associated HGC27 cell lines when treated with 5-FU. Results are expressed as mean \pm SD,
46 47	634	* p<0.05; ** p<0.01.
48 49 50 51	635	D. Knockdown of NEFL promoted the mesenchymal traits in gastric cancer cell line IM95.
52 53	636	a. Real time qPCR validation of NEFL expression level in IM95 and its stable NEFL
54 55 56	637	knockdown cell lines.
57 58		34
59		

1	
2	
5 4	
5	
6	
7	
0 9	
10	
11	
12	
13	
15	
16	
17	
19	
20	
21	
22	
23 24	
25	
26	
27	
20	
30	
31	
32 33	
34	
35	
36	
38	
39	
40	
41	
43	
44	
45 46	
47	
48	
49	
50 51	
52	
53	
54 55	
55 56	
57	
58	
59	
00	

638	b. Effects of NEFL knockdown on the expression of E-cadherin and Vimentin in IM95 cell
639	line.
640	c. Increased chemoresistance of IM95 NEFL knockdown cells compared with IM95 cells
641	when treated with 5-FU. Results are expressed as mean \pm SD, * p<0.05; ** p<0.01.
642	
643	Figure S1. Enhanced in vivo tumor volume formed from spheres in mice at an injection
644	concentration of 4 x 10 ⁴ cells of HGC27 and NUGC3 cells. Representative H&E slides
645	from gastric cancer cell lines with their sphere formed tumors. Scale bar=200µm.
646	
647	Figure S2. Representative immunohistochemical staining (IHC) images of CCN3 and
648	<u>NEFL in gastric normal tissues. Scale bar = 50 μm.</u>
649	

2	
3	
Δ	
5	
2	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
27	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	

Table S1. Primer sequences

UAPDH	TO 10 T 1 O 10 O	
0111 211	forward	5' -GAU ATU AAG AAG GTU GTU GTU AAG $C-3'$
	reverse	5'-GIU CAU CAU CUI GII GUI GIA G-3'
TWISTI	torward	5' -CTC AGC AGG GCC GGA GAC CT- 3'
	reverse	5' -CCC CAC GCC CTG TTT CTT TGA- 3'
TWIST2	forward	5' -CTC AGC AGG GCC GGA GAC CT- 3'
	reverse	5' -CCC CAC GCC CTG TTT CTT TGA- 3'
SNAIL	forward	5' -TCT CTA GGC CCT GGC TGC TAC A- 3'
	reverse	5' -CGC CTG GCA CTG GTA CTT CTT G- 3'
SLUG	forward	5' -GAA GAT GCA TAT TCG GAC CCA CAC- 3'
	reverse	5' -TTG ACC TGT CTG CAA ATG CTC TGT- 3'

Carcinogenesis

SNAIL B k.d.

Q1 91.0

PE-CD24

F

G

e(%)

Absorb

HGC27

В

HGC27

HGC27

Q1 0.34

SNAIL

β-actin

E-cadherir

β-A

Vi

Q2 6.32

Q3 0.045

SC

HGC27

HGC27 sphere HGC27

HGC27

shSNA

HGC27 shSNAIL

SC

HGC27 shSNAIL

HGC27

150

100

5-FU/µM

HGC27 shSNAIL

Q2 0.024

Q3 0.049

c NEFL expression

2

1.5

1

0.5

0

-0.5

-1

NEFL

p = 0.00006685

A. Western blotting analysis of NEFL and CCN3 expression in associated cell lines.
B. Sphere formed per 2x10⁴ seeded cells as an index of cell renewal capacity.
a. HGC27 SNAIL knockdown vs. HGC27 SNAIL knockdown with SNAIL re-introduction;

b. HGC27 vs. HGC27 with NEFL introduction;

c. HGC27 SNAIL knockdown vs. HGC27 SNAIL knockdown with CCN3 re-introduction.
C. Chemoresistance alteration of SNAIL (a), CCN3 (b) and NEFL (c) introduction into associated HGC27 cell lines when treated with 5-FU. Results are expressed as mean ± SD, * p<0.05; ** p<0.01.
D. Knockdown of NEFL promoted the mesenchymal traits in gastric cancer cell line IM95.
a. Real time qPCR validation of NEFL expression level in IM95 and its stable NEFL knockdown cell lines.
b. Effects of NEFL knockdown on the expression of E-cadherin and Vimentin in IM95 cell line.
c. Increased chemoresistance of IM95 NEFL knockdown cells compared with IM95 cells when treated with 5-FU. Results are expressed as mean ± SD, * p<0.05; ** p<0.01.

Carcinogenesis

Page 79 of 79

Carcinogenesis

Carcinogenesis

$_{\frac{1}{2}}$ Figure S2

CCN3

