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NOBORU NAKAYAMA

ABSTRACT. Normal projective surfaces admitting non-isomorphic surjective
endomorphisms are classified up to isomorphism except singular rational sur-
faces with only quotient singularities and with big anti-canonical divisor. A
surface in our list admits a finite Galois cover étale in codimension 1 from
one of the following surfaces: a toric surface with Galois invariant open torus,
an abelian surface, a P!-bundle over an elliptic curve, a projective cone over
an elliptic curve, and the direct product of a non-singular projective curve of
genus at least 2 and of a rational or elliptic curve.

1. INTRODUCTION

As a continuation of [24], we study normal Moishezon surfaces X admitting non-
isomorphic surjective endomorphisms f: X — X. We know the following by [24]
Cors. B and C, and Thm. EJ:

e X is projective;
e the Weil-Picard number p(X) equals the Picard number p(X);
e (X,9) is log-canonical for any f-completely invariant divisor S.

Here, a reduced divisor S is said to be f-completely invariant if f~1S = S (cf.
[24, Def. 2.12]). Moreover, we have a structure theorem [24, Thm. A] on (X, S, f)
for an f-completely invariant divisor S such that Kx + S is pseudo-effective, but
it gives only necessary conditions for the existence of non-isomorphic surjective
endomorphisms. We can prove that these conditions are also sufficient for the
existence by constructing several examples, and we have a complete version of [24]
Thm. A] as Theorem Bl below. By studying further cases in which Kx + S is not
pseudo-effective, we have the following theorem as the main result in this article:

Theorem 1.1. Let X be a normal projective surface. If X admits a non-isomorphic
surjective endomorphism, then either (I) or () below holds. Conversely, if X
satisfies (M), then X admits a non-isomorphic surjective endomorphism:

(I) There is a finite Galois cover V.— X étale in codimension 1 satisfying one
of the six conditions below:
(I-1) V ~ P! x T for a non-singular projective curve T of genus at least 2;
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(I-2) V ~C x T of an elliptic curve C' and a non-singular projective curve

T of genus at least 2;

V' is an abelian surface;

V is a P'-bundle over an elliptic curve;

V is a projective cone over an elliptic curve (cf. |24, Def. 1.16));

V is a toric surface and the action of the Galois group Gal(V/X)

preserves the open torus.

(I1) The surface X is rational and singular with only quotient singularities, and
the anti-canonical divisor —K x 1is big.

I-3
I-4
I-5
1-6

(I-3)
(I-4)
(I-5)
(I-6)

The proof of Theorem [l is given in Section below. The first assertion of
Theorem [[T] has been proved in [24] for some special cases. In deed, X satisfies
(@ either if Kx + .S is pseudo-effective for an f-completely invariant divisor S or
if X is irrational (cf. [24] Thms. A and 4.16]). For the proof of Theorem [[T], we
need some examples constructed in Section 2] the study of some special cases in
which Kx + S is not pseudo-effective in Section [ and the following theorem on
non-quotient singularity:

Theorem 1.2. Let X be a normal projective surface admitting a non-isomorphic
surjective endomorphism f. If X has a non-quotient singular point, then there
exists a finite cyclic cover V.— X étale in codimension 1 from a projective cone V
over an elliptic curve such that f lifts to an endomorphism of V.

Theorem is proved in Section below by applying a result of Favre [0
Prop. 2.1] (cf. 23 Thm. 5.3]). We have also the following result on the num-

ber n(Sy) of prime components of the characteristic completely invariant divisor
Sy (cf. [24, Def. 2.16]):

Theorem 1.3. Let f be a non-isomorphic surjective endomorphism of a mormal
projective surface X. Then n(Sy) < p(X) +2. If n(Sy) = p(X) + 2, then (X, Sy)
is a toric surface, i.e., X is a toric surface with Sy as the boundary divisor. If
n(Sy) = p(X) + 1, then one of the following holds:

(1) (X,B+ S¢) is a toric surface for a prime divisor B ¢ Sy;

(2) (X,Sf) is a half-toric surface in the sense of [22].

Theorem [[3]is proved in Section 51l below by applying [22, Thm. 1.3] on a variant
of Shokurov’s criterion for toric surfaces (cf. [29, Thm. 6.4]). This is a generalization
of Theorem L[ below on L-surfaces.

Section [l is devoted to proving these three theorems. We shall explain results
obtained in the other sections along the following topics:

(A) Examples of endomorphisms.

(B) Classification of completely invariant curves with positive arithmetic genus.

(C) Classification of (X, f) in the case where the refined ramification divisor
Ay (cf. [24, Def. 2.16]) is zero.

(D) Study of (X, f) in the case where p(X) > 2 and Kx + S is not pseudo-
effective.



(E) Study of (X, f) in the case where p(X) = 2, Kx is not pseudo-effective,
and —K x is not big.

For ([A)), in Section] we shall construct several endomorphisms of varieties which
are equivariant under actions of finite groups, and as a result, we have endomor-
phisms of the quotient varieties: Lemmas2.2], 2.5 and 2.6 below treat the projective
space P", an abelian variety, and a toric varieties, respectively, as a variety with
actions of a finite group. Equivariant endomorphisms of P!-bundles are studied by
the notion of G-linearizations. Especially, Propositions and below give
sufficient conditions in terms of G-linearization for the existence of equivariant non-
isomorphic surjective endomorphisms of a P'-bundle associated with the direct sum
of two invertible sheaves. By these results, we can prove the existence of equivariant
non-isomorphic surjective endomorphisms for any P'-bundle over an elliptic curve
and any projective cone over an elliptic curve in Theorems and 22T Some
other examples of endomorphisms are obtained in Examples 237 232 and
below which are related to results in [24].

Theorem Bl a complete version of [24, Thm. A}, is proved in Section [ by us-
ing examples obtained in Section 2l As an application of Theorem B.I] we have
Theorem [B.4] concerning (Bl), where the structure of a normal projective surface X
is determined when it has a non-isomorphic surjective endomorphism f and an f-
completely invariant curve C of positive arithmetic genus. Moreover, Theorem
gives a finer description in the case where () # Sing C' C X,eg. As another appli-
cation of Theorem [BJ] we have Theorem B0 as a classification theorem for ().
Note that Ay = 0 if and only if the induced endomorphism of X \ Sy is étale in
codimension 1. Theorem B.I1] below is a classification theorem on endomorphisms
étale in codimension 1, i.e., the case where the ramification divisor R; is zero.
Moreover, Theorem below treats the subcase of Theorem B.I0] not considered
in [24] Thm. A], i.e., the case where Ay =0 and Kx + S is not pseudo-effective for
any f-completely invariant divisor.

Topics (D) and (El) are treated in Section @l For (X, f) in (D)), in Proposi-
tion below, we shall show that (X, Sf) is an L-surface in the sense of Defini-
tion Theorem collects basic properties of L-surfaces. Corollary proves
that (X, B+ .Sy) is a toric surface or a half-toric surface for a prime divisor B ¢ Sy
if —(Kx + Sf) is not big in addition. Theorem [.7] below is a structure theorem
for (X, f) in (E). We have an additional result as Proposition L8] giving a finer
description in case Ay # deg f.

As a consequence of Theorems [Tl A5 and 7] we can determine the structure of
a normal projective surface X admitting a non-isomorphic surjective endomorphism
except the following cases:

(i) p(X) =1, and X is a log del Pezzo surface (cf. [1, Def. 1.1]), i.e,, X is a
rational surface with only quotient singularities and —Kx is ample.

(ii) X is a rational surface with p(X) = 2, —Kx is big, and X has only quotient
singularities.

(ili) (X,Sf) is an L-surface and n(Sy) = p(X) > 3.

Some examples belonging to () are in Examples and below.
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Notation and conventions. We use the same notation and conventions as in
[24]. In particular, we treat complex analytic spaces rather than schemes over C,
and a complex analytic variety is called a variety, for short. Our specific notations
are listed in Table [1l

TABLE 1. List of notations

Cc* 1-dimensional algebraic torus (= C\ {0})

q(X) irregularity of a normal projective variety X (= dim H'(X,Ox))
p(X) Picard number of a normal projective variety X

N(X) vector space of numerical classes of R-divisors on a normal projective

surface X (cf. [24] §1.1])
NE(X)  pseudo-effective cone in N(X) (cf. [24 §1.1])
Nef(X)  nef cone in N(X) (cf. [24, §1.1])

cl(D) numerical class of an R-divisor D
k(D,X) litaka’s D-dimension for a divisor D on X (cf. [13])
7 (U) fundamental group of a topological space U
e(U) Euler number of a topological space U
P, (C) arithmetic genus of a projective curve C' (= dim H!(C, O¢))
g(C) (geometric) genus of a projective curve C
n(S) number of prime components of a reduced divisor S (cf. Definition 1]
below)
For an endomorphism f:
Ry ramification divisor (cf. [23] §1.5])
Sy characteristic completely invariant divisor (cf. [24] Def. 2.16])
Ay refined ramification divisor (cf. [24] Def. 2.16])
Af the first dynamical degree (cf. [24] Def. 3.1])
deg f (mapping) degree

S¢ := (deg )2 > 0 (cf. [24, Def. 3.2])



2. EXAMPLES OF ENDOMORPHISMS

We shall construct several examples of normal projective surfaces (and varieties
of higher dimension) admitting non-isomorphic surjective endomorphisms. In Sec-
tions 2.1] 22 and 23] we shall construct endomorphisms of a variety X equivariant
under an action of a finite group G on X. The equivariant endomorphisms induce
endomorphisms of the quotient variety G\ X. Section 2J]treats the case where X is
a projective space, an abelian variety, or a toric variety. In Section 2.2} we consider
some P'-bundles over a variety, and in Section B3] we shall show that P!-bundles
and projective cones over an elliptic curve have equivariant non-isomorphic surjec-
tive endomorphisms. In Section 2.4l we present some examples of endomorphisms
related to discussions in [24].

Convention. Let X be a complex analytic space and let G be a finite group acting
on X from the left.

e The left action of o € G is denoted by ox : X — X. Here, (07)x = oxoTx
for any o, T € G.

e Let f: X — Y be a morphism to another complex analytic space Y with a
left action of G. We say that f is G-equivariant, or equivariant under the
action of G, if foox = oy o f for any o € G.

e A subset S of X is said to be G-invariant, or preserved by the action of G,
if oxS C S for any o € G.

e A closed analytic subspace Z of X is said to be G-invariant if ox: X — X
induces an isomorphism ox|z: Z — Z for any o € G. In this case, G acts
on Z and the closed immersion Z < X is G-equivariant.

e When X is normal, a divisor D on X is said to be G-invariant if 05D = D.

Remark. The quotient space G\X exists as a complex analytic space, and the
quotient map X — G\ X is a morphism of complex analytic spaces (cf. [5, Thm. 1]).
If X is normal, then so is G\ X.

Remark 2.1. A G-equivariant endomorphism f: X — X induces an endomorphism
f of the quotient space G\ X such that 7o f = f o for the quotient morphism
7: X — G\X. Here, deg f = deg f. In particular, if f is non-isomorphic surjective,
then so is f. Furthermore, when X is a normal variety and 7 is étale in codimension
1, the endomorphism f is étale in codimension 1 if and only if f is so. In fact, by
Kx = 71" Kg\x, we have Ry = 7" Ry for the ramification divisors Ry and Rj.

2.1. Equivariant endomorphisms of P", abelian varieties, and toric vari-
eties. We shall construct G-equivariant non-isomorphic surjective endomorphisms
of a projective variety X, in the case where X is the projective space P™, an abelian
variety, or a toric variety whose open torus is G-invariant. The following result on
P™ is shown by Amerik in the first part of [2 §1]. We write the proof for readers’
convenience.

Lemma 2.2. Let G be a finite group acting on P". Then there ezists a G-
equivariant non-isomorphic surjective endomorphism of P whose degree is coprime
to the order of G.
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Proof. We may assume that G is a subgroup of GL(n + 1,C). The action of ¢ €
GL(n +1,C) on P™ is defined by

(Il—l) o* (Xz) = Z;L:o ai7j(O')Xj,

where 0 = (a;,;(0))o<i,j<n as a matrix and where ¢* is regarded as an automor-
phism of the polynomial ring C[xo, . ..,%,]. Let S C P™ be the pullback of a general
ample divisor on the quotient variety G\P" by the quotient morphism P* — G\P".
Then S is non-singular by Bertini’s theorem. We may assume that deg.S is divis-
ible by the order of G. Let F € Clxo,...,x%,] be a defining equation of S, i.e., a
homogeneous polynomial defining S as the zero locus {F = 0} in P". Then we can
define a group homomorphism x: G — C* by

(11-2) o"(F)=F(c"(%0),...,0%(xpn)) = x(0)F

for 0 € G. Let ¢: P — P™ be an endomorphism corresponding to an endomor-
phism ®: Clxo,...,x,] = C[xo,...,x,] defined by ®(x;) = 9F/0x; for 0 < i < n.
Note that ¢ is holomorphic by the Jacobian criterion, since S is non-singular, and
that ¢ is surjective with deg¢ = (degS — 1)™ > 1. Taking partial differentials to

(II=2)), we have

(11-3) X(@)OF/0x; =Y aij(0)0" (9F/0x;)

for any 0 < j < n. Thus,

(11-4) o*(0F/0x;) = x(o) ZFO a; j(0")OF | 0x;

for the matrix o’ = (a;,j(0”)) :='o~! =%(a; j(0))~*. Hence, ¢ o opn = o 0 ¢ for

the automorphism op,, : P — P", since we have
0" (D(x;)) = 0" (OF/0x;) = x(0) ijo ai,j(0")OF/0x;

=x(@2 (Y ais(0)x%;) = x(0) (0" (x:))

by () and (II4)). Let G’ be the finite subgroup {¢’ | ¢ € G} € GL(n + 1,C)
and let S’ C P™ be the pullback of a general ample divisor on G'\P", where we
assume that deg S’ is a multiple of the order of G. For a defining equation F’ €
Clxo,...,xn] of S/, let ¢': P* — P™ be an endomorphism corresponding to an
endomorphism @’ of C[xo, . . ., x,] defined by ®'(x;) = OF’/0x; for 0 < i < n. Then
¢’ is surjective, deg ¢’ = (deg S’ — 1)" > 1, and ¢’ 0 opn = opn 0 ¢’ for any o € G,
by the same argument as above. Thus, ¢’ o ¢ is a G-equivariant non-isomorphic
surjective endomorphism of P, and deg ¢’ oo = (deg S—1)"(deg S’ —1)™ is coprime
to the order of G. O

Lemma 2.3. Let B be a compact normal variety and let G be a finite group acting
on both B and P™ x B so that the second projection ps: P x B — B is G-equivariant.
Then the action of G on P™ x B is diagonal, i.e., G acts on P™ so that oprnxp =
opn X op for any o € G, and there exists a G-equivariant non-isomorphic finite
surjective endomorphism [ of P x B such that pso f = po and that deg f is coprime
to the order of G.



Proof. The action of an element o € G on P" x B is expressed as
P" x B 3 (x,b) = opnxp(,b) = (¢Ys(x,b),05(b)),

where 1,: P" x B — P” is a holomorphic map inducing an automorphism = —
Yo (x,b) of P for any b € B. Here, 1, (xz,b) does not depend on b € B, since any
holomorphic map B — Aut(P") ~ PGL(n+1,C) is constant. Therefore, for a fixed
point b € B, we have an action of ¢ € G on P" by opn(x) := 9,(x,b), and the
action of G on P" x B is diagonal. There is a G-equivariant non-isomorphic finite
surjective endomorphism ¢: P* — P™ by Lemma 2.2 in which deg ¢ is coprime to
the order of G. Then ¢ x idg: P* x B — P™ x B satisfies required conditions for
I O

Corollary 2.4. Let X be a normal projective surface admitting a finite surjective
morphism v: P! x B — X étale in codimension 1 for an irrational non-singular
projective curve B. Then X admits a non-isomorphic surjective endomorphism.

Proof. Let V. — X be the Galois closure of v. Then the induced Galois cover
V — P! x B is étale. Let V — B’ — B be the Stein factorization of the smooth
morphism V — P! x B — B. Then the induced étale morphism V — P! x B’ over
B’ is an isomorphism, since P! is simply connected. Therefore, we may assume
that v is Galois. Since B is irrational, the second projection ps: P! x B — B is
the Albanese morphism. Thus, the Galois group G of v acts on B so that ps is
G-equivariant. Hence, a non-isomorphic surjective endomorphism of X exists by
Lemma 2.3] and Remark 2.11 O

The following result on abelian varieties is proved by essentially the same argu-
ments as in the proof of [8, Thm. 2.26] and in [7, App. to §4].

Lemma 2.5. Let A be an abelian variety and B a variety, and let G be a finite
group acting on A X B and B so that the second projection ps: A X B — B is
G-equivariant. Then there exists a G-equivariant non-isomorphic finite surjective
étale endomorphism f: A x B — A X B such that ps o f = pa and that deg f is
coprime to the order of G.

Proof. We fix a point 0 € A and an abelian group structure of A with 0 being the
zero element. Then the set Hom(B, A) of morphisms of varieties from B to A is
regarded as an abelian group. The action of ¢ € G on A X B is given by

Ax B3 (a,b) = oaxp(a,b) = (\o(a+ ¢ (D), 0p(b)),

for some A, € Aut(A4,0) and {, € Hom(B, A). Here, Aut(A,0) denotes the group
of automorphisms of A fixing 0, o — A, gives rise to a group homomorphism
G — Aut(A,0), and Hom(B, A) has a right G-module structure by

¢7(b) == A; (o 5(b))
for ¢ € Hom(B, A), o0 € G, and b € B. The collection {{,},ec is a 1-cocycle of
Hom(B, A), i.e., the cocycle condition

CO’O’I = Co’ + gg
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is satisfied for any o, 0’ € G. The group cohomology H! (G, Hom(B, A)) is a torsion
module annihilated by the order of G. Let n be a positive integer divisible by the
order of G. Then one can find a morphism ¢ € Hom(B, A) such that

(I1-5) nGe =¥ — 97
for any 0 € G. Let f be an endomorphism of A x B defined by
Ax B3 (a,b) = ((n+1)a+1(),d).

Then pyo f = po, and deg f = (n+1)24™4 is coprime to the order of G. Moreover,
f is a G-equivariant non-isomorphic étale surjective endomorphism, since

fooaxp(a,b) = f(A;(a+ (s (b)),08(b))
= ((n+1DAs(a+ ¢ () +¢(op(b)),05(b))
= (Ao((n +1)a + (o (b) + n¢o(b) + 97 (b)), 05(b))
= (Ae((n+1)a+¢(b) + (b)), 0B(b)) = gaxs © f(a,b)
for any (a,b) € A x B and ¢ € G by ([[I-5). Thus, we are done. O

The following is on toric varieties.

Lemma 2.6. Let X be a compact toric variety and let G be a finite group acting on
X preserving the open torus T. Then there exists a G-equivariant non-isomorphic
finite surjective endomorphism f: X — X such that f~Y(T) =T and that deg f is
coprime to the order of G.

Proof. Let N be a free abelian group such that T ~ N ®7z C* as an algebraic group.
Then there is a complete fan /A of N such that

X =Tn(A) = UaeA Tn(o),

where Ty (o) is the affine toric variety Specan Clo¥ N M] for M = Homy (N, Z): In
[26], Tn(A) and Tn(o) are written as Tyemb(A) and Uy, respectively. The open
torus Tn({0}) is identified with T. For an element u € T, let L,: X — X denote
the automorphism of action of v on X. In other words, v — L, gives rise to a
group homomorphism T — Aut(X) corresponding to the action of T on X. Note
that u — L, is injective, i.e., the action of T on X is faithful. Let End(N, A) (resp.
Aut(N, A)) be the set of endomorphisms (resp. automorphisms) ¢: N — N which
gives rise to a morphism (N, A) — (N, A) of fans, i.e., for any o € A, there is a
cone T € A satisfying ¢(o) C 7 (cf. [26], §1.5]). For ¢ € End(N,A), let Ty: X — X
denote the T-equivariant endomorphism extending ¢ ®id: N@ C* — N® C*, whose
existence is shown in [20, Thm. 1.13]. Here, we write ¢(u) := Ty(u) € T for an
element u of the open torus T, for simplicity. Then

as an endomorphism of X for any v € T. For an integer m, we define v, =
Ty,,: X — X for the multiplication map ¢,,: N — N by m. Then v,, induces the
power map u — u'™ as an endomorphism of T, and we have

(I1-7) Um 0 Ly =lym ovy, and vy, oTy=Tsov,



9

for any v € T and any ¢ € End(N,A) by ([I=6) and by the property that ¢
commutes with the multiplication map ¢,,.

We note that an automorphism of X preserving the open torus is expressed
as L, o T, for some u € T and ¢ € Aut(N,A): To show it, by composition
with L, for some wu, it is enough to consider only an automorphism ¥: X — X
preserving the open torus T and fixing the identity element of T. Then V|t is a
group homomorphism associated with an automorphism ¢: N — N. It implies that
U is equivariant under the action of T with respect to the group homomorphism
Ulp: T — T, ie., Wo L, = Ly, oW for any u € T. Then ¢ € Aut(N,A) and
U =T, by [26, Thm. 1.13].

By the action of G on X, we have a group homomorphism G > ¢ — A\, €
Aut(N, A) and elements u, € Ty for o € G such that

(II—S) ox = Lug o T)\a .
Then, by ([I=6) and by the injectivity of u — L,,, we have
(11—9) Uoioy = Ugy )‘01 (uO'Q)

for any o1, 0o € G. Hence, T has a structure of left G-module by u — A, (u) =
Ty, (u) for w € T and o € G, and the collection {uy},ec is a 1-cocycle of T by
(=9). The group cohomology H'(G,T) is a torsion module annihilated by the
order of GG. Let n be a positive integer divisible by the order of G. Then there is
an element v € T such that

(I1-10) ul = Ay (v)v !

for any 0 € G. We set f := L, ov,41 as a finite surjective endomorphism of
X. Then deg f = (n + 1)4™X is greater than 1 and coprime to the order of G,
f~Y(T) C T for the open torus T, and moreover,

- by ([=8)

fOUX:LvOVnJrlOLuUOT)\

= LU o Lug+1 o T)\U O Vn+1 by (]Im)
= Ly, o Ly, () o Tx, ovny1 by  ([I=10)
=Ly, 0T\, 0oL,ovpt1 =0xof by (II=6)
for any o € G. Thus, f is G-equivariant, and we are done. ([l

2.2. G-linearizations and equivariant endomorphisms of P'-bundles. We
shall study equivariant endomorphisms of P!-bundles by the notion of G-lineariza-
tions (cf. Definition 2.7 below). Especially, in Propositions and below,
we shall give sufficient conditions for the existence of G-equivariant non-isomorphic
surjective endomorphisms of a P!-bundle associated with the direct sum of two
invertible sheaves. These are applied to P!-bundles over an elliptic curve in Sec-
tion

Definition 2.7. Let X be a complex analytic space with a left action of a finite
group G. For an Ox-module F, a G-linearization of F is a collection € = {&, }scq
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of isomorphisms e, : 0% F — F of Ox-modules such that e, = idr for the unit
element e € G and that, for any o, 7 € G, the diagram

% (0% F) M T%F

=| |=

(oT)%F —fer s F

is commutative, where the left vertical arrow indicates the canonical isomorphism
on composition (o7)x = ox o Tx. Sometimes, we write

Eor = Er 0Tx(E0)

modulo the canonical isomorphism (o7)%F =~ 7% (0% F) for the diagram. For
two G-linearized Ox-modules F = (F,e”) and G = (G,¢Y), a homomorphism
¢: F — G is said to be G-linear if

A ox () Uj(g

| I
F -5 g

is commutative for any o € G.

Remark. The notion of G-linearizations is introduced for invertible sheaves in [I7] I,
§3]. The category of G-linearized O x-modules with G-linear homomorphisms is an
abelian category. If G acts on X trivially, then a G-linearization of an Ox-module
F is just a right G-module structure of F.

Remark 2.8. The structure sheaf Ox has a canonical G-linearization. In fact,
for a morphism f: U — V of ringed spaces, we have a canonical homomorphism
Ov — f.Oyp of sheaves of rings on V, and its left adjoint c¢: f*Oy — Oy as an
isomorphism of sheaves of rings on U. Hence, for any o € GG, we have a canonical
isomorphism ¢, : 05 Ox — Ox, and {c¢, } is the canonical G-linearization of Ox.

Remark 2.9. For G-linearized Ox-modules F = (F,e”) and G = (G, e9), the tensor
product F ® G = F ®o, G and the hom sheaf Hom(F,G) = Homo, (F,G) have
canonical G-linearizations given by

E]: Eg
CHFRG) ~ ok FRokG 227 Fo G  and

ox Hom(F,G) ~ Hom(cxF,0%G) o, Hom(F,G)

for o € G, where (1) is defined by (¢f)~': F — o%F and €¢: 0%G — G. In partic-
ular, the set PicG(X ) of G-linearized invertible sheaves on X modulo isomorphisms
is an abelian group (cf. [I7, I, §3]).

Remark 2.10. Let f: X — Y be a G-equivariant morphism for complex analytic
spaces X and Y with left actions of G. For a G-linearized O x-module F = (F,&”)



11

and a G-linearized Oy-module G = (G,<9), the direct image f.F and the inverse
image f*G have canonical G-linearizations given by isomorphisms

o4 (LF) = (0% F) L, L F and ok (110) = F(036) LD, prg

for 0 € G. In particular, by considering the case where Y = SpecC, we have a
canonical right G-module structure of H°(X, F) by the G-linearization ¢*. More-
over, the canonical bijection

HOI’DOY (gv f*]:) = HOIH(QX (f*gvf)

on Oy-module homomorphisms and O x-module homomorphisms given by the ad-
joint pair (f*, f«) of functors induces a bijection

Homo, (G, f. F)¢ ~ Home, (f*G, F)®

on G-linear Oy -module homomorphisms and G-linear O x-module homomorphisms.
Since the isomorphism c¢: f*Oy — Ox in Remark 2.8 is G-linear, the canonical
morphism Oy — f.Ox is also G-linear.

Remark 2.11. For X and G in Definition 2.7 let Z be a G-invariant closed analytic
subspace of X. Then the canonical surjection Ox — Oy is G-linear. Thus, the
ideal sheaf 77 of Z is also G-linearized as the kernel of Ox — O.

Lemma 2.12. Let Y be a complex analytic space with a left action of a finite group
G of order n and let w: Y — Y := G\Y be the quotient morphism. Let £ be a
locally free sheaf of finite rank on'Y admitting a G-linearization. Then:

(1) The G-linearization defines a left action of G on the projective bundle X =
Py (€) so that the structure morphism X —'Y is G-equivariant.

(2) Assume that G acts on'Y freely. Then & ~ w*E for a locally free sheaf € on
Y. In particular, the quotient morphism X — G\X by the action in () is
isomorphic to the base change of w by the structure morphism IPV(E) —Y.

(3) If € is an invertible sheaf and if H(Y,E) # 0, then HO(Y,E%™)% #£ 0.

(4) If € is an invertible sheaf, then there is an invertible sheaf M on'Y such
that w* M ~ E®™ as a G-linearized Oy -module, where we regard M as a
Oy -module with a trivial right action of G.

Proof. Let m: X = Py (£) — Y be the structure morphism and let {¢,: 03& —
E}sec be the G-linearization of £. For o € G, let m,: X, — Y be the base change
of mby oy:Y — Y and let p,: X, — X be the induced morphism, which is just
the base change of oy by 7. For the isomorphism e, := Py (g,): X = Py (€) —
Py (0}.&) over T associated with €,, we have a commutative diagram

X “ox, o x

\ im l,r

T

y sy,

We set 0x = p, 0 e, as an automorphism of X. Then w o ox = oy o, and

G 30— ox € Aut(X) is a group homomorphism, since {¢,} is a G-linearization
of £&. Thus, G acts on X by ¢ — ox and 7 is G-equivariant. This shows ().
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We shall show (2l), where G acts on Y freely. Then the quotient morphism
w:Y =Y =G\Y is a finite Galois étale cover with Galois group G, since we have
an isomorphism G' x Y ~ Y x3 Y by (0,y) = (0y(y),y). The direct image w.&
is a right G-module by Remark [ZI0. We set £ to be the G-invariant part of w@,&.
It suffices to show that £ ~ w*E. In fact, by the isomorphism, we have a cartesian
diagram

.| |

y =2 Y,
in which the upper horizontal arrow ¢ is isomorphic to the quotient morphism
X — G\X by the action of G in ().

In order to prove: £ ~ w*E, by localizing Y, we may assume that ¥ = G x Y
over Y. Then the restriction of £ to the open and closed subset {7} x Y for 7 € G
is identified with a locally free sheaf &) on Y. The isomorphism &,: 03.€ — €
corresponds to a collection {€,|;: Eor) = E(7) }req of isomorphisms on Y and

€J’¢7|T = 60‘\7’ © 50/|JT

as an isomorphism &£/pry — &) for any o, o', and 7 € G, since {e,} is a G-
linearization. The right G-module structure of

@€ = HTGG S(T)

is given by {e,|,} for ¢ € G. Thus, we have an isomorphism £~ E(ry for any 7,
and hence, £ ~ w*€, and (2) has been proved.

Finally, we shall prove ([B]) and {), where € is an invertible sheaf. For a non-zero
element ¢ of the right G-module H°(Y, £), the product

(I-11) e=IL_.¢

is regarded as a non-zero G-invariant element of H°(Y,£®"). This shows (]). Let
M be the G-invariant part (ww,(£9"))¢ of w,(£®™). For {@), it is enough to prove
that M is an invertible sheaf and that the canonical composite homomorphism

O: oM — T (@, (EP™)) — £O"

is an isomorphism. Let us take an arbitrary point @ € G\Y and let U be a
Stein open neighborhood of @. Then U = @ 'U is a G-invariant Stein open
neighborhood of w™1Q, and there is a section ¢ € H°(U,€&) such that w1Q C
{€ # 0}. Let £ be the product ([I-IT)) over U. Then £ is a G-invariant element
of HO(U,E%™), the G-invariant open subset V = {¢ # 0} C U contains w 1Q,
and £|y: Oy — 97|y is an isomorphism. Then ¢ is regarded as an element of
HY(U,M), V =w 'V for the open subset V = w(V) C U, and &|7: Oy — M|y
is an isomorphism. Since Q € V, M is invertible at @, and ® is an isomorphism
along w~'Q. Thus, (@) has been proved, and we are done. (Il

Remark. When G acts on'Y freely, the G-linearization {e, } corresponds to a descent

datum of &€ relative to @w: Y — Y and one can find & satisfying & ~ @w*€ as
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a consequence of the descent theory (cf. [II, Exp. VIII, Cor. 1.3]) in the case of
schemes.

Lemma 2.13. Let Y be a compact variety with a left action of a finite group G
of order n and let f: Y — Y be a G-equivariant endomorphism. Let L be a G-
linearized invertible sheaf on Y with an isomorphism f*L ~ L™ of Oy -modules
for an integer m coprime to n. Then there exists an isomorphism (f*)*L ~ £om*
of G-linearized Oy -modules for a positive integer k > 0.

Proof. By Remarks and .10, we can consider NV := f*£L ® L& ™ as a G-
linearized Oy-module. Since N' ~ Oy as an Oy-module, the G-linearization of
N is determined by the right action of G on H°(Y,N') ~ C, which corresponds
to a group homomorphism y: G — C*. Since C ~ H°(X,N) ~ H°(X, f*N\), the
G-linearization of f*A\ is also determined by . By induction, we have a canonical

isomorphism
k—1—1

k=1
R, FrNe = (L Lo
of G-linearized Oy-modules for any k£ > 0. Hence, the G-linearization of the right
hand side is determined by x!*) for I(k) = 1+m+---+m”*~1. Since ged(m,n) = 1,
m® =1 mod n for some a > 0, and

an—1 . n—1 .
_ 1 __ a) —
l(an) = E i M= l(a) g MY = 0 mod n.
Thus, it is enough to set k = an. O

Lemma 2.14. Let m7: X — T be a P'-bundle over a compact variety T with a
section I'. Let G be a finite group acting on X and T such that 7 is G-equivariant
and that T is G-invariant. If T'NT = 0 for another section T of w, then ©NT =0
for a G-invariant section © of .

Proof. Note that the section I' is a Cartier divisor on X. We can regard 0 —
Ox(-T') - Ox — Or — 0 as an exact sequence of G-linearized Ox-modules (cf.
Remark 2T1]). Hence, Ox(T") has an induced G-linearization (cf. Remark 29) and
the defining equation of T" corresponding to Ox (—TI") — Ox is a G-invariant section
of the right G-module H(X,Ox (T')) (cf. Remark BI0). The invertible sheaves

L:=m.(0x(-T)®0r) and M :=7"L R Ox(T)
on T and X, respectively, have also induced G-linearizations (cf. Remarks and
2I0). Then we have an isomorphism M ® Or ~ Or of G-linearized Or-modules.
Note that IV € |[M|. In fact, Ox(I'") ¥~ M @ 7*N for an invertible sheaf N on T,
but we have N' ~ Or by Ox(I'") ® Or ~ Or. Now, we have an exact sequence
(11-12) 0—>7T*£—>M—>M®OFZOF—>0
of G-linearized O x-modules and an exact sequence
(II-13) 0—=L—=>m7M—=0r—0
of G-linearized Op-modules (cf. Remarks[Z9land 2T0). The existence of I implies
that ([I=13)) is split as an exact sequence of Op-modules. Thus,

0— HYT,L) — H'(X,M) — H°(T,Or) = 0
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is an exact sequence of G-modules. Since G is finite, H*(G, H°(T, L)) = 0 and
we have a G-invariant element 6 of H°(X, M) which goes to 1 € H°(T',Or). In
particular, ([I-13)) is also split as an exact sequence of G-linearized Ox-modules.
Then the effective divisor © := div(f) € |M] is G-invariant, and © NT' = (). This
O is a desired section of . O

Proposition 2.15. Let 7: X — T be a P'-bundle over a compact normal variety T,
and let ©1 and Oy be mutually disjoint sections of w. Let G be a finite group acting
on X and T such that 7w is G-equivariant and that ©1 and ©2 are G-invariant.
Then:
(1) There is a G-linearized invertible sheaf L on T such that Ox (01 — O3) ~
7L as a G-linearized O x -module.
Let h: T — T be a G-equivariant surjective endomorphism with an isomorphism
h*L ~ L of G-linearized Op-modules for an integer m > 1. Then:
(2) There exists a G-equivariant non-isomorphic surjective endomorphism f of
X such that
e deg f =mdegh, mo f=hom,
o [*O1 =mOq, f*Oy = mO,, Sf =7*S, + 01 + O,, and
o I' # f=1f(T) for any prime divisor T' dominating T except ©1 and Oa.
(3) Assume that m > 2 and that HO(T, L®7)% # 0 for some 1 < j < m. Then
there exists a G-equivariant non-isomorphic surjective endomorphism f of
X such that
e deg f =mdegh, mo f=hom,
o f*Oy =mOsy, Sy =75y + O2, and
o ' £ f=Lf(T) for any prime divisor T' dominating T except ©o.
Here, Sy, and Sy stand for the characteristic completely invariant divisors of h and
f, respectively (cf. [24, Def. 2.16]).

Proof. Assertion (Il is shown by an argument in the proof of Lemma 214l For (2]
and (3)), let us consider a homomorphism

Ui Op @ WL Sym™(Or @ L) = @) £

of Op-modules defined by the following conditions:

(i) The induced homomorphism £;: Or — £%7 from the factor Or is G-linear
for any 0 < j < m, and ¢; is the identity morphism O — Orp.
(i) The induced homomorphism h*L — L£&J from the factor h*L is zero for
any 0 < j <m, and h*L — L®™ is a G-linear isomorphism.
Note that ¢; corresponds to a G-invariant section of H%(T, £%7). The homomor-
phism W is G-linear by (i) and (), since the diagram

73 (Or ® h*L) —— o5 Sym™(Op & L) —=— @y oy L5
cGTGBEUJ( J{®E§j

Or@h'L —— Sym™Or&fl) —S— @r,Ls
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is commutative for any o € G, where {e,: 0%L — L},c¢ is the G-linearization of
L, {cor: 0501 = Or}sec is the canonical G-linearization of Or (cf. Remark 2.8),
and ~ stands for canonical isomorphisms. By adjunction for (7*,7.), ¥ corre-
sponds to a surjective homomorphism

U: (O ® h*L) — Ox(mOy)

of Ox-modules, since 71,.0x(01) =~ Or @& L and since homomorphisms O — Or
and h*L — LZ™ in (@) and (), respectively, are surjective. Let m,: X, — T be
the base change of 7: X — T by h. Then we have a morphism

P X = Px(OT EBE) — X ~ ]P)T(OTEB}L*E)

over T of degree m associated with ¥, and an isomorphism ¢*(piOx(0;)) ~
Ox(m®©;y) for the first projection p1: X, = X xpp, T — X. In particular, we
have a commutative diagram

P p1

X —X) ——
\\ lﬂ'h lﬂ'
h
T—— T
The morphism p; is G-equivariant, since 7 and h are so, and the morphism  is also
G-equivariant, since ¥ is G-linear. Hence, f :=p; o¢: X — X is a G-equivariant
endomorphism, and we have wo f = hox and deg f = mdegh > 1.

For other assertions, we want to determine prime divisors I' on X such that
I'=f~1f(T) and 7(I') = T" when one of the following conditions for ¢; is satisfied:
(A) ¢; =0forany 1 < j <m;
(B) m > 2 and ¢; # 0 for some 1 < j < m.
Note that, for a point ¢t € T', the morphism

Yy = l/}|7r*1(t): Pl = Wﬁl(t) — Pl = ng(t) ~ ﬂfl(h(t))
of fibers over t is expressed as
(eiy) = 4D G(0x" Iy g

for a suitable homogeneous coordinate (x : y) by ({l) and (f), where ©1 N7 ~1(t) =
{(0:1)} and @3 N7 1(t) = {(1: 0)}. Hence, f*Oy = 1*(p;O3) = mO,. By the
same reason, f*0; = m©; when () holds. Suppose that ;' (¢’ : 1) = {(¢ : 1)}
for some ¢, ¢ € C. Then

™+ ijl 0(t)x™ 9 = ¢ + (x — q)™ € Clx].
In particular, for any 1 < j <m —1,
(114 50 = 17 (7)o
J
If (&) holds, then ¢ = ¢’ = 0, and it implies that I # f~1 f(I) for any prime divisor
I' dominating 7" except ©1 and ©,. When (B) holds, by replacing ¢; by constant
multiples, we may assume that ([I=I4) does not hold for any ¢q € C for some ¢ € T..
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In fact, we may assume that ¢;(t) # 0 for some 1 < j < m, and ([I=I4) implies that
g # 0 and ¢;(t) # 0 for any 1 < j < m. Hence, if we replace ¢; with ¢;¢; for some
¢; € {0,1}, then ([I=14) does not hold for any g, since m > 2. Under the additional
assumption for (B)), T' # f~1f(T") for any prime divisor I' dominating T" except Os.

For the assertion (2, it is enough to take ¢; to satisfy (Al), and for the assertion
@), it is enough to take ¢; to satisfy (B) with the additional assumption. In fact,
in this situation, we have verified required conditions for f in (@) and (@8] except
conditions on characteristic completely invariant divisors Sy and S;. Note that
Sy = m*Sp, + D for the union D of prime divisors I' on X such that 7(I') = T and
that (f¥)*T" = bl for some k > 1 and b > 2 (cf. [24], Def. 2.16, Lem. 2.19(2)]). Then
D =01 + 63 in case @), and D = O3 in case [@B)). Thus, we are done. ]

The following is a variant of Proposition 2. 13l

Proposition 2.16. Let m: X — T be a P'-bundle over a compact normal variety
T with mutually disjoint sections ©1 and O5. Let G be a finite group acting on X
and T such that 7 is G-equivariant, ©1 + Oq is G-invariant, and o0(©1) = Oy for
some o € G. Let Gy be the subgroup {c € G | 0(©1) = O1}. Then:
(1) There is a Gop-linearized invertible sheaf L on T with an isomorphism
Ox (01 — 03) ~7*L as a Go-linearized Ox -module.
Let h: T — T be a G-equivariant surjective endomorphism with an isomorphism
h*L ~ L% of Go-linearized Or-modules for an integer m > 1. Then:
(2) there exists a G-equivariant surjective endomorphism f of X such that
e deg f =mdegh, mo f=hom,
o f*O1 =m0y, f*O; =mOy, Sy = 7Sy + 01 4+ O, and
o ' £ f=Lf(T) for any prime divisor T' dominating T except ©1 and ©,.

For the proof, we use:

Notation 2.17. Let ¢: £L — M be an isomorphism of invertible sheaves on a
complex analytic space X. For a positive integer m, ¢®™ denotes the induced
isomorphism £&™ — M®™ as usual. Let ¢©®° denote the identity morphism Ox —
Ox. For a negative integer m, let ©®™: L& — M®™ denote the inverse of the
dual homomorphism

(7)Y M® = Homo (MPT",0x) — LO™ = Home, (LE™, Ox).

. . . o, ’
Remark. For integers m and m/, the isomorphism (¢®™)®™ is equal to @®™™
under canonical isomorphisms (£&™)®™ ~ L&mmM’ gnd (MEO™)mM" ~ pqEmm’

Proof of Proposition 216l Assertion () is just Proposition XI5 for the action
of Gy. For i =1, 2, let {a(f)}gego be the Gy-linearization of Ox(©;). Then, by
Remark BT we have a commutative diagram

O‘;(Ox<—@i> —_— O'T;(OX

o | [eos

Ox(—e)i) —_— OX
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for any ¢ € Go, where ¢,, is the isomorphism associated with the morphism
(

ox: X — X of ringed spaces (cf. Remark [2§]), and where (5;))‘2’_1 is the isomor-
phism in Notation ZT7 For any 7 € G \ Gy, we can define isomorphisms
Mma2(7): 7°0x(01) = Ox(02) and 121(7): 77 Ox(02) = Ox(01)

by commutative diagrams

T)*(Ox(—@l) — T)*(OX T;}Ox(—eg) —_— T)*(OX
7712(T)®71l lCTX 7121(T)®71l lCTX
Ox(-02) —— Oy, Ox(-©,) —— Ox.

Then we can identify n13(oc70’) with the composite

olX (1% 6(1)
(070" )k Ox (01) = o (T3 (05 Ox (01))) ZEE2, o (72, 0 (01))

O
)\ 57 0x (02) “7 Ox(Os)

/%
oxma(T

1)

ol

for any o, o’ € Gy, and identify ¢, with the composite

(1) Ox (O1) = T2 (15 Ox (01)) 120, 110 (9,) 22 0 (0))

for any 7 € G\ Gy. We have similar identifications for 79;(7). Since £ =
m.Ox (01 — O3), an isomorphism

Ne: T L — £o1
is induced by 712(7) ® 721 (7)1, Let {e,: 05L — L},eq, be the Gp-linearization
of L. Then 1y, is identified with the composite

Iy 1% ®—1

(10" V5L =~ o (17 (05L)) o7 (i), o (ThL) oz ), o L® ! oty et
for any o, o/ € Gy, and &,,+ is identified with the composite
1% ®—1
(r7V5L = 75 (77L) RGN Lt .z
for any 7" € G\ Gy. For any 7 € G\ Gy, the automorphism 7x of X =Pr(Or & L)
is induced from the isomorphism
e ON
75 (0r ® L) 2 0p @ L8 ~ L8 @0, (L@ OF),

since it is identified with the isomorphism

(M O0x(01)) = 7. (75 O0x(61)) M m:Ox (02) ~ L1 ®o, ™ O0x(01).

Let o: h*L — L®™ be an isomorphism of Gy-linearized Op-modules. Then, for
any 7 € G\ Gy, there is a non-zero constant ¢(7) € C such that the diagram

h(ThL) === T (h*L) — > 75LOm

h*"]‘rl/ \Lr]?m

b L Lomm

c(‘r)o¢®_1
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is commutative. Since « is Gy-linear, we have c¢(orc’) = ¢(7) for any o, o’ € G,
and ¢(7) is independent of the choice of 7 € G\ Go. Hence, by replacing a with a
constant multiple, we may assume that ¢(7) = 1.

Let U: Or @ h*L — Sym™(Or @ L) be the Gy-linear homomorphism defined
in the proof of Proposition for the action of Gg, in which ¢; = 0 for any
1 < j < m: this is given by the identity morphism O — O and the Gy-linear
isomorphism «: h*L — L&™ above. Then ¥ corresponds to a homomorphism
7*(Or ® h*L) — Ox(mO;) and we have an associated morphism

P X = T(OT @ﬁ) — X = ]P)T(OT D h*ﬁ)

over T', where X}, — T is the base change of m: X — T by h. For the first projection
p1: Xp X xpp T — X, we set f := p; o1 as an endomorphism of X. Then %
and f are Gg-equivariant, and f satisfies the following conditions by the proof of
Proposition

e deg f =mdegh, mof=fom,
o f*O; =m0y, f*Oy =mO,y, Sy = 7*S), + 01 + O3, and
o I' # f~1#(T) for any prime divisor I' dominating T except ©; and Os.

Thus, it suffices to prove that i is G-equivariant. Let us consider a commutative
diagram

W LE @ (O @ hL) 2 2% oM @ Sym™(Or & L)

N E
Or @ h*L®! v, Sym™(Or & L&),

where ~! are canonical isomorphisms induced by interchange isomorphisms
WL Ve Or ~Or @h* L% and L% '@ Or~O0ra Lo

Then the bottom homomorphism ¥’ is a Gg-linear, and the diagram
(0 &R L)~ Sym™(Or & L) —S @Iy LS

erp @h*(nf)l l@ n®3

Or & L8~ —Yy Sym™(Op @ LE71) —= @, LO

is commutative for any 7 € G'\ Go, where ~* stands for canonical isomorphisms.
The commutativity of the diagram for 7 implies that 7x, 0¥ =1 o 7x. Thus, ¢ is
G-equivariant, and we are done. ([l

Corollary 2.18. Let X = Pp(Or & Or(e)) be the Hirzebruch surface of degree

e > 0, where T = P, and let m: X — T be the P -bundle structure. Let G be

a finite group acting on X. Then G acts on T so that m is G-equivariant, and

the negative section © of w is G-invariant. Moreover, there exist G-equivariant

non-isomorphic surjective endomorphisms f: X — X and h: T — T such that

deg f = (degh)?, mo f = hom, and f*© = (degh)©. Furthermore, one can require
(1) S,=0
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for the endomorphism h, and require each of the following conditions for f:

(2) there is another G-invariant section ©' such that f*©’ = (degh)®’, Sy =
TS+ O+ 0, and T # f~1f(') for any prime divisor T' dominating T
except © and ©';

(3) Sy =7*Sp, +0, and T # f=1f(T) for any prime divisor I' dominating T
except O.

Proof. The negative section © is G-invariant, since it is a unique negative curve
on X. On the other hand, 7 is a unique surjective morphism onto a curve up to
isomorphism. Thus, G acts on T so that 7 is G-equivariant. By Lemma 2.14], there
is a G-invariant section ©’ of 7w such that ©N0’ = ). Then Ox (0’ —0) ~ 7*Or(e),
and Or(e) has an induced G-linearization. By Lemma[22] there is a G-equivariant
non-isomorphic surjective endomorphism h: 7" — T such that m := deg h is coprime
to the order of G. By replacing h with a power h¥ and by Lemma I3 we may
assume that h*O(e) ~ O(e)®™ as a G-linearized Op-module. Then we have a
G-equivariant non-isomorphic surjective endomorphism f of X such that deg f =
mdegh =m? mof = hom, and f*© = mO by Proposition 215l Moreover, we can
require the condition () for f by Proposition ZI5I[2]). By replacing h with a power
h¥ and by Lemma ZI2[]), we may assume that m > 2 and H(T,O0(e)®))% # 0
for some 1 < j < m. Then we can require ([B)) for f by Proposition ZI5(3).

It remains to show ({Il) by replacing h. Note that S, = Sy for any & > 0 and
that the equality Kp + S), = h*(Kp + Sp) + Ay, holds for an effective divisor Ap
(cf. [24, Lem. 2.17]). Then deg(Kr + Si) <0, i.e., deg Sy, < 2. If deg Sj, = 2, then
h is isomorphic to the standard cyclic cover ¢,,: (x:y) — (x™ : y™) for m = degh
for a homogeneous coordinate (x : y) of P = T. Let h: T — T be the induced
endomorphism of the quotient curve T = G\T, where 9 o h = ho ¥ for the quotient
morphism 9: T — T. Then S;, = 9715, by [24, Lem. 2.19]. Moreover, deg S; < 2
by the same reason above. Let G be the image of G in Aut(T), which is the Galois
group of ¥. Note that if G fixes a point in 7', then it is a cyclic group, and ¥ is
isomorphic to ¢4 for d = degd. If deg S;, = 2, then ¥~!(P) consists of one point for
any P € Sy, and hence, G is a cyclic group. If deg S; = 1, then deg S, = 2, and G
is a dihedral group by the well-known classification of finite subgroups of Aut(P!).
If S; =0, then S, = 0 and we have nothing to prove. Consequently, (Il holds for
the original h when G is not a cyclic group nor a dihedral group.

For an integer n > 2 and for ¢ := exp(27v/—1/n), let C,, be the cyclic subgroup
of Aut(T) generated by the automorphism (x : y) — ((x : y) for a homogeneous
coordinate (x : y) of PL. Let D,, be the subgroup of Aut(T) generated by C,, and
the involution (x : y) — (y : x). We may assume that G = C,, or D,,. Let us take
a complex number ¢ ¢ {0,1, —1} and a positive integer r such that rn > 2 and rn
is divisible by the order of G. Then we can define a G-equivariant endomorphism
ht of T by

RY: (x:y) = (x(x™ —cy™) : y(ex™ — y™)).

Here, degh! = rn + 1 is coprime to the order of G. We can show that hf=!(P)
consists of at least two points for any P € P!, In fact, if hT~1(P) = {Q} for some
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QeT,then P=(a:1)and Q = (b: 1) for some a, b € C\ {0} with ¢b"™ # 1, and

(X o by)rn+1 _ X(Xrn o Cyrn) o ay(cxm o yrn).

By comparing coefficients of the monomial x™~1y?, we have ( b? = 0, since

rn > 2: This contradicts b # 0. Note that a point P € T is contained in S}, if and
only if (h')~Y(P) = {P} for some | > 0 (cf. [24, Def. 2.16]). Therefore, S = 0.
For (), it is enough to take h as a suitable power of h' as in the argument above.
Thus, we are done. [l

rn2+1)

Ezample 2.19. As an application of Corollary 218 we shall construct some special
endomorphisms of the quotient surface X = G\ X of the Hirzebruch surface X =
Pp1 (O @ O(2)) by a suitable action of a non-commutative polyhedral group G on
X. We consider G as a finite subgroup of PGL(2,C) = Aut(P') and set G to be the
inverse image by SL(2,C) — PGL(2,C). By a homogeneous coordinate (x : y : z)
of P2, we consider the following action of the binary polyhedral group G on P2

a b

op2(x:y:2):=(ax+by:cx+dy: z), where o= (c d) e G c SL(2,C).

We set U := {z # 0} ~ C2. It is well known that G acts on U\ {(0: 0: 1)} freely,
and the image of (0 : 0 : 1) by the quotient morphism U — G\U is a rational
double point of type D,, (n > 3), Eg, E7, or Es, depending on G. The kernel of
G — G is generated by the minus —I5 of the unit matrix I € SL(2,C). The
quotient variety of P? by the kernel is just the weighted projective space P(1,1,2),
and the quotient morphism is given by (x : y : z) — (x : y : z%) for a weighted
homogeneous coordinate (x : y : w) of degree (1,1,2). Thus, we have an induced
action of G on P(1,1,2), which lifts to an action on X by the minimal resolution

w: X — P(1,1,2) of singularities. Here, the following hold:

(1) The P-bundle structure 7: X — T = P! is G-equivariant, where the action
of Gon T is given by (x:y) — (ax+ by : cx + dy) for o € G above.
(2) The inverse image © of {w = 0} C P(1, 1,2) by p and the unique (—2)-curve
I' on X are mutually disjoint G-invariant sections of .
(3) The action of G on X \ (I'U ©) is fixed point free.
We set X := G\X and T := G\T as quotient varieties and set 7: X — T to be
the morphism induced by 7. Then we have a commutative diagram

X 3 X

TFJ, T

T —— T,
where £ and 7 are quotient morphisms. Since degé = degT = #G, the normal-
ization of X x7 T is isomorphic to X. In particular, 7 is a P!-fibration. The
morphism ¢ is étale in codimension 1 by (B]), since the actions of G on I' and ©
of m are faithful. It is well known that 7 has just three branched points P;, Ps,
P; €T. For 1 < i< 3, let m; be the ramification index of 7 at a point over P,
ie., 7%(P;) = m;7~}(P;). Since ¢ is étale in codimension 1, the P!-fibration 7 is
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smooth over T \ {Py, P, P3}, and 7*(P;) = m;F; for a prime divisor F; ~ P! for
any 1 < i < 3 (cf. 24, Lem. 4.2]). As a consequence, X is not a toric surface. In
fact, if it is toric, then 7 is a toric morphism, since p(X) = 2, but now we have
at least three non-smooth fibers of 7. The images I' = £(I') and © = £(O) are
mutually disjoint sections of 7, I' = ¢*T and © = £*0, and —(Ks + I + ©) is nef,
since
—2F ~Kx+T+0=¢(Kx+T+0)

for a fiber F of .

In this situation, by Corollary 218 we have two G-equivariant non-isomorphic
surjective endomorphisms f and g of X such that Sy =I'+ © and S; =I'. There-
fore, f and g, respectively, induce non-isomorphic surjective endomorphisms f and
g of X such that S; =T+0 and S; =T (cf. [24, Lem. 2.19(3)]). Here, —(Kx+Sf)
is nef and not numerically trivial, and — (K5 +53) is nef and big. Hence, (X, Sy, f)
and (X, S, g) are not treated in [24, Thm. A] nor in Section E.2] below.

Remark. If G is a dihedral group D,, with (my,ma, m3) = (2,2,n), then (X,T +
O + F3) is a half-toric surface (cf. [22, §7]). In fact, we have

0~ Kx+T+0+7 Q)+ 7 Q') =& (K5 +T + 6+ F3)

for 771(P3) = {Q,Q'}, and it implies that (X,T + © + F3) is log-canonical (cf. [23]
Prop. 2.12(1)]) and that K+T+©+F5 & 0. Since p(X) = 2 and since T+ F3+6
is a linear chain of rational curves, the pair (X,T 4+ © + F3) is a half-toric surface
by [22, Thm. 1.3].

2.3. Equivariant endomorphisms of P!-bundles and projective cones over
elliptic curves. Any P!'-bundle over an elliptic curve admits a non-isomorphic
surjective endomorphism (cf. [20] Prop. 5]). We shall prove the following equivariant
version:

Theorem 2.20. Let X be a P'-bundle over an elliptic curve and let G be a fi-
nite group acting on X. Then there is a G-equivariant non-isomorphic surjective
endomorphism of X. As a consequence, the quotient surface G\X admits a non-
isomorphic surjective endomorphism.

The P!'-bundle X is associated with a locally free sheaf £ of rank 2 on the
elliptic curve. Here, £ is decomposable or semi-stable (cf. Fact 2223 below). For
constructing a G-equivariant endomorphism of X, Proposition 2225 below treats the
case where £ is an indecomposable semi-stable sheaf of degree 0, and Corollary
below treats some cases where £ is decomposable. The proof of Corollary
uses Propositions 2I0I[2) and 2TI6I@]) in Section and Lemma below on
equivariant endomorphisms of an elliptic curve. We have also the following by
applying Theorem

Theorem 2.21. Let X be a projective cone over an elliptic curve in the sense
of [24, Def. 1.16] and let G be a finite group acting on X. Then there is a G-
equivariant non-isomorphic surjective endomorphism of X. As a consequence, the
quotient surface G\X admits a non-isomorphic surjective endomorphism. If G
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preserves a cross section C of X, then C is completely invariant under some G-
equivariant non-isomorphic surjective endomorphism of X.

Proofs of Theorems and [Z2T] are given at the end of Section 23]

Remark 2.22. In the situation of Theorem 2.20] the action of G on X descends to
T so that 7 is G-equivariant, since 7 is the Albanese morphism.

We begin with recalling the following fact on P'-bundles over an elliptic curve:

Fact 2.23. Let 7: X — T be a Pl-bundle over an elliptic curve T. Then X =~ Pr(€)
for a locally free sheaf £, and we may assume that £ satisfies one of the following
conditions (cf. [], [12] V, Thm. 2.15]):

(A) There is an isomorphism £ ~ O @ L for an invertible sheaf L.

(B) There is a non-split exact sequence 0 - Op — & — Op — 0.

(C) There is a non-split exact sequence 0 — Op — & — A — 0 for an invertible
sheaf A of degree 1.

We shall explain known properties of X and £ separately in each case of ([A)—(C).

(AD: Let I'; and T's be sections of 7 corresponding to projections Or®L — L and
Or @ L — Or, respectively. Then T1NTy =0, Kx +T1+ Ty ~0, Ox(T'; — ') ~
7*L, and T2 = —T'3 = deg L. Here, £ is not stable, and it is semi-stable (resp.
unstable) if and only if deg £ = 0 (resp. # 0). Moreover:

o If deg L > 0, then I'y is a unique negative curve on X, and any prime
divisor on X dominating T except I's has positive self-intersection number.

e If deg L = 0, then X contains no negative curve.

o If £ is a torsion invertible sheaf, i.e., a torsion element of Pic(T'), then T'y,
Ty, and —K x are semi-ample with x(—Kx, X) = k(I'1, X) = x(['2, X) = 1.

e If deg £ = 0 and if £ is not a torsion invertible sheaf, then any prime divisor
on X dominating T" except I'1 and I's has positive self-intersection number,
and K(—Kx,X) = K(F17X) = K(FQ,X) =0.

(B): The locally free sheaf £ in this case is said to be normalized and indecom-
posable of degree 0 (cf. [12, V, Not. 2.8.1]). The section I' of 7 corresponding to the
surjection &€ — O7 is a unique section of self-intersection number 0, and we have
—Kx ~ 2T and k(—Kx,X) = (I, X) = 0. Moreover, any prime divisor © on X
dominating T has positive self-intersection number if © # I'. In fact, © ~ d'+7*L
for a divisor L on T and for an integer d > 0, where ©2 = 2d deg L and O = deg L.
If ©2 = 0, then ©NT = @ and we have L ~ 0 by (7*L)|r ~ O|r = 0; thus, © € |dT
contradicting x(I', X) = 0. The automorphism group Autp(€) of € over T is iso-
morphic to C* x C (cf. Remark below).

(@): The P'-bundle X = Pr(&) is essentially constructed as p_1 in [3, Thm. 6.1],
or as A_; in the proof of [30, Thm. 5] (cf. [27] p. 100]). Furthermore, X is isomorphic
to the symmetric product Sym? (T) in which the P!-bundle structure 7: X — T is
induced by the addition morphism 7' x T' 5 (z,y) — x +y € T with respect to a
group structure of T' (cf. [, p. 451, §3]). In particular, there is an elliptic fibration
: X — P! such that Ox (—2Kx) ~ ¢*Op1 (1) and that 1 has three singular fibers
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of type 2Iy in Kodaira’s notation (cf. [15]). Moreover, X xp T(2) ~ P' x T{) over
T2y for the multiplication map p9): T2y =T — T by 2.

Remark 2.24. For a normalized and indecomposable locally free sheaf £ of rank
2 and degree 0 on an elliptic curve T, let i: Op — & and p: &€ — Op be the
injection and the surjection in the exact sequence in Fact 223|[B]). For v € C, we
set p(v) := idg +v(i o p) as an automorphism of £. Then p: v — p(v) is regarded
as a group homomorphism C — Autr(E), i.e., p(v1 + va) = p(v1) o p(ve) for any
vy, v € C. Moreover, we have a group isomorphism C* x C — Autr(€) by
(u,v) — up(v). This is shown by the indecomposability of £. In fact, for any
automorphism ® € Auty(€), there is a constant u € C* such that the diagram

0 Or —— & 2 or 0
u idoTJ( q{ lu ido,
0 Or ——— & -2 o 0

of exact sequences is commutative. The automorphism Pr(p(v)): Pr(E) — Pr(E)
associated with p(v) is the identity if and only if v = 0.

Proposition 2.25. Let 7: X — T be a P'-bundle over an elliptic curve T associ-
ated with an indecomposable locally free sheaf of degree 0. Assume that X admits
a left action of a finite group G. Then

(1) the quotient morphism X — G\X s étale in codimension 1, and
(2) X admits a G-equivariant non-isomorphic surjective étale endomorphism.

Proof. By Remark 222] 7 is G-equivariant for an action of G on T. For the action
or: T — T of o € G, the pullback homomorphism o%: H(T,Or) — H' (T, O7) is
the multiplication map by a constant o, € C*. The correspondence o — a, gives
rise to a group homomorphism G — C*. In the discussion below, we regard C as a
right G-module by setting (¢ = o !¢ for ¢ € C.

We may assume that X = Pr(€) for a normalized indecomposable locally free
sheaf £ of rank 2 and degree 0 on T (cf. Fact Z23I[B))). We shall construct a G-
linearization of £ which induces the original action of G on X. As in the proof of
Lemma2I2 for o € G, let 7, : X, — T be the base change of * by op: T — T and
let p,: X, — X be the base change of o7 by m: X — T. Then the automorphism
ox is expressed as p, o e, for an isomorphism e,: X = Pp(€) —» X, = Pp(ckf)
over T', and we have a commutative diagram:

Since o7.€ is also normalized and indecomposable of degree 0, the isomorphism e,
is induced by an isomorphism ®@,: o5& — & of Op-modules, ie., e, = Pr(P,).
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Multiplying by a non-zero constant if necessary, we can normalize ®, so that the
diagram
or(?)

0 —— 0207 orE TP pr0n g

(I1-15) a;ICale @Ul: c,,Tl:

0 —— Op —- 8 & 24 0 — 0

of exact sequences of Opr-modules is commutative, where i and p are homomor-
phisms in Remark 224] ¢,,.: 05-Or — Or is the canonical isomorphism associated
with the morphism o7 of ringed spaces (cf. Remark 2.8]). By the normalization and
by Remark [2.24] for any o, 7 € G, we have

O, =D, 075(D,)

modulo the canonical isomorphism 75 (04&) =~ (o7)%E, since (07)x = ox o Tx and
since {cy,.} is a G-linearization of Op (cf. Remark [28). This means that {®, },cq
is a G-linearization of £. Thus, the original action of G on X is recovered by the
G-linearization as in Lemma 2T2/[]).

We shall show (d): Let G; be the kernel of the natural homomorphism G —
Aut(Hy(T,Z)) induced by (o7).: Hi(T,Z) — H.(T,Z) for o € G. Then G1\T is an
elliptic curve. By the existence of the G-linearization {®,} and by Lemma 2.T2|2]),
£ is isomorphic to the pullback of a locally free sheaf & by the étale quotient
morphism T — G1\T, and the quotient morphism X — G1\ X is also étale. It is
enough to prove that G1\X — G\X is étale in codimension 1. Since & is also
indecomposable of degree 0, we may assume that G — Aut(H,(T,Z)) is injective.
Then the homomorphism G — C* given by ¢ — «, is also injective, and hence, G
is a cyclic group. We may assume that G # {1}. Thus, the stabilizer Gp := {0 €
G | o(P) = P} is non-trivial at a point P € T. The action of ¢ € Gp on the fiber
7Y (P) ~ P! is expressed as (x:y) — (aq(x + B,y):y) for some 3, € C by the
description of p in Remark Hence, G acts on X freely outside finitely many
points. As a consequence, X — G\ X is étale in codimension 1. Thus, (1)) holds.

We shall show [@2): We have a G-equivariant non-isomorphic surjective étale
endomorphism h: T — T by Lemma applied to the case where A = T and
B is a point. The pullback endomorphism h*: HY(T,Or) — H(T,Or) is the
multiplication map by a constant A € C*. We can find an isomorphism ¥: h*& — &£
such that the diagram

0 hop 22Oy e MW g0, 4
cols ol
0 Or ‘ E 2y 0 — =0

of exact sequences is commutative for the canonical isomorphism ¢y : h*Or — Or.
Comparing with ([I=15)), for any o € G, we can find an element v, € C such that

(I1-16) Uoh*(®,) = p(vy) o Py o op(P)
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modulo the canonical isomorphism h*(c4€) =~ o4.(h*E), where p: C — Autr(E) is
the homomorphism in Remark Here, we note that
(1L17) 8, 0 7(p(v)) = play1v) 0 B,
and for any o € G and v € C. For, the equivalent equality
d, 00k(iop) =a, (iop)od,
is verified by ([I=15)), since ®, 0 0% (i) = ioa ¢y, and po ®, = ¢y, 0 0’n(p). Then
Vo h*(Pgr) = Woh™(Pr 077(Rs)) = (Vo h™(Dr)) 0 77(R7 (D))
= p(0r) 0 B, 0 T 0 h*B,) = plor) 0 B, 0 T (plu) 0 B, 0 (V)
= p(vy) 0 p(a; vy) 0 ®r 0 T5(Py 0 05(V)) = p(v, + a; tvg) 0 Byy 0 (o7)5(T)

for any o, 7 € G by ([I-16) and ([I-17). Therefore, vy = v, + a5 10y, and {vy }oea
is a 1-cocycle of the right G-module C mentioned above, where (7 = o, 1( for any
¢ € C. Since HY(G,C) = 0, by replacing ¥ with p(v) o ¥ for suitable v € C, we
may assume that v, = 0 for any o € G.

Let 7, : X, — T be the base change of w by h: T'— T and let pp: X, — X be
the base change of h by m. Then we have an isomorphism ¢, := P(¥): X — X}
over T with a commutative diagram:

X Pn X, Ph X

Sk

T — T

We set f:=ppot,: X — X as an étale endomorphism of X. Then wo f =hom,
deg f =degh, and foox = oxof for any o € G by ([I-16) with v, = 0. Therefore,
@) holds, and we are done. O

Lemma 2.26. Let T be an elliptic curve with an invertible sheaf L of degree § > 0.
Let G be a finite group acting on T from the left such that oL ~ L or oL ~
LOL for any o € G. Then there exists a G-equivariant non-isomorphic surjective
endomorphism h: T — T such that h*L ~ L®™ for an integer m > 1 and that m
and deg h are coprime to the order of G.

Proof. We fix a group structure of the elliptic curve T'. The holomorphic automor-
phism group Aut(T,0) preserving the origin 0 is nothing but the automorphism
group of the complex Lie group 7. This is a subgroup of C* ~ Aut(H"(T, O7)) for
the tangent sheaf O = (£21.)V. The action of o € G on T is given by

T3z or(z) =as(z+ws)

for certain o, € Aut(T,0) C C* and w, € T. Here, 0 — «, gives rise to a group
homomorphism a: G — Aut(T,0) and {w, } is a 1-cocycle with respect to the right
G-module structure of T defined by T' 3 z +— 27 = a; 'z, i.e., wyr = w, + w] for
o, 7 € G. Since HY(G,T) is a torsion module annihilated by the order k of G, by
replacing the origin 0, we may assume that kw, = 0.
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We define a point ¢ € T by £ ~ Or(L) for the divisor
L =(6—1)[0] + [q],
where [p] denotes the prime divisor corresponding to a point p € T. Let Gy C G

be the subgroup of elements o € G such that ;L ~ L. Then:

(1) if G # Gy, then 6 = deg L = 0;
(2) (1 - ap)q = asdw, for any o € Go;
(3) if § > 0 and if ¢ is not a torsion point, then the homomorphism G —
Aut(T,0) is trivial.
In fact, (d) is trivial, and () is deduced from

orL = (6 — Doz 0] + o7 q) = (6 — D[~w,] + [a;'q — w,]
= 8[0) + & ([~wy] — [0]) + [ag g — we] — [~wo]
~ 6[0] + 0([~wo] — [0]) + [az 'q] — [0]
~ 6[0] + [=0ws + a5 q] — 0] = (8 = 1)[0] + [~0w, +a; ' q].
If ay # 1 for some o € Gy, then () implies that ¢ is a torsion point as w, is so.
Thus, we have @) by () and ().
Let n be a positive integer such that n is divisible by the order of G and that

nqg = 0 in case ¢ is a torsion point. We can choose a point ¢ € T satisfying the
following conditions:

e If § > 0 and if ¢ is not a torsion point, then (n + 1)dc = ng.
e If § =0 or if ¢ is a torsion point, then ¢ = 0.

Note that (1 — a,)c =0 and nw, = 0 for any o € G by (@) and by the assumption
on wy. Let h: T — T be an étale endomorphism defined by
h(z) :=(n+1)(z—¢)
for 2 € T. Then degh = (n + 1)2, which is coprime to the order of G, and h is
G-equivariant by
or(h(z)) = hor(2)) = as((n+1)(z = ¢) + we) — (n+ 1)(a0(z + ws) — ¢)

= —na,wy + (n+1)(1 — ay)c = 0.
If § = 0, then L = [g] — [0], and h*L ~ (n + 1)L, since h*: Pic’(T) — Pic’(T) is
the multiplication map by n + 1. Assume that § > 0. Then G = Gy by (), and

(n+1)dc = nq by the choice of c. Moreover, h*L ~ (n+1)?L. In fact, L = 6[0]+ Lo
for Lo := [¢] — [0], and we have h*Lg ~ (n + 1)Lg and

h*[O]ZZBETnJﬁ*C] (n+ 1+, . (B+d-d)

~ (n+1)20] + (n+1) +Z,@em+1 [0])
~ (n+1)?0] + [<n+ 1%+ Zﬁe% 8] - [0}

~ (n+1)%[0] + [(n +1)*c] — [0],
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where 7,11 denotes the group of (n + 1)-torsion points of T'. Hence,
L =30h*[0] + h*Lo ~ (n+ 1)25[0] + [(n + 1)%6c] — [0] + (n + 1) Lo
— (n+1)2[0] + [n(n + 1)q] — [0] + (n + 1)Lo
~ (n+1)%(5[0] + Lo) = (n+ 1)L.
Thus, h satisfies the required condition. O

Corollary 2.27. Let m: X — T be a P'-bundle over an elliptic curve T with two
mutually disjoint sections ©1 and ©2. Let G be a finite group acting on X preserving

O1 + O©5. Then there is a G-equivariant non-isomorphic surjective endomorphism
f of X such that

(1) f_1@1 =0, f_leg = 0O,, Sf =01+ 06,, and

(2) f7LF(T) # T for any prime divisor T on X dominating T except ©1 and

@2.

If ©9 is a negative curve, then there is a G-equivariant non-isomorphic surjective
endomorphism g of X such that

(3) 971@2 = @2, Sg = @2, and

(4) g=tg(T) #T for any prime divisor T' on X dominating T except Oy.

Proof. By Remark 2221 7 is G-equivariant for an action of G on T. There is a
divisor L on T such that ©; ~ O 4+ 7*L. Interchanging ©; and O, if necessary,
we may assume that degL > 0. We set Gy := {0 € G | 0(0;1) = 01}, which is a
subgroup of G of index 1 or 2. For o € G, if 0 € Gy (resp. € Gy), then o*L ~
L (resp. 0*L ~ —L). By Lemma [220] there is a G-equivariant non-isomorphic
surjective endomorphism h: T'— T such that h*L ~ mL for some m > 1 and that
m and degh are coprime to the order of G. Note that S; = 0, since h is étale.
By replacing h with a power h* and by Lemma 213, we have an isomorphism
h*Or(L) ~ Or(mL) of G-linearized Or-modules. Hence, the existence of f follows
from Proposition I5[2) in case G = Gy, and from Proposition ZI6(2) in case
G # Gp. Assume that Oy is a negative section. Then G = Ggy, degL > 0,
m = degh, and H(T, Or(nL))% # 0 for the order n of G, by LemmaZI2(@). Thus,
by replacing h with a power, we may assume that m > 2 and H(T, Or(jL))¢ # 0
for some 1 < j < m. Hence, the existence of g follows from Proposition ZZT5([2). O

In Examples 2.28] and .29 below, we shall construct some normal projective
rational surfaces X with P'-fibrations X — T = P! and construct some non-
isomorphic surjective endomorphisms of X by applying Corollary 227

Example 2.28. Let D be an effective Q-divisor on the rational curve T' = P! of the

form l

D= ijl(l —m; )P
for distinct points Py, ..., P, and integers 2 < m1 < mg < ... < my. Assume
that deg D = 2. Then (mi,ma,...,my) is one of (2,2,2,2), (2,3,6), (2,4,4), and
(3,3,3), and there is a cyclic cover w: T'— T from an elliptic curve T' such that
w is étale over T\ Supp D and K7 = w* (K5 + D). In other words, w is an index
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1-cover with respect to Kz + D ~g 0 (cf. [23, Def. 4.18(2)]). Let G be the cyclic
Galois group of w. Then the order n of G equals lem{m;}. Let x: G — C* be
an injective group homomorphism. The image of x is the group of n-th roots of
unity. Let £ be the invertible sheaf w*Op:1(1). We can define a G-linearization
{€0: 0%L = L}seq of L by the composite

oL = or(w*O(1)) 25 w*0(1) 22X, o o1) = L,

where ~' is the canonical isomorphism on the composite @ = w o o7. Then an
action of G on Pl-bundle X = P7(Or @ L) is induced by the G-linearized Op-
module Or @ L, and the structure morphism n: X — T is G-equivariant (cf.
Lemma [ZT2)(])). By the G-linearization {e,}, we see that the action of G on X is
free outside finitely many points. Thus, the quotient morphism ¢: X — X = G\ X
is étale in codimension 1. Then the induced P'-fibration 7: X — T is smooth over
T\ Supp D, and 7*P; = m;F; for a prime divisor F; ~ P! for any 1 < j <1 (cf.
[24, Lem. 4.2]). Here, X is a rational surface with p(X) = 2, and —K+ is big,
since —Kx = {*(—Kx) is so. Let ©; (resp. ©2) be the G-invariant section of 7
corresponding to the projection Or &L — L (resp. Or® L — Or). Then the image
0, := £(0;) is a section of 7 and ©; = £*O; for any i = 1 and 2. In particular, O
is a negative section of 7.

By Corollary 271 we have two G-equivariant non-isomorphic surjective endo-
morphisms f and g of X satisfying conditions ({)-(@) of Corollary 227 Let f and
g be endomorphisms of X induced by f and g, respectively, i.e., o f = fo & and
€og=go&. Here, degf = degf > 1, degg = degg > 1, S5 = O1 + Oy, and
S = ©2 by [24] Lem. 2.19(3)]. Since £ is étale in codimension 1, we have

Kx + 8y =¢"(Kx+S57) and Kx + 8, =" (K + Sg).

In particular, K5+S5 ~g 0, and (X, St f) is an example satisfying [24, Thm. A(4)].
On the other hand, —(K+ + S3) ~g ©1 is nef and big, and the example (X, S5, g)
is not considered in [24) Thm. A] nor in Section [£.2] below.

Ezample 2.29. Let ¢ be an involution of an elliptic curve T with a fixed point and
let P € T be a non-fixed point of ¢. The invertible sheaf £ = Op(P — «(P)) on T
is of degree 0, and L is not a torsion invertible sheaf for general P. We have an
isomorphism 7: t*£ — £~ such that the composite
~t * ®-1
L= L) L et s

is the identity morphism of £ for the canonical isomorphism ~f on the composite
tot =idp. Then we have an isomorphism

F(Or@ L) 2 0r @ L0 ~ LP7 0, (L& OF)

for the canonical isomorphism ¢, (cf. Remark 228]), and it defines an involution ¢tx of
the P'-bundle X = Pr(Or®L) over T as alift of v (cf. the proof of Proposition 2.16).
Hence, G = Z/27Z acts on X and T, and the structure morphism 7: X — T is G-
equivariant. Let £: X — X = G\X and 7: T — T = G\T be quotient morphisms,
and let 7: X — T be the induced P'-fibration. Since ¢ has a fixed point, T ~ P!
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and the double cover 7 has 4 branched points. Let ©; (resp. ©2) be the section
of 7 corresponding to the projection O ® L — L (resp. Or & L — Or). Then
tx(01) = O3 and 1x(02) = ©1. Hence, tx has only finitely many fixed points,
& is étale in codimension 1, and there are 4 non-reduced fibers of 7 over the 4
branched points of the double cover T — T (cf. 24, Lem. 4.2]). The image © of
O, by X — X coincides with the image of ©,, and © is a double section of #. In
particular, K5 + © ~g 0 by Kx + ©; + 2 ~ 0. Consequently, X is rational and
— K+ is nef with (—K+)? = 0 but is not numerically trivial.

By Corollary 227 we have a G-equivariant non-isomorphic surjective endomor-
phism f of X satisfying conditions ([Il) and (2] of Corollary Then the endo-
morphism f of X induced by f is also non-isomorphic and surjective, and we have
f7'© =0 and S; = ©. In particular, (X, S, f) is an example of [24, Thm. A(4)].

Now, we are ready to prove Theorem [2.20]

Proof of Theorem 220. By Remark [Z1] it suffices to prove the existence of a G-
equivariant non-isomorphic surjective endomorphism of X. Now, 7 is G-equivariant
for an action of G on T by Remark Let £ be a locally free sheaf of rank 2
on T such that X ~ Pr(£). We may assume that one of conditions in Fact [Z23] is
satisfied for £. If £ is normalized indecomposable of degree 0, then the assertion
holds by Proposition 225][2]).

Assume that £ is decomposable, i.e., £ ~ Or & L for an invertible sheaf £. If
L ~ Op, then X ~ P! x T, and the assertion holds by Lemma Thus, we may
assume that £ %2 Op. Then 7 has two mutually disjoint sections whose sum is G-
invariant. In fact, if deg £ = 0, then 7 has exactly two sections of self-intersection
number 0, and the sum of them is G-invariant. If deg £ # 0, then X has a unique
negative curve I' as a section of m, and by Lemma 214 we can find another G-
invariant section © of 7 such that ©NI"' = (). Therefore, X admits a non-isomorphic
surjective endomorphism by Corollary Thus, the assertion holds when & is
decomposable.

It remains the case where £ is stable, and we may assume that £ is as in
Fact 223([C). We fix an abelian group structure of 7. Let po): T = T(9y = T
be the multiplication map by 2, and let 7(2): X(2y := X X7 T(2) — T{2) be the base
change of 7 by ju(2). Then X () ~ P x Ty over T3 (cf. Fact Z23([C). Let G (o) be
the group of pairs (a, o) for a € Aut(T(2)) and o € G such that )0 = o7 o 2y,
i.e., the diagram

Ty —2 T

o lox

Ty —2s T

is commutative. Note that, for any 8 € Aut(T), there is an automorphism « €
Aut(T{2)) such that j9) 0 o = o poy. In fact, if 8 is given by T'> 2z — a(z) +b
for some a € Aut(T,0) and b € T', then the automorphism a: z — a(z) + ¢ satisfies
pezy © @ = B o ) when b = 2c. Thus, the homomorphism Gy — G defined by
(a,0) = o is surjective, and its kernel is identified with the Galois group Gal(s(z))
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of ). The group G(z) acts on T(g) by G(2) 3 (o, 0) = a € Aut(T(z)). We can
define an action of G2y on X(3) C X X T{9) by

(a,0): X xTg) 3 (z,t) = (ox (), a(t)).

In fact, if 7() = gz (1), then m(ox(2)) = or(x(@)) = or(u@ 1) = He)(alt))-
Hence, G2y acts on X(9) and T{2y, and m(a): X(2) — T(2) is G(2)-equivariant. We
have a G(z)-equivariant non-isomorphic surjective endomorphism f) of X(o) =~
P! x T(2) by Lemma 23 It induces a G-equivariant non-isomorphic surjective
endomorphism of X, since X =~ Gal(u2))\X(2) and G ~ G(2)/ Gal(j(z)). Thus,
the assertion holds for any condition of Fact [2.23] and we are done. |

Finally in Section 23] we shall prove Theorem 2.2}

Proof of Theorem 2211 Let u: M — X be the minimal resolution of singularity.
Then p is G-equivariant for an action of G on M. Now M has a structure of a P!-
bundle 7: M — T over an elliptic curve T', in which the p-exceptional curve I is a
section of w. By Theorem 220, we have a G-equivariant non-isomorphic surjective
endomorphism f : M — M. Here, I' is completely invariant under f . Then we
have a G-equivariant non-isomorphic surjective endomorphism f: X — X such
that go f = fopu by [24, Lem. 3.14]. This also induces a non-isomorphic surjective
endomorphism of G\ X by Remark 211

The last assertion remains to be proved. Let C be a cross section of X preserved
by the action of G. Then p*C' is a G-invariant section of = and T' N p*C = (. By
Corollary 227] we have a G-equivariant non-isomorphic surjective endomorphism
f: M — M such that f‘l(u*C) = p*C. Hence, it descends to a G-equivariant
non-isomorphic surjective endomorphism f of X, and C is completely invariant
under f. Thus, we are done. O

2.4. Examples of endomorphisms related to [24]. We shall give examples of
the following normal surfaces X with non-isomorphic surjective endomorphisms
which are related to results in [24]:

(I) A normal compact complex analytic surface X having cusp singularities.
This X is not a Moishezon surface by [24, Cor. B and Thm. 6.1]. We shall
give an example in Example with a remark.

(IT) A rational surface X with a non-zero completely invariant divisor S under
the endomorphism such that Kx + S ~ 0. For the surface X, we have a
finite cover v: V — X étale in codimension 1 satisfying conditions in [24]
Lem. 5.6]. In Example 23] below, we shall give two examples of X with
finite covers V — X.

(III) A rational surface X having a finite cover V' — X étale in codimension 1
from an abelian surface V' (cf. [24, Thm. A(3)]). We shall give an example
of X with p(X) = 4 in Example below.

(IV) A rational surface X having a finite cover V' — X étale in codimension 1
from the product V' = C x T for an elliptic curve C and a curve T of genus
> 2 (cf. [24, Thm. A(2)]). We shall give an example in Example 2:33 below.
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Ezample 2.30. We shall give an example of ([l). Let M be a hyperbolic Inoue surface
(cf. [14], [25], [18], [19]). This is a non-singular compact complex surface of algebraic
dimension 0 without (—1)-curves and with dim H;(M,C) = 1 such that the set of
prime divisors on M forms a disjoint union D of two cyclic chains of rational curves
(cf. [22] Def. 4.3]). Here, Kp; + D ~ 0, and D can be contracted to two points by
a bimeromorphic morphism p: M — X to a normal surface X. Then Kx ~ 0, and
X has two cusp singularities. There is a non-isomorphic surjective endomorphism
far: M — M by [T, Prop. 9.2]. Since f;,'(D) = D, it induces a non-isomorphic
surjective endomorphism f: X — X such that po fiy = fopu.

Remark. In [6, Prop. 2.2], Favre has constructed a remarkable example of an en-
domorphism of X for a certain hyperbolic Inoue surface M, in which the endomor-
phism of X does not lift to a holomorphic endomorphism of any non-singular model
of X.

Ezample 2.31. We shall give examples of ([Il). More precisely, for a rational (resp.
elliptic) curve T, we shall construct a normal projective rational surface X with
a non-isomorphic surjective endomorphism f, a non-zero f-completely invariant
divisor S, and a finite Galois cover v: V — X from V = P! x T satisfying the
following conditions (cf. [24, Lem. 5.6]):

(1) v is étale in codimension 1;

(2) Kx+S~0and S C Xyeg;

(3) the Euler number e(V \ v=15) = 0;

(4) fFov:V — X is a Galois closure of f¥: X — X for k> 0.

First, we consider the case: T = P!. For a homogeneous coordinate (x:y) of P!,
let ¢ be an involution of V' = P! x P! defined by ((x:y), (u:v)) = ((y:x), (v:u)),
and set X to be the quotient surface of V by ¢. Then the quotient morphism
v: V — X is étale outside the fixed point locus of ¢, which consists of four points
((1:(=1)%),(1:(=1)7)) for 0 < 4,5 < 1. For odd integers a > 1 and b > 1, let f’ be
an endomorphism of V' defined by

((x:y), (@iv)) = ((x*:y7), (2 v")).

Then to f/ = f' o, and f’ induces an endomorphism f of X of degree ab > 2.
By construction, fov =vo f': V — X is a Galois cover and its Galois group is
isomorphic to the semi-direct product Z/27Z x (Z/aZ & Z/bZ). Since a and b are
odd, fowv is a Galois closure of f. By replacing (a,b) with (a*,b*), we see that
the composite f¥ov: V — X is the Galois closure of f* for any k& > 1. For prime
divisors

Cl,O zpf(lo), CO,l :pT(O].), Dl,O :p;(lo), D071 :]D;(Ol)
on V, where p; is the i-th projection V' — P! for i = 1, 2, we set
C:=v(Cio) =v(Co1), D:=v(Diy)=v(Do1), and S:=C+D.

Then Ci,0+ Co1+ D1+ Do = v=1S and V \ v~ 1§ ~ C* x C*. In particular,
e(V \ v718) = 0. Moreover, any fixed point of ¢ is not contained in »~1S. Thus,
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S C Xreg. We have Ky + v=1S =v*(Kx + S) ~ 0, and furthermore, Kx + S ~ 0
by

F(sTlds AtTh ) = sTrds At dt

for s = x/y and t = u/v. Since f*(C;;) = aC;; and f"*D;; = bD;; for any
(i,5) € {(1,0),(0,1)}, v~1S is completely invariant under f’, and S is completely
invariant under f. Thus, (X, f, S, v) satisfies the required condition.

Second, we consider the case where T is an elliptic curve. For a group structure
of T', let pi(my: T — T stand for the multiplication map by m € Z. Let §: P* — P!
be an involution defined by (x:y) — (y:x) for a homogeneous coordinate (x:7y)
of P!. Let X be the quotient surface of V by the involution : = 6 x p(—1y of
V = P! x T. Then the quotient morphism v: V — X is étale in codimension 1 and
is étale along the disjoint union Sy of pj(1:0) and p3(0:1) for the first projection
p1: V — PL In particular, the image S = v(Sy) is an elliptic curve isomorphic to
T, and we have S C X,eq, v*(S) = Sy, and v*(Kx +5) = Ky +Sy ~ 0. Moreover,
e(V\Sy)=0by V\Sy ~C* xT.

We shall show that X is rational and Kx +S ~ 0. The vector space H°(V, Q‘l//(c)
of global holomorphic 1-forms on V' is 1-dimensional and is generated by p3(d() for
a non-zero global holomorphic 1-form d¢ on T for the second projection po: V — T.
Since ((—1y)*(d¢) = —d(, the irregularity q(A/) = 0 for the minimal resolution M
of X. The logarithmic 2-form w := (y/x)d(x/y) A d{ gives a nowhere vanishing
section of Oy (Ky + Sy) which is invariant under ¢*, i.e., t*(w) = w. Thus, we have
Kx 45 ~ 0. As a consequence, X is rational, since K x is not pseudo-effective and
q(X) =q(M) =0.

Let ¢,: P! — P! be the endomorphism defined by (x:y) — (x":y") for an
integer n > 0. We consider the endomorphism f = g X ppy of V = P! x T for
odd integers a > 1 and b > 1. Then to f = f o+ and there is an endomorphism
f of X satisfying vo f = fowv. Here, deg f = deg f = ab® > 1. By definition,
Sy is completely invariant under f , and hence, S is completely invariant under f.
By construction, fov = vo f : V. — X is a Galois cover and its Galois group
is isomorphic to the semi-direct product Z/2Z x (Z/aZ & T,) for the group T of
b-torsion points of T, which is isomorphic to (Z/bZ)®2. Since a and b are odd,
fovis a Galois closure of f: X — X. By replacing (a,b) with (a*,b%), we see
that f* o v is a Galois closure of f* for any k > 0. Thus, (X, f, S, v) satisfies the
required condition.

Ezample 2.32. We shall give an example of ([II). Let E be the elliptic curve
C/(Z/—1+1Z) and set V = E x E. Let o be an automorphism of V of order 4
given by ExE > (x,y) — (vV/—1z,v/—1y), and set X to be the quotient surface of V
by the action of o. Then the quotient morphism v: V' — X is étale in codimension
1, since the action of o is free outside a finite subset of V. Thus, Kx ~g 0 by
Ky = v*Kx, but Kx ¢ 0 as Sing X contains a non-Gorenstein cyclic quotient
singularity of order 4. On the other hand,

H(M, Q) = H*(E x E,Qp,5)\7 =0
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for the minimal resolution M of singularity of X, where the superscript (o) stands
for the o-invariant part. As a consequence, X is rational.

We shall show that the Picard number p(X) is equal to 4. The fibers F; = {0} xE
and Fy = E x {0} over 0 of the first and second projections V' — FE, respectively,
are o-invariant. Similarly, the diagonal locus A = {(x,z) | # € E} and the locus
¥ = {(z,/—1z) | x € E} are also o-invariant. The numerical classes cl(F}), cl(Fy),
cl(A), and cl(X) form a basis of the 4-dimensional vector space N(V'). Therefore,
p(X) =4

By Lemmal[2.3] there is a o-equivariant non-isomorphic surjective endomorphism
of V: As a simple example, the endomorphism of V' defined by (z,y) — (mz, my)
for an integer m > 1 is o-invariant. It descends to a non-isomorphic surjective
endomorphism of X, and it gives an example of [24] Thm. A(3)].

Ezample 2.33. We shall give an example of ([¥]). Let T be the Fermat quartic
curve {X* + Y% +27* = 0} C P2, where (X:Y:Z) is a homogeneous coordinate. Let o
be an automorphism of T' defined by (X:Y:Z) +— (X:Y:y/—1Z). Then the projection
7: T — P! defined by (X:Y:Z) ~— (X:Y) is the quotient morphism of T by the action
of o, and it is a cyclic cover of degree 4. The intersection TN {Z = 0} consists
of four points Py, ..., Py. Let Q; be the image 7(P;) € P! for 1 < i < 4. Then
77HQ;) = {P;} for any 1 < i < 4 and 7 is étale over P!\ {Q1,...,Q4}. Let C be
the elliptic curve C/(Z + Z+/—1) and let o’ be an automorphism of C' defined by
z + /=12 for z € C. Then the automorphism & := o’ x ¢ of C x T has order 4
and it acts freely outside a finite set. Thus, the quotient morphism v: C x T — X
by & is étale in codimension 1 and is a cyclic cover of degree 4. Moreover, the
second projection C x T — T induces an elliptic fibration 7: X — P! which is
smooth over P*\ {Q1,...,Q4}. Note that Kx is semi-ample with x(Kx) = 1 by
KC><T = V*Kx.

Let ©: Y — P! be the relatively minimal elliptic surface birational to 7. Then
the singular fiber over @Q; is of type III in Kodaira’s notation (cf. [I5]). In fact, Z/X
is a local parameter of T at P; with 0*(Z/X) = v/—1Z/X, and z € C gives rise to a
local parameter of C' with o'*(z) = /—1z. Thus, the singular fiber type is III (cf.
[15, §8 (iv) Case 3;]). By the canonical bundle formula of elliptic surfaces (cf. [16]
Thm. 12}, [31, App.]), we have

4
Ky ~q " (Ko + Y (1/4)Qi) ~q " Oai(~1).
In particular, Ky is not pseudo-effective. On the other hand,
HY(Y,0y) ~ H'(C x T, Oc 1)) = H(C,00)'"") & HY(T, 0r)'") = 0.

Therefore, Y is a rational surface, and as a consequence, X is also rational.

By Lemma 2.5 there is a d-equivariant non-isomorphic surjective endomor-
phism of C' x T: As a simple example, we have an endomorphism defined by
CxT > (21t) — (mzt) for m > 1. It descends to a non-isomorphic surjec-
tive endomorphism of X and it gives an example (X, S, f) in [24, Thm. (2)] with
S =0.
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3. GENERALIZATIONS AND APPLICATIONS OF THEOREM A IN [24]

We shall present generalizations and applications of [24] Thm. A] using results in
Section2l A complete version of [24] Thm. A] is given as Theorem [B1lin Section 311
Theorem [3.4] below determines the structure of a completely invariant curve with
positive arithmetic genus, which is proved in Section B2l by applying [24, Thm. A].
Section concerns Theorem BI0 on a normal projective surface X admitting a
non-isomorphic surjective morphism f such that the refined ramification divisor Ay
is zero (cf. [24] Def. 2.16)).

3.1. A complete version of Theorem A in [24].

Theorem 3.1. Let X be a normal Moishezon surface with a reduced divisor S
such that Kx + S is pseudo-effective. Then there exists a non-isomorphic surjective
endomorphism f: X — X satisfying f~1S = S if and only if X is projective and
there exists a finite surjective morphismv: V. — X étale in codimension 1 satisfying
one of the conditions ([{)-([]) below:

(1) V. =PXT and v*(S) = pri(P1+ P) +prs(D) for a non-singular projective
curve T, two points P, P, € P!, and a reduced divisor D C T such that
deg(Kr + D) > 0, where pr; denotes the i-th projection for i =1, 2;

(2) V. =C xT and v*(S) = pr5(D) for an elliptic curve C, a non-singular
projective curve T, and a reduced divisor D C T such that deg(Kr+D) > 0;

(3) V is an abelian surface and S = 0;

(4) V is a P*-bundle over an elliptic curve and v*(S) is a disjoint union of two
sections;

(5) V is a projective cone over an elliptic curve and v*(S) is a cross section
(cf. |24 Def. 1.16));

(6) V is a toric surface with v*(S) as the boundary divisor.

Remark 3.2. We allow 0 as a reduced divisor. The “only if” part has been proved
by [24, Thm. A]. We may assume that X is projective by [24] Cor. B]. For the
characteristic completely invariant divisor Sy of f (cf. [24, Def. 2.16]), we have
S > Sy by [24, Thm. 2.24]. Moreover, v*Sy = prj(P; + P2) in (), and Sy = 0 in
@), by [24, Lem. 5.1].

We shall prove Theorem [B.I] using results in Section 2 and the following;:

Lemma 3.3. Let v: V — X be a finite surjective morphism étale in codimension
1 satisfying one of the siz conditions in Theorem [B1l Then there is a finite Galois
cover v: V. — X satisfying the same condition.

Proof. Let U: V = X be the Galois closure of v and let 6: V — V be the induced
Galois cover such that # = v o 6. Then ¥ is étale in codimension 1. We shall
show that ¥ satisfies the same condition as v except the case (Z). Note that V is
non-singular and 6 is étale except the cases (B) and ().

In the case () (resp. @), the étale cover V of V is obtained as the base change

~

of V' — T by an étale cover T'— T'; thus, & satisfies (II) (resp. {@))). In the case (@),
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V is also an abelian surface, and hence, ¥ satisfies (). For the cases (&) and (@),
we need more arguments:

B): Let W be the minimal resolution of singularities of V. Then W is a P!-
bundle over an elliptic curve 7', and the exceptional divisor © lying over the vertex
is a negative section of the P'-bundle. Hence, W’ := v xy W — W is étale over
W\ ©. Since 1 (W \ ©) ~ m1(T), there is a finite étale cover 7" — T such that
(WA\O) xw W' =~ (W\O)xpT" over W\O. Therefore, W x1T" is the normalization
of W', and Visa projective cone over T”. The pullback of v*S by V — V is also
a cross section, since it is isomorphic to S x7 T”. Thus, : V — X satisfies @).

[6): The Galois cover 6: V — V is étale over the open torus U := V \ v715,
where V' is expressed as the toric surface Ty(A) associated with the abelian group
N =7 (U) ~ Z®2 and a fan A of N. For the subgroup N’ = 7 (0~*U) C N, let
p: T (A) — Tn(A) be the associated morphism of toric surfaces. Then 61U J) =~

~1(U) as a complex analytic space over U. This extends to an isomorphism V ~
TN/(A) of normal projective surfaces over V by a theorem of Grauert—Remmert
(cf. [10], [I1, XII, Thm. 5.4]). Thus, V satisfies (B).

Finally, we consider the case (2)). Here, we shall find another finite Galois cover
étale in codimension 1 satisfying ([2)). Let V — T — T be the Stein factorization
of pryof: V — V =C xT — T. Then induced finite morphlsms T — T and
Vv X7 T ~ C x T are both étale. We may replace T with T since O x T — X
satisfies (2)). Thus, we may assume that 7 := pr,o06: V — T is a fibration. For
the ample divisor K7 + D, the linear equivalence class of 7* (K1 + D) is preserved
by the Galois group G = Gal(?) of ¥, since v*(Kx + S) ~ pry(Kr + D). Thus,
m is G-equivariant for an action of G on T, and we have an induced fibration
X =G\V =T :=G\T. Let 7: T — T be the quotient morphism and let V be the
normalization of the fiber product X x= 7. Then we have a commutative diagram

v

> v

where the induced finite covers A and v are also étale in codimension 1 and 7 is

Ll

7

a Galois cover with the same Galois group as that of 7. Here, 7*D = v*S by
prs D =v*S.

It is enough to prove that V ~ C x T over T for an elliptic curve C. For, the Ga-
lois cover C xT ~ V — X satisfies ([2)). Note that 7 is an elliptic fibration, since \ is
étale in codimension 1. Let T* be a Zariski-open dense subset of T' over which 7 is
smooth. Then the smooth elliptic fibration 7|7« : #71(T*) — T* admits a section,
the associated period map is constant, and the associated monodromy transforma-
tion is also trivial, since these hold for the trivial elliptic fibration C' x T* — T*
and since C' x T* is étale over 7~ 'T*. By [15, Thm. 10.2], V is birational over T to
the product C' x T for an elliptic curve C. Since V has only rational singularities,
every rational map from V to the elliptic curve C' is holomorphic. Therefore, we
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have a birational morphism V — C x T over T, and it is an isomorphism, since
every fiber of 7 is irreducible. Thus, we are done. (|

Proof of Theorem 3.1l It suffices to prove the “if” part, i.e., the existence of a
non-isomorphic surjective endomorphism f: X — X such that f~1S = S in each
case of Theorem Bl Here, we may assume that v: V — X is a Galois cover by
Lemma We set G = Gal(v). For cases ), (@), and (@), the existence of f
follows from Theorems2.20land[2.2]], and Lemma[2.6] respectively, on G-equivariant
endomorphisms. For the case ([B]), the existence of f follows from Lemma 235 applied
to the case where B is a point. For () and (2)), we need more arguments:

(@): The second projection pry: V =Pl x T — T is G-equivariant for an action
of G on T, since Ky + D is ample and v*(Kx + S) ~ pr3(Kp + D) is preserved
by G. Here, the action of G on V is diagonal by Lemma 23] and we have an
action on P'. Since v*(S) = pri(P1 + P2) + pri(D) is G-invariant, the divisor
Py + P, on P! is also G-invariant. We may assume that P; = (1:0) and P, = (0:1)
for a homogeneous coordinate (x:y) of P!. Then the image of G — Aut(P!)
is either a cyclic group generated by the automorphism e(¢): (x:y) — ({x:y)
for a root ¢ of unity or a dihedral group generated by e({) above and by the
involution (x:y) — (y:x). Then, for any integer m > 0 such that (™ = 1, the
endomorphism f,11: (x:y) + (x™F1:y™+) of P! is G-equivariant and satisfies
f,;_lH(Pl + P,) = P+ P,. Let f be the endomorphism of X = G\V induced by the
G-equivariant endomorphism f,,, 11 xidp: P! xT — P! xT. Then deg f = m+1 > 1
and f~1(S) = S by construction.

@): The second projection pry: V = C xT — T is G-equivariant for an action of
G on T, since K+ D is ample and v*(Kx +.5) ~ pri(Kr + D) is preserved by G.
Then there is a G-equivariant non-isomorphic surjective endomorphism fy: V — V
such that pr, = pryofy, by Lemma Here, fi(v*S) = v*S by prs D = v*S.
Hence, fy induces a non-isomorphic surjective endomorphism f of X = G\V such
that f~15 = S. Thus, we are done. O

3.2. Completely invariant curves of positive arithmetic genus. We shall
prove Theorems [3.4] and below on normal projective surfaces with curves of
positive arithmetic genus which are completely invariant under non-isomorphic sur-
jective endomorphisms.

Theorem 3.4. Let X be a normal projective surface with a non-isomorphic sur-
jective endomorphism f and let C be an f-completely invariant curve such that
P (C) > 0. Then one of the following holds:

(1) The curve C is non-singular and there is a P'-fibration m: X — T to a
non-singular projective curve T such that 7(C) = T and degC/T < 2.
Moreover, there is a finite cover T' — T from a non-singular projective
irrational curve T' such that

o the normalization X' of X x¢ T’ is isomorphic to P* x T' over T,

e the induced morphism v: X' — X is étale in codimension 1,

o *C is a fiber or a union of two fibers of the first projection X' ~
P! x T’ — P'.
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(2) The curve C is an elliptic curve contained in Xyeg, and C is a set-theoretic
fiber of an elliptic fibration 7: X — T to a non-singular projective curve T .
Moreover, there exist an elliptic curve C' and a finite cover T' — T from
a non-singular projective curve T' such that

e the normalization X' of X x7 T’ is isomorphic to C' x T' over T', and
o the induced cover X' — X is étale in codimension 1.

(3) The surface X is a projective cone over an elliptic curve and C is a cross
section.

(4) The surface X is a P-bundle over an elliptic curve and C is section.

(5) The surface X is a P -bundle over an elliptic curve and C is an elliptic
curve such that C' + Kx ~qg 0. In particular, C is a double section with
C?=0.

(6) The surface X is rational, C is an elliptic curve contained in X,eq, Kx +
C ~ 0, and there is a double cover v: V — X étale in codimension 1 from
a P -bundle V over an elliptic curve such that v*C is a disjoint union of
two sections.

(7) The curve C is rational with exactly one node P, CNSing X C {P}, Kx +
C ~ 0, and there is a finite Galois cover v: V — X étale in codimension 1
from a toric surface V- with v*C as the boundary divisor.

By the list above, C is singular if and only if (7) holds. We have the following
finer description of (X, C') in a special case of ([):

Theorem 3.5. Let f be a non-isomorphic surjective endomorphism of a normal
projective surface X and let C' be a singular f-completely invariant curve. Suppose
that Sing C' C Xyeg. Then C is a rational curve with exactly one node, C C Xyeq, X
is a log del Pezzo surface (cf. [II, Def. 1.1]) of Picard number 1, and there is a finite
cyclic cover v: V. — X étale in codimension 1 from a non-singular toric surface V
with v*C' as the boundary divisor, where (V,v*C,degv) is one of the following:

(1) V = P2, v*C is a union of three lines without triple points, and degv = 3;

(2) V=Pl x P!, v*C ~ pi(D1) + p5(D2) for reduced divisors Dy, Dy C P! of
degree 2, where p; denotes the i-the projection for i =1, 2, and degv = 4;

(3) V is a del Pezzo surface of degree 6, v*C = Z?Zl C; for (=1)-curves Cj,
and degv = 6.

The proof of Theorem [3.4lis divided into three cases where K x +C' is not pseudo-
effective, nef but not numerically trivial, and numerically trivial: these are treated
in Lemmas B.7 B8 and B9 below, respectively. The proofs of Theorems [3.4] and
are given at the end of Section We fix (X, f,C) in Theorem B4 throughout
Section We begin with:

Lemma 3.6. Assume that H*(X,Ox(Kx+C)) = 0. Then C is non-singular, and
there is a fibration w: X — T to a non-singular projective irrational curve T such
that m(C) =T, g(C) =g(T'), and mwo f = homw for an étale endomorphism h of T
Moreover, f*C =bC for the integer b := deg f/degh, and the following hold:
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(1) If b =1, then C and T are elliptic curves, f is étale, and w is a smooth
morphism isomorphic to the Albanese morphism of X.

(2) If 1 < b < degf, then C and T are elliptic curves and 7 is a P'-bundle
with deg C/T < 2.

(3) Ifb=deg f, then 7 is a P1-fibration with deg C/T < 2, and there is a finite
cover T — T from a non-singular projective curve T’ satisfying the same
condition as in Theorem BAII).

Proof. We first show that X has only rational singularities. Assume the contrary.
Then X is a projective cone over an elliptic curve E by [24] Prop. 6.2]. Now,
X has only quotient singularities along C, since (X, C) is log-canonical (cf. [24]
Thm. EJ). Thus, C' C X,eg. Since p(X) =1, f*C = §;C for the positive square root
6 = (deg f)'/? > 1. Then p,(C) = 1 by [24, Lem. 3.11], and we have Kx +C &0
by (Kx + C)C = 2p,(C) —2 = 0. For the minimal resolution p: M — X of
singularities, the Albanese morphism of M is a P'-bundle @: M — FE, and the u-
exceptional locus O is a section of w (cf. [24, Rem. 1.17]). Here, Kps +© + p*C ~
w* (Kx + C) ® 0. Thus, p*C is also a section of w, and hence, C' is an elliptic
curve. Then C is a cross section of the projective cone X and Kx + C' ~ 0 by
[24, Lem. 1.18]. This contradicts H°(X,Ox(Kx + C)) = 0. Therefore, X has only
rational singularities.

By a property of rational singularities, the Albanese morphism of the mini-
mal resolution of singularities of X descends to the Albanese morphism of X.
Let m: X — T be the fibration obtained by the Stein factorization of the Al-
banese morphism. Then 7*: HY(T,Or) — H'(X,0Ox) is an isomorphism and
7 H*(T,O0r) — H?*(X,0Ox) is injective. By our assumption, H*(X,Ox (Kx +
C)) ~ H*(X,0x(—C))Y = 0. Hence, H*(X,0Ox) = 0 and the restriction ho-
momorphism H'(X,0x) — HY(C,0c) # 0 is surjective. As a consequence,
dim T = 1, and the pullback homomorphism (7|¢)*: HY(T,O7) — H'(C,O¢) is an
isomorphism. In particular, 7(C') = T. Then C is non-singular by [24, Prop. 3.13],
and g(C) = g(T) = q(X). By the universality of the Albanese morphism, there is
an étale endomorphism h of T satisfying mo f = hon. Then b:=deg f/degh € Z
and f*C = bC by [24, Props. 2.20(1) and 3.17], since F'C' > 0 for a general fiber F
of m and since 7*F & (deg h)F.

If b = 1, then C and T are elliptic curves, f is étale, and 7 is smooth by [24]
Lem. 4.4(3)]. Thus, () holds. Assume that b > 1. Then C' C Sy, and hence, 7 is a
P!-fibration with deg C'/T < 2 by [24, Lem. 4.4(5)]. If 1 < b < deg f, then T is an
elliptic curve and 7 is a P!-bundle by [24, Cor. 4.7]. This shows @)). If b = deg f,
i.e., degh = 1, then the conclusion of (B]) holds by [24] Thm. 4.9)]. O

Lemma 3.7. Suppose that Kx + C is not nef. Then either (Il) or @) of Theo-
rem 3.4] holds.

Proof. By [24, Thm. 2.24], Kx + C' is not pseudo-effective. Hence, we can apply
Lemma 3.6l As a consequence, C' is non-singular. Let 7: X — T be the fibration
in Lemma with the étale endomorphism h of T
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There is an extremal ray R C NE(X) with (Kx + C)R < 0 by [24, Thm. 1.9].
We shall show that the contraction morphism of R is not birational. Assume the
contrary, i.e., cl(I') € R for a negative curve I'.  Then deg f = (degh)?, T is
an elliptic curve, 7 is a P!-bundle, and T' is the unique negative section by [24]
Cor. 4.8]. Since (Kx +T)['=2g(')—2=0, if C # T, then (Kx +C)I' > -T2 > 0
contradicting (Kx + C)T" < 0.

Therefore, the contraction morphism of R is a fibration ¢: X — B to a non-
singular projective curve B by [24] Thm. 1.10], since p(X) > p(T) + 1 = 2. Every
set-theoretic fiber of ¢ is rational and is contracted to a point by 7: X — T, since T’
is irrational. Therefore, ¢ ~ 7. In particular, (Kx+C)F < 0 for a general fiber F' of
7. This implies that C is a section of 7. By Lemma [3.0] we see that Theorem B4y
holds in case deg h > 1, and Theorem B[ holds in case degh = 1. O

Lemma 3.8. Suppose that Kx + C is nef but not numerically trivial. Then C' is
non-singular. If Sy # 0, then Sy = C, and Theorem BA) holds. If Sy =0, then
Theorem BAR2]) holds.

Proof. By [24, Thm. 2.24], C > S§, Kx + C' is semi-ample, (Kx + C)? = 0, and
Kx +C = f*(Kx + C). Then we have a fibration 7: X — T to a non-singular
projective curve T such that Kx 4 C' is Q-linearly equivalent to the pullback of an
ample Q-divisor on 7. As in the argument in [24] §5.1], there is an automorphism
h: T — T such that mo f = hom by [24, Lem. 3.16]. Hence, Sy is non-singular
by [24, Lem. 4.4(1)]. If C is singular, then f*C = §;C by [24, Prop. 3.13], and
C C Sy; this is a contradiction. Hence, C' is non-singular.

Assume that 7(C) = T. Since degh = 1, f*F & F for a general fiber F of 7,
and we have f*C = (deg f)C by FC > 0 (cf. [24, Prop. 2.20(1)]). Hence, C = Sy.
By (Kx + C)F = 0, we see that 7 is a P!-fibration and C is a double section of 7.
By [24, Thm. 4.9], there exists a finite Galois cover 7: T’ — T such that

e the normalization X’ of X xp T is isomorphic to P! x T over 1",

e the induced morphism v: X’ — X is étale in codimension 1, and

e *C is a disjoint union of two fibers of the first projection X’ ~ P! x T —

P!
Here, g(T") > 2, since Kx + v*C = v*(Kx + C) is linearly equivalent to the
pullback of an ample divisor on T’. Thus, Theorem B4I(I]) holds in this case.
Assume next that 7(C) # T. Then = is an elliptic fibration, since deg(Kp) =

(Kx + C)F = 0 for a general fiber F' of 7. By [24] Lem. 4.4(2), (5)], C is a set-
theoretic fiber of 7, and Sy = 0. Since (X, C') is log-canonical (cf. [24, Thm. E])
with (Kx 4+ C)C =0, C is an elliptic curve contained in X,eg by [22, Prop. 3.29].
Therefore, Theorem [B4I2]) holds by [24, Thm. 4.9]. O

Lemma 3.9. Suppose that Kx + C is numerically trivial. Then p,(C) =1 and
Creg C Xreg- If C is singular, then Theorem BAND) holds. If C is non-singular,
then one of @), @), and @) of Theorem B4 holds.

Proof. By [24, Thm. 2.24], we have C > Sy and Kx + C ~g 0. Then C is either
an elliptic curve or a nodal rational curve with one node, C NSing X C Sing C', and



40

Kx + C is Cartier along C with Ox(Kx 4+ C)|c ~ O¢, by [22, Prop. 3.29] applied
to the log-canonical pair (X, C).

Assume first that C is a nodal rational curve. Then f*C = §;C by [24
Prop. 3.13], and we have Ay = 6 by [24, Lem. 3.7 and Thm. 3.22]. Moreover,
Kx +C ~ 0 by Lemma Thus, we have a finite Galois cover v: V — X
satisfying Theorem BA|[T) by [24, Lems. 5.4, 5.7, and 5.8].

Thus, it is enough to consider the case where C' is an elliptic curve. Assume that
X isirrational. If Kx +C ~ 0, then Theorem B3] holds by [24, Lem. 5.4]. On the
other hand, X satisfies one of three conditions of [24, Thm. 4.16]. We shall show
that, if Kx + C o 0, then X satisfies only [24] Thm. 4.16(2)]: If [24, Thm. 4.16(1)]
holds, then there is a finite morphism P! x T/ — X étale in codimension 1 from a
non-singular projective curve 7" of genus > 1. Here, the inverse image C’ of C' is
étale over C by C' C X,eq, thus, every component of C’ is an elliptic curve: this is
a contradiction, since an elliptic curve does not dominate 7’ and is not contained
in a fiber of P* x T — T". If [24, Thm. 4.16(3)] holds, then C is a cross section of
X by [24, Lem. 1.18], and hence, Kx + C ~ 0. Therefore, if Kx + C 7 0, then [24]
Thm. 4.16(2)] occurs, where Kx + C' ~ 7*N for a non-zero divisor N ~g 0 on T'
for the P'-bundle X — T over an elliptic curve T. Here, C' — T is an étale double
cover and C? = K% = 0. Thus, Theorem B[] holds when X is irrational and
Kx+C#o0.

Assume next that X is rational. Then H'(X,Ox) = 0, and the sequence

H(X,0x(Kx +C)) = H(C,0¢) = H'(X,0x (Kx)) ~ H'(X,0x)" =0

induced by Ox(Kx + C)|c ~ O¢ is exact. Thus, Kx + C ~ 0 by Kx + C ~q 0.
Let v#: V¥ — X be the morphism v = 74: Vi, — X in [24] Def. 5.5] for k > 0
which satisfies conditions in [24, Lem. 5.6] for S = C. If V¥ is rational, then v#~1C
is a union of rational curves by [24] Lem. 5.7], but C is an elliptic curve; this is a
contradiction. Hence, V# is irrational, and Theorem B4(@) holds by [24, Lem. 5.8
and Cor. 5.9]. Thus, we are done. O

Theorem [3.4] is proved by Lemmas 3.7, B8] and B9 as follows:

Proof of Theorem B4l If Kx + C is not nef, then either () or ) of Theorem B4
holds, by Lemma 37 If Kx + C is nef and not numerically trivial, then either ()
or ([2)) of Theorem B4 holds, by Lemma B8l If Kx + C is numerically trivial, then
one of @), @), (@), and (@), of Theorem B4 holds, by Lemma Thus, we are
done. (]

Finally in Section B.2] we shall prove Theorem

Proof of Theorem 35 Now Theorem BT holds for (X, (). We have C' C X, eg
by the assumption SingC' C X,e; and by the property C' N SingX C {P} in
Theorem [BA|[7) for the node P of C. Hence, the finite Galois cover v: V. — X
in Theorem B.4Y[7) is étale along v~ 1C. It implies that the toric surface V is non-
singular, since the open torus V' \ v~1C is non-singular. Since C is a rational curve
with one node P, the number of prime components of v~ 'C equals deg v, and the
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Galois group G = Gal(v) of v is a cyclic group, i.e., v is a cyclic cover. For the
toric surface V, Pic(V) is generated by invertible sheaves Oy (I';) associated with
prime components I'; of the boundary divisor »~'C. Since G acts transitively on
the set of prime components of v~ 1C, we see that Pic(X) is generated by Ox (C) ~
Ox(—Kx). As a consequence, X is a Gorenstein log del Pezzo surface of Picard
number 1, i.e., X has only rational double points as singularities, —K x is ample,
and p(X) = 1. In particular, —Ky = v*(—Kx) is also ample. So, V is a toric
del Pezzo surface. Now,

e(V)=e(V\v'0)+e(r'0)=e(rv'C) = degv

as v~ 1C is a cyclic chain of rational curves with deg v prime components. We set
b:=T? for a prime component T'; of v~1C; this is independent of the choice of T;
as G acts transitively on the set of prime components of »~1C. Then (v*C)? =
(degv)(b+ 2), and C? = b+ 2 > 0. Since the number deg v of prime components
of the boundary divisor »~1C is greater than 2 and since

12=K%+e(V)=*C)? +e(V) = (degv)(b+3),

the pair (b, degv) is one of (1,3), (0,4), and (—1,6). Then (V,v*C,degr) satisfies
conditions (), @), and @) of Theorem BH] respectively in the cases (1,3), (0,4),
and (—1,6). Thus, we are done. O

3.3. Classification theorem in the case: Ay = 0. We consider normal pro-
jective surfaces X admitting non-isomorphic surjective morphisms f such that
Ay = 0. Theorem below classifies such X. Note that Ay = 0 if and only
if flx\g: X\ S — X\ S is étale in codimension 1 for an f-completely invariant
divisor S (cf. [24, Prop. 2.21]). If Kx + S is pseudo-effective for an f-completely
invariant divisor S, then Ay = 0 by [24, Thm. 2.24]. Thus, Theorem B.I0 is con-
sidered as a partial generalization of Theorem [B.11

Theorem 3.10. For a normal projective surface X, it has a non-isomorphic sur-
jective endomorphism f satisfying Ay = 0 if and only if there exists a finite
Galois cover V. — X étale in codimension 1 such that V and its Galois group
G = Gal(V/X) satisfy one of the following conditions:
(1) V is a toric surface and G preserves the open torus of V;
(2) V =P x P! and G preserves a union of two fibers of the first projection
V — P! and a union of at least three fibers of the second projection V. — P!,
(3) V is an abelian surface;
(4) V is a projective cone over an elliptic curve and G preserves a cross section;
(5) V is a Pl-bundle over an elliptic curve and G preserves a disjoint union of
two sections;
(6) V is a P*-bundle over an elliptic curve associated with an indecomposable
locally free sheaf of degree 0;
(7) V =P X T for a non-singular projective curve T of genus at least 2, and
G preserves a disjoint union of two fibers of the first projection V. — P1;
(8) V.=C x T for an elliptic curve C and a non-singular projective curve T
of genus at least 2.
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Remark. There exist no examples of V' — X satisfying two mutually different
conditions in ([I)—(®), except for one pair: (1)) and ().

Theorems [B.11] and [3.12] below are considered as special cases of Theorem [3.10

Theorem 3.11. For a normal projective surface X, it admits a non-isomorphic
surjective endomorphism f: X — X étale in codimension 1 if and only if there
exists a finite Galois cover v: V. — X étale in codimension 1 satisfying one of the
following conditions:

(1) V is an abelian surface;

(2) V=C XT for an elliptic curve C and a curve T of genus at least 2;

(3) V =P x T for an elliptic curve T}

(4) V is a P*-bundle over an elliptic curve associated with an indecomposable
locally free sheaf of degree 0.

Theorem 3.12. Let X be a normal projective surface with a non-isomorphic sur-
jective endomorphism f. Assume that

(i) the refined ramification divisor Ay =0, and

(ii) Kx + S is not pseudo-effective for any f-completely invariant divisor S.
Then one of the following holds:

(1) X ~ P! x T for an elliptic curve T

(2) X ~P! x PL;

(3) there is a finite cyclic cover V. — X étale in codimension 1 from a P!-

bundle V' over an elliptic curve T associated with an indecomposable locally
free sheaf of degree 0.

First, we shall prove Theorem [B.I2] using Lemma [B.I3] below, and next prove
Theorems [B.10 and B.11] using Theorems [3.1] and B.12]

Lemma 3.13. In the situation of Theorem [BI2] the following hold:
(1) There is no negative curve on X, p(X) = 2, and NE(X) = Nef(X) = R+R/
for two rays R and R’ in which R (resp. R') is generated by an eigenvector
of f*: N(X) = N(X) of eigenvalue deg f (resp. 1).
(2) There is a P -fibration m: X — T to a non-singular projective curve T with
an endomorphism h: T — T such that mo f = homx, deg f = degh, and
cl(F) € R for any fiber F' of m.
Moreover, the following hold for any f-completely invariant divisor S satisfying
S Z Sf:
(3) Ry =f*S—S, Supp Ry C S¢, and Sy = 7~ 1Sy;
(4) —(Kx+S) isnef, ( Kx+5)2 =0, (Kx+S)R<0, andcl(—(Kx+595)) € R’;
(5) if S # Sy, then S — Sy is a section of m, and cl(S — Sy) € R.

Proof. Let S be an f-completely invariant divisor such that § > Sy. Then Ry =
f*S — S by [24, Lem. 2.18] with Theorem BI2|{), and —(Kx + S) is nef with
(Kx +5)? =0and Kx +S 2 0 by [24, Cor. 2.25] with Theorem BI2). In
particular, cl(Kx + S) is an eigenvector of f*: N(X) — N(X) with eigenvalue 1.
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Hence, Ay = deg f. Thus, p(X) = 2 and X has no negative curve by [24, Thm. 3.22
and Prop. 3.24]. There is an extremal ray R such that (Kx + S)R < 0, and the
contraction morphism of R is a P!-fibration 7: X — T to a non-singular projective
curve T (cf. [24) Thms. 1.9 and 1.10]). By [24, Lem. 3.7], NE(X) = Nef(X) = R+R’
for R := Ry cl(—(Kx + S5)), where R (resp. R') is generated by an eigenvector of
f* with eigenvalue deg f (resp. 1). In particular, R and R’ are independent of the
choice of S. Since f* preserves R, there is an endomorphism h: T"— T such that
mo f=homw and degh = deg f, by [24, Lem. 3.16]. Thus, (), @), and @) have
been proved. We shall prove the rest of @) and (&).

@B): We have Supp Ry C Sy USuppAy = Sy (cf. [24, Lem. 2.17(4)]). For @),
it suffices to show the equality Sy = 715, and by [24, Lem. 2.19(2)], we are
reduced to proving that any prime component of S; does not dominate 7". Let
k be a positive integer such that f* is sufficiently iterated (cf. [24, Def. 2.16]).
For any prime component I' of Sy, we have (f*)*I' = (deg f)*TI, since (f*)* =
(f*)¥: N(X) — N(X) has only two eigenvalues 1 and (deg f)*. This implies that
cl(T') € R and that I" is a fiber of 7. Thus, any prime component of Sy does not
dominate T, and we have proved (@)).

[@): Assume that S — S; # 0. For a prime component C' of S — Sy, we have
(f™)*C = C for some m > 0. Thus, cl(C) € R" and CF > 0 for a general fiber
F of . Here, (S —S¢)F =SF =1by 0> (Kx + S)F = —2+ SF. Therefore,
S—S¢ = C and it is a section of 7. Thus, (B]) has been proved, and we are done. [

We shall prove Theorem applying Lemma B3T3

Proof of Theorem B12 We know that —(Kx +Sy) is nef by Lemma [BI3{). First
assume that —(Kx + Sy) is not semi-ample. Then (Kx + S§)Kx < 0 by [24]
Lem. 1.4]. By Lemma BI3|#), we have (Kx + S§)Kx = (Kx + Sf)Sy = 0 and
(Kx + S§)F < 0 for a general fiber F' of m. Thus, Sy = Ry = 0 and S =
0 by Lemma BI3|@B). In particular, —Kx is nef but not semi-ample. By [24]
Prop. 4.3], we have a finite cyclic cover 7: 7" — T from an elliptic curve 7" with
an endomorphism h': 77 — T’ such that 7 o /' = h o7, in which the following
conditions are satisfied for the normalization X’ of X xp T":

e The induced morphism v: X’ — X is étale in codimension 1.

e The induced P'-fibration 7': X’ — T" has only reduced fibers.

e There is an endomorphism f': X’ — X’ such that #’ o f' = h’ o7’ and

vof' =fou.

Since b’ is étale, ': X’ — T’ is a Pl-bundle by [24, Lem. 4.6(5)]. Note that
deg f' = degf = degh = degh’. In particular, f’ is an étale endomorphism
isomorphic to the base change of 7’ by h'. Since —Kx = v*(—Kx) is nef but not
semi-ample, either

o X' ~ Pr:/(F) for an indecomposable locally free sheaf of degree 0, or

o X' ~Pp/(Op & L) for a non-torsion invertible sheaf £ of degree 0

by Fact 223l The latter case does not occur. In fact, in this case, we have just two
sections I} and I'y of 7’ of self-intersection number 0, and I'j + I', are completely
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invariant under f: This is a contradiction to Lemma [3I3I[]), since the image v(T"} +
I'}) is f-completely invariant but is not a section of 7. Hence, the first case occurs,
and as a consequence, Theorem B.I2|[B]) holds.

Next, assume that —(Kx + Sy) is semi-ample. Since (Kx + Sf)F < 0 for a
general fiber F' ~ P! of 7 (cf. Lemma B.I3I[)), we have a fibration ¢: X — B ~ P!
such that Ox(—m(Kx + Sf)) ~ ¢*Op(l) for some m, | > 0. Moreover, there is
an automorphism hp: B — B such that ¢ o f = hg o ¢ by [24, Lem. 3.16], since
Kx + S¢ = f*(Kx + S¢). Since Sy = 7715}, (cf. Lemma BI3I@)), a general fiber
of ¢ is rational (resp. elliptic) if Sy # 0 (resp. = 0). Let X, be the set of points
b € B such that 1*(b) is not reduced. Then, hz'(Zy) = £y by [24, Lem. 4.6(1)].
If ¥, # 0, then #%, > 2 by [24, Prop. 4.14, Lem. 4.15], and hence, the reduced
divisor 1y~1(2y) is f-completely invariant and it has at least two prime components
dominating T' by m: This is a contradiction to Lemma BI3|[H). Therefore, X, = ()
and ¢: X — B is a Pl-bundle or a smooth elliptic fibration by [24, Cor. 4.7]. If
1 is an elliptic fibration, then X is the product of an elliptic curve and B ~ P!,
i.e., Theorem B.I2|) holds. If ¢ is a P-bundle, then X ~ P! x B, since X has no
negative section (cf. Lemma BI3|()), and hence, Theorem BI2[2]) holds. Thus, we
are done. ]

We shall prove Theorem B.I0] applying Theorems B.1] and

Proof of Theorem B.10. First, we shall prove the “if” part. Namely, we shall prove
the existence of a non-isomorphic surjective endomorphism f of X such that Ay =0
assuming that there is a finite Galois cover v: V' — X satisfying one of conditions
[@-@)) of Theorem If v satisfies Theorem BI0(6]), then the endomorphism
f exists by Proposition (cf. Remark 2]). For other conditions in ([I)-(®) of
Theorem B.10, we shall construct a reduced divisor S on X such that Kx + S is
pseudo-effective and that (V,*S) satisfies one of conditions in Theorem B} This
implies the existence of f by Theorem Bl and [24, Thm. 2.24].

If v satisfies Theorem BI0(I), then we have a reduced divisor S on X such
that v*S is the boundary divisor; thus, (V,v*S) satisfies Theorem B[], where
Kx + S ~qg 0 by Ky +v*S =v*(Kx +9).

Assume that v satisfies Theorem BI0(2). Then we have a reduced divisor S on
X such that v*S = pri (P, + P) + prj D for two points P; # P, of P! and for a
reduced divisor D on P! with deg D > 3, where pr;: P! x P! — P! stands for the
i-th projection for i = 1, 2. Thus, (V,v*S) satisfies Theorem BII[) for T' = P*,
where Kx + S is semi-ample by v*(Kx + S) = Ky +v*S = prj(Kr + D).

If v satisfies @) (resp. () of Theorem BI0 then (V,S = 0) satisfies Theo-
rem BTIB]) (resp. BII@)), and Kx is semi-ample by Ky = v*Kx.

If v satisfies Theorem BI0(H]), then we have a prime divisor S on X such that v*S
is a cross section of the projective cone V; thus, (V,v*S) satisfies Theorem BTN,
where Kx + 5 ~q 0 by Ky +v*S =v*(Kx + 5) ~ 0.

If v satisfies Theorem BI0IH]), then we have a reduced divisor S on X such
that v*S is a disjoint union of two sections of the P!-bundle V over an elliptic
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curve; thus, (V,v*S) satisfies Theorem B.I[), where Kx + S ~g 0 by Ky +v*S =

Assume that v satisfies Theorem BI0I[7). Then we have a reduced divisor S on
X such that v*S = pr} (P + P) for two points Py # P, of P! for the first projection
pry: V =P x T — P!; thus, (V,v*S) satisfies Theorem B.II[)). Here, Kx + S is
semi-ample, since v*(Kx + S) = Ky + v*S = prj Kt for the second projection
pry: V. =P! x T — T. Thus, we have completed the proof of ‘if’ part.

Second, we shall prove the ‘only if’ part. Now, X is assumed to have a non-
isomorphic surjective endomorphism f such that Ay = 0, and we shall find a finite
Galois cover v: V — X étale in codimension 1 satisfying one of conditions (I)—(8)
of Theorem 3101 We see that X is one of surfaces listed in Theorem Bl or in
Theorem If X is listed in Theorem BI2] then one of conditions (), @), (@),
and (@) of Theorem is satisfied for such a Galois cover V' — X. In fact:

o If Theorem B.I2(]) holds, then the identity morphism V' = X — X satisfies
Theorem [BI0(H).

e If Theorem BI2I[2) holds, then the identity morphism V' = X — X satisfies
(@ and @) of Theorem BI0

e The Galois cover V' — X in Theorem BI2(@B) satisfies Theorem B.IOI[6I).

Thus, we may assume that X is listed in Theorem Bl Then there exist an f-
completely invariant divisor S with Kx + S being semi-ample and a finite Galois
cover v: V. — X étale in codimension 1 satisfying one of conditions (I)—(Gl) of
Theorem[3.Il We can verify that V' — X satisfies one of conditions of Theorem [3.10l
In fact:

o If Theorem BII[) holds, then () (resp. (@), resp. (@) of Theorem B.I0 is
satisfied when g(T") = 0 (resp. = 1, resp. > 2).

e If Theorem BII[2) holds, then (&) (resp. @), resp. [ ) of Theorem B0l is
satisfied when g(T") = 0 (resp. = 1, resp. > 2).

Moreover, we have the following implications for conditions for V' — X and S:

Theorem BIIB]) = Theorem B.I0(H), Theorem BIIH) = Theorem B.I0([E),
Theorem [BII[H) = Theorem BI0(H), Theorem BII[) = Theorem BIO(T).

Thus, we are done. O
Finally, we shall prove Theorem [B.11] applying Theorems B.1] B.I0, and

Proof of Theorem B.11l. First, we shall prove the ‘if” part. Namely, we shall prove
the existence of a non-isomorphic surjective endomorphism f of X such that Ry =0
assuming that there is a finite Galois cover v: V' — X étale in codimension 1
satisfying one of conditions ([I)-#) of Theorem BIIl If v satisfies () (resp. @)
of Theorem BT then (V,S = 0) satisfies [B]) (resp. [@))) of Theorem Bt In this
case, Kx is nef by Ky = v*Kx, and hence, X has an expected endomorphism f by
Theorem BTl and [24] Lem. 2.22]. If v satisfies @) (resp. @)) of Theorem BT, then
X has such an endomorphism by Lemma 25l for V = A x B with (4, B) = (T, P')
(resp. by Proposition 2:25)) and by Remark 211 Thus, we have proved the ‘if” part.
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Second, we shall prove the ‘only if’ part. Now, X is assumed to have a non-
isomorphic surjective endomorphism f such that R = 0, and we shall find a finite
Galois cover v: V. — X étale in codimension 1 satisfying one of conditions (-
) of Theorem BIIl Hence, X is one of the surfaces listed in Theorem B1] or in
Theorem in which Ry = 0. If X is listed in Theorem then either (3] or
@) of Theorem BITlis satisfied. In fact:

e If Theorem BI2|[]) holds, then the identity morphism V' = X — X satisfies
Theorem BITI[E]).

e The case Theorem BI2(Z) does not occur, since P! x P! is simply connected.

o If Theorem BI2B]) holds, then the cover V' — X satisfies Theorem BITIH).

Thus, we may assume that X is listed in Theorem Bl Then there exist an f-
completely invariant divisor S with Kx + S being semi-ample and a finite Galois
cover v: V — X étale in codimension 1 satisfying one of ({I)—(@]) of Theorem B.1]
We shall finish the proof by showing the following;:

(a) If one of (), (@), and (@) of Theorem B.1] holds, then Ry # 0.

(b) If @) (resp. @) of Theorem B holds, then v satisfies () (resp. one of (),
@), and @))) of Theorem [31T1

(c) If Theorem BII) holds and if Ry = 0, then there is another finite Galois
cover V" — X étale in codimension 1 satisfying Theorem B.ITIB]).

Assertion (D)) holds trivially. We shall prove (@). If Theorem BIII]) holds, then
Sy # 0 by Remark B2l and it implies: Ry # 0 (cf. [24] Lem. 2.17(4)]). If The-
orem BIIE) holds, then f*S = 65 for the cross section S, since p(X) = 1 and
f*: N(X) — N(X) is the multiplication map by d; > 1; thus, 0 # S < Sy and
Ry # 0. We shall show that Ry # 0 when Theorem [BJ[6) holds. In this case, the
non-singular part Ve is also a toric variety and its fundamental group is finite,
since the 1-dimensional cones in the fan generate a finite index subgroup of the
group of 1-parameter subgroups (cf. [25] Prop. 10.2], [9] §3.2]). Now, f lifts to an
endomorphism fy of V under which the boundary divisor v*S' is completely invari-
ant, by [24, Thm. A]. If R; = 0, then Ry, = 0 and the m-th power fi': V — V
induces a finite étale cover (f{}’)*lvreg — Vieg Of degree > 1 as m > 1. This is a
contradiction. This shows (@).

We shall show (@). Here, we assume that Ry = 0 and that Theorem BII[E) holds
for v: V — X. By [24, Thm. A], we may assume that there is an endomorphism
fv:V — V satisfying vo fiy = fowv. Then fy is étale and v*S is completely
invariant under fy,. Here, X and V have no negative curve by [24, Prop. 2.20(3)].
Since v*S is a disjoint union of two sections, V' ~ Pp(Or @ L) for an elliptic curve
T and an invertible sheaf £ on T with deg £ = 0. Since 71 (V) ~ 71 (T), the étale
endomorphism fi, descends to an étale endomorphism h: T — T such that degh =
deg f and that 7o fyy = h o for the structure morphism 7: V' — T'. In particular,
fv induces an isomorphism V ~ V X T. Therefore, h*L ~ £ or h*L ~ L&,
which implies that £ is a torsion invertible sheaf, since h* +id: Pic®(T) — Pic®(T)
is surjective. Thus, we can find a finite étale cover 7: 7' — T such that 7*L£ ~ Op.
Then there is an isomorphism V’ := V x7 T’ ~ P! x T’ over T’. Let V" — X be the
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Galois closure of the composite V! — V — X. Then V" — V’ is étale and V"' ~
V! X T" =~ P x T" for a finite étale cover T" — T", since w1 (V') ~ 71 (T"). The
finite Galois cover V" — X is étale in codimension 1 and satisfies Theorem BITI[3]).
Thus, (@) has been proved, and the proof of Theorem BIT] has been completed. O

4. NON PSEUDO-EFFECTIVE CASE OF PICARD NUMBER GREATER THAN 1

Let X be a normal projective surface with a non-isomorphic surjective endo-
morphism f. By Theorem B (cf. [24, Thm. A]), the structure of X has been
determined when Kx + S is pseudo-effective for an f-completely invariant divisor
S. For non-pseudo-effective Kx + .5, in Section [, we shall study the following two
cases:

e p(X) >3 and Kx + Sy is not pseudo-effective;
e p(X) =2, Kx is not pseudo-effective, and —Kx is not big.
These cases are treated in Sections [4.1] and 2] respectively.

4.1. The case where Picard number is greater than 2. We introduce the
notion of an L-surface in Definition below, and prove in Proposition 3] below
that (X, Sy) is an L-surface when Kx + Sy is not pseudo-effective and p(X) > 3.
Theorem is a basic structure theorem for L-surfaces. In Corollary 6 we shall
show that (X, B + Sy) is a toric surface or a half-toric surface for a prime divisor
B ¢ Sy in the sense of [22] provided that —(Kx + Sf) is not big in addition.

Definition 4.1. Let X be a normal projective surface. The number of negative
curves is denoted by neg(X) < co. For a reduced divisor D, the number of prime
components of D is denoted by n(D) (cf. [22]).

Definition 4.2. Let X be a normal projective surface and S a reduced divisor on
X. If the following conditions are satisfied, then (X, S) is called an L-surface:
(i) X is rational, p(X) > 3, and (X, S) is log-canonical,
(ii) —(Kx +S) is nef but not numerically trivial;
(iii) S contains all the negative curves on X.

Remark. The prefix “L-” comes from a property that S is a linear chain of rational
curves (see Theorem H|[E) below).

Proposition 4.3. Let f be a non-isomorphic surjective endomorphism of a normal
projective surface X such that p(X) > 3 and that Kx + Sy is not pseudo-effective.
Then (X, Sy) is an L-surface.

Proof. By [24, Thm. E and Prop. 2.20(3)], we know that (X, Sy) is log-canonical
and that Sy contains all the negative curves on X. Now X is ruled, since Kx is not
pseudo-effective. Then X is rational by [24, Thm. 4.16] and by p(X) > 3. Since
Sy = Spr for any k > 0 (cf. [24, Lem. 2.17(3)]), we may assume that f*: N(X) —
N(X) is the multiplication map by &; = (deg f)'/? > 1, by [24, Thm. 3.22]. Then

Af ZKx—i-Sf—f*(Kx-i-Sf) = —(5f—1)(KX—‘rSf).

Thus, —(Kx +Sy) is nef. This is not numerically trivial as Kx + Sy is not pseudo-
effective. Therefore, (X, Sy) is an L-surface. O
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Lemma 4.4. Let X be a normal projective surface. For a nef Q-divisor D and a
prime divisor C' on X, if DC > 0, then there is a positive rational number o such
that tC' + D is nef and big for any 0 < t < a.

Proof. Tt is enough to take a positive rational number « such that (tC' + D)C > 0
for any 0 < t < a. For, tC + D is nef and (tC + D)? > t(tC + D)C > 0 for any
0<t<a. (]

Theorem 4.5. The following hold for any L-surface (X,S):

(1) The surface X has only rational singularities. In particular, X is Q-
factorial, the Weil-Picard number p(X) (cf. [24} §1.1]) equals the Picard
number p(X), and the numerical equivalence & coincides with the Q-linear
equivalence ~q for Q-divisors on X.

(2) The pseudo-effective cone NE(X) is polyhedral and generated by the numer-
ical classes of negative curves on X.

(3) The divisors —Kx and S are big, and —(Kx + S) is semi-ample.

(4) One has inequalities

p(X) < neg(X) < n(8) < p(X) + L.

(5) If n(S) = p(X) + 1, then (X, B+ S) is a toric surface for a prime divisor
B¢gS.
(6) The divisor S is a linear chain of rational curves (cf. [22, Def. 4.1]), and
one end component C of S is a negative curve satisfying (Kx + 5)C < 0.
(7) Let S be the union of non-end components of S. Then Kx + S is Cartier
along S* and Ox(Kx +S) ® Ogs ~ Og;.
(8) If the intersection matriz of S is not negative definite, then there exist a
prime divisor B ¢ S and a P'-fibration 7: X — P! such that
e (X,B+5S) is a toric surface,
e S% is a set-theoretic fiber of 7, the other fibers are all irreducible,
e B is a fiber of w, and end components of S are sections of .

Proof. [Il): This is a consequence of [22, Lem. 2.31], since —Kx is not pseudo-
effective and H?(X,Ox) ~ H*(X,0x(Kx))" = 0.

@) and @B)): The cone NE(X) is defined in N(X) (cf. [24] §1.1]), but now N(X) =
NS(X)®R by () for the Néron—Severi group NS(X). By the cone and contraction
theorems (cf. [24, Thm. 1.9 and 1.10 and Cor. 1.11(2)]) and by p(X) > 3, there is a
rational curve C' on X such that (Kx +S)C < 0 and C? < 0. Then tC — (Kx +S)
is nef and big for 0 < t <« 1 by Lemma 4l Hence, —Kx is big by C C S (cf.
Definition L2I()). Therefore, —(Kx +.5) is semi-ample by [24, Prop. 1.5], and ()
holds by [24, Thm. 1.13]. Then S is big by (@) and Definition EE2|[m). Thus, (3]
has been shown.

@) and (B): We have neg(X) < n(S) by Definition FE2([), and p(X) < neg(X)
by [@). On the other hand, n(S) < p(X) + 1 by Shokurov’s criterion for toric
surfaces [29] Thm. 6.4] (cf. [22, Thm. 1.1]), since (X, S) is log-canonical and — (K x +
S) is nef. Thus, we have inequalities in ({@l). Moreover, (@) holds by [22, Thm. 1.3],
since Kx + S & 0.
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[@): Since (X, S) is log-canonical and —(Kx +S) is nef, if S is connected, then,
by [22 Lem. 4.4], S is a linear chain of rational curves and the negative curve C' in
the proof of ([2) and (@) is an end component. To prove the connectedness of S, we
first show the following weaker assertion:

(6") S—T is connected for any prime component ' of S such that (K x+S)T' < 0.

By Lemma 4] tI' — (Kx + S) is nef and big for 0 < ¢t < 1. Then H*(X,Ox (T —
S)) = 0 by a version of Kawamata—Viehweg vanishing’s theorem [28 Thm. (5.1)]
(cf. [23], Prop. 2.15]), since

I—8=Kyx+TI—(Kx +9)7.

In particular, C ~ H%(X,0x) — H°(X,0s_r) is surjective, and (6]) has been
shown. The connectedness of S is proved as follows: Assume the contrary. Then
S has two connected components S — C and C by (67). Here, (Kx + S)T' = 0 for
any prime component I' of S — C. For, otherwise, S = CUT by @), contradicting
n(S) > neg(X) > p(X) > 3 (cf. @)). Then (tC — (Kx + S))(S — C) = 0 and it
implies that the intersection matrix of S — C' is negative definite. This contradicts
the bigness of S = (S —C)+ C. Therefore, S is connected, and we have proved ().

(@): This follows from (@) and [22] Lem. 4.4(3)], since (X, S) is log-canonical and
—(Kx + S) is nef.

[®): Assume that the intersection matrix of S% is not negative definite. Then the
positive P of the Zariski-decomposition (cf. [23, Lem.-Def. 2.16]) of S* is not zero,
and P & —c(Kx + S) for a rational number ¢ > 0 by the Hodge index theorem,
since —(Kx + S) is nef and (Kx + S)P = 0 (cf. [@)). Let 7: X — T ~ P! be a
fibration defined by the semi-ample divisor —(Kx + 5), i.e., —(Kx + S) ~q 7*H
for an ample Q-divisor H on 7. Then P & 7*D for a Q-divisor D on T, and S°
is contained in a fiber of 7. Thus, Supp P = S% is a set-theoretic fiber of 7. End
components of S dominate T, since S? intersects them. Hence, 7 is a P'-fibration by
KxF = —SF <0 for a general fiber F' of w. In particular, the end components are
sections of . The fiber of 7 different from S is irreducible, since any negative curve
is contained in S. Thus, n(X) = 2 +n(S%) — 1 = n(S) — 1 by [22, Prop. 2.33(7)].
Then (X, B+ S) is a toric surface for a prime divisor B ¢ S by ([@)). Here, B is a
fiber of m by BN S% = (). This shows (§). Thus, we are done. O

Corollary 4.6. Let X be a normal projective surface admitting a non-isomorphic
surjective endomorphism f such that p(X) > 3, Kx + Sy is not pseudo-effective,
and —(Kx + Sy) is not big. Then (X,B + Sy) is a toric surface or a half-toric
surface (cf. [22, Def. 7.1]) for a prime divisor B ¢ Sy.

Proof. The pair (X, Sy) is an L-surface by Proposition €3] and —(Kx +.S¥) is semi-
ample by Theorem [L5|[]). Since X is rational, we have a fibration 7: X — T ~ P!
such that —(Kx + Sy) ~g 7*A of an ample Q-divisor A on 7. By (@) and ()
of Theorem L5, S; is a linear chain of rational curves and the union (S;)* of
non-end components is contained in a fiber 7=1(¢) for some point ¢t € T. Since
negative curves of X are all contained in Sy (cf. [24, Prop. 2.20(3)]), we see that
n71(t) € Sy and that every fiber of m different from m~!(¢) is irreducible. In
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particular, n(7~1(t)) + 1 = p(X) by [22, Prop. 2.33(7)]. Thus, (S;)f = 7~1(¢) if
and only if n(Sy) = p(X)+1; in this case, (X, B+Sy) is a toric surface for a prime
divisor B C Sy by Theorem [H|[H]).

Therefore, we may assume that (S)f # 7~1(t) and n(Sy) = p(X). In this case,
we can write 71(t) = Sy — C1 = (S4)% + Cs for end components C; and Cy of
Sy, since Sy is big (cf. Theorem ELHI[B])). The curve C; is a double section of 7 by
(Kx +S§)F = (Kx + C1)F = =2+ C1F = 0 for a general fiber F' of m. Here,
CyNa~t(t) = C1 N (Sy)? consists of one point. Thus, ¢ is a branched point of
the double cover ¢, : C1 — T. Let t' € T be the other branched point of 7|¢, .
Then Sy Na~1(¢') = Cy N7~ (') consists of one point 2/, and (X, Sy + 7~ 1(t))
is log-canonical by [24, Prop. 3.17(6)]. Let m be the multiplicity of 7*(¢'), i.e.,
7*(t') = mr~'(t'). Then Spr—1(¢') = Ciw~'(t') = 2/m. Hence, m is even, and
if m > 2 (resp. m = 2), then (X,2’) is a cyclic quotient singularity of order m/2
(resp. ' € Xyeg). Since #(Sy—C1)NCy =#r 1 (t)NCy =1 and (Kx + Sf)Cy =
—(m*A)C; = —2deg A < 0, we have (Kx + S§)Cy = —2/m by [22| Prop. 3.29].
Therefore, Kx + Sy + 7 1(¢') & 0. Now (X, Sy + 7 (') is log-canonical and
St +m(#') is a linear chain of rational curves. Since n(Sf+771(t)) = p(X) +1
and since p(X) = p(X) (cf. Theorem EH([) or [24, Prop. C]), (X, Sy +n~1(t')) is
a half-toric surface by [22, Thm. 1.3]. Thus, we are done. O

4.2. The case where the Picard number equals 2 and —Kx is not big. We
shall prove Theorem [£.7] and Proposition 8] below:

Theorem 4.7. Let f: X — X be a non-isomorphic surjective endomorphism of
a normal projective surface X with Picard number p(X) = 2. Assume that Kx
is not pseudo-effective and that —Kx is not big. Then there exist a finite Galois
cover v: V. — X étale in codimension 1 and an endomorphism fy:V — V such
that vo fy = f¥ov for some k > 0 and that V is one of the following surfaces:
(1) The direct product P x T for a non-singular projective curve T of genus at
least 2.

(2) A P -bundle over an elliptic curve associated with a semi-stable locally free
sheaf of rank 2.

Remark. When X is irrational, Theorem [£7is deduced from [24, Thm. 4.16], since
X is ruled, p(X) = 2, and —Kx is not big.

Proposition 4.8. In Theorem [, assume in addition that deg f # Ay. Then the
surface V' can be taken as the P*-bundle Pr (O & L) over an elliptic curve T for
an invertible sheaf L of degree 0.

For the proof of Theorem [£.7], we begin with the following:

Lemma 4.9. The following hold in the situation of Theorem [E T

(1) The cone NE(X) is the sum R+ R’ of two extremal rays R and R’ such that
KxR <0 and KxRI > 0.

(2) The pullback homomorphism f*: N(X) — N(X) preserves R and R, i.e.,
Ff*R=R and f*R' =R
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(3) There is no negative curve on X.

(4) The contraction morphism of the extremal ray R is a fibration 7: X — T
to a non-singular projective curve T .

(5) There is an endomorphism h: T — T such that mo f = hom.

(6) The eigenvalues of f*: N(X) — N(X) are degh and deg f/degh, where
deg f/degh is also an integer.

Proof. Since p(X) = 2, NE(X) is spanned by two extremal rays R and R’. Either
KxR or KxR’ is negative, since Kx is not pseudo-effective (cf. [24, Thm. 1.9]).
If both KxR and KxR’ are negative, then —Kx is ample, contradicting the as-
sumption. Thus, we may assume that KxR < 0 and KxR’ > 0. This shows

@.

We have ([B)) = (@) by the contraction theorem (cf. [24] Thm. 1.10]), since p(X) =
2. Moreover, we have [2)) + ) = (@) by [24, Lem. 3.16]. The implication @) + (&)
= (@) is shown by [24] Prop. 3.17] and by p(X) = 2, since R (resp. R’) is generated
by an eigenvector of f* with eigenvalue degh (resp. deg f/degh).

If \f # 6y, then (2) and (B]) hold by [24, Lem. 3.7]. Thus, we may assume that
Af = &7 and it is enough to prove (@) and (@). Then (f2)* = (f*)?: N(X) — N(X)
is the multiplication map by deg f, by [24, Lem. 3.7]. Hence, —K x is numerically
equivalent to an effective Q-divisor by

Rp2 = Kx — (f*)"(Kx) & (deg f — 1)(—Kx).

Since —Kx is not big, cl(—Kx) is contained in an extremal ray of NE(X). If
cl(-Kx) € R, then (=Kx)? > 0 by KxR < 0; it implies that —Kx is big by
[22, Lem. 2.16(2)], and this is a contradiction. Therefore, cl(—Kx) € R’, and
K% < 0 by KxR' > 0. Note that cl(I) € R’ for any prime component I' of
Rp2 & (deg f — 1)(—Kx) as R’ is an extremal ray.

We shall show that R’ is nef, i.e., it is generated by the numerical class of a nef
Q-divisor. Assume the contrary. Then R" = R cl(T") for a negative curve I'. Let
¢: X — X be the contraction morphism of I". Then there is an endomorphism
f: X — X such that ¢o f = fo¢ by [24, Lem. 3.14], and we have K+ & 0 by
cl(—=Kx) € R'. By [24, Thm. A], there exist a finite Galois cover A — X étale in
codimension 1 from an abelian surface A and an endomorphism f4: A — A as a lift
of f. Let A’ be the normalization of X x<A. Then f x f, induces a non-isomorphic
surjective endomorphism f’: A’ — A’. Any prime component of the pullback of T
to A’ is a negative curve. Hence Ry # 0. This contradicts [24, Lem. 2.22], since
K 4/ is pseudo-effective.

Any prime component of Ry» and —Kyx are nef, since R’ is so. Any negative
curve on X is contained in Sy (cf. [24, Prop. 2.20(3)]), but Sy = S < Ry
for an integer & > 0 such that f* is sufficiently iterated (cf. [24) Def. 2.16 and
Lem. 2.17(4)]). Hence, there is no negative curve on X, i.e., (@) holds. If f*R’ =
R, then Kx f*(—Kx) < 0 and Ryf*(—Kx) < 0; this is a contradiction, since
f*(=Kx) is nef. Hence, f*R = R and f*R’ = R’, i.e., @) holds. Thus, we are
done. (|
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Corollary 4.10. In the situation of Lemma @3] cl(Ry) € R'. In particular, 7(T") =
T for any prime component I' of R¢. If degh =1, then Ry # 0. Ifdegh > 1, then
c(—Kx) € R, in particular, —K x is nef, and K% = 0.

Proof. Let F be a general fiber of m. Then 0 # cl(F) € R. Let D be a Q-divisor
such that 0 # cl(D) € R". Then F? = D? = 0 and FD > 0. There exist rational
numbers a and g such that —Kx & aF' + D. Here § > 0by 2= —-KxF = SFD.
We have

Ry & a(degh — 1)F + f(deg f/degh — 1)D

by Kx = f*(Kx)+ Ry, f*F & (degh)F, and f*D & (deg f/degh)D. Since
cl(Ry) € NE(X) = R+ R/, we have

a(degh —1) > 0.

If degh = 1, then Ry & f(deg f — 1)D, and hence, Ry # 0 and cl(Ry) € R'.
Assume that degh > 1. Then a > 0 and —Kx is nef. Since —Kx is not big
and KxF < 0, we have cl(—Kx) € R’. It implies that o = 0, K% = 0, and
Ry & [(deg f/degh — 1)D. In particular, cl(Ry) € R’ even when degh > 1. For
any prime component I' of Ry, we have cl(T') € R" as R" is an extremal ray, and
hence, FT' > 0 and 7(T") =T. O

Lemma 4.11. Let X be a P'-bundle over an elliptic curve T associated with an
indecomposable locally free sheaf of rank 2 and degree 0. Then Ay = deg f for any
surjective endomorphism f: X — X.

Proof. We may assume that deg f > 1. The structure morphism 7: X — T of the
P!'-bundle is just the Albanese morphism of X. Thus, there is an endomorphism
h: T — T such that mo f = how. Here, degh | deg f by [24 Prop. 3.17(1)]. If
As = 0y, then degh = é¢ by [24, Lem. 3.7(1), Prop. 3.17(2)]. Hence, if degh =
deg f, then Ay > 0y, and Ay = deg f by [24, Prop. 3.25]. Hence, for the proof, it
suffices to derive a contradiction assuming that degh < deg f.

We may assume that X = Pp(€) for a locally free sheaf £ with a non-split exact
sequence 0 — Or — & = O — 0 (cf. Fact Z23([B])). Then h*E ~ €. Thus, the
base change 7, : X, = X x0T — T of w by h: T — T is isomorphic to . There
is a surjective morphism g: X — X} over T such that f = p; o g for the first
projection p;: X, — X. Since 7w, ~ m, g is regarded as a non-isomorphic surjective
endomorphism of X over T, where deg g = deg f/ deg h. Therefore, we may assume
that h = idp.

Let T be a section of 7 corresponding to the surjection &€ — Op. Then Kx ~
—2T, k(' X) = 0, and T is a unique prime divisor of self-intersection number
zero which dominates T' (cf. Fact Z23([B))). As a consequence, f*I' = mI for a
positive integer m, where m = deg f, since (f*T')F = I'(f.F) = (deg f)T'F for a
fiber F' of w. There is an effective divisor A on X such that I' ¢ Supp A and
that Kx +T' = f*(Kx +T) + A (cf. [23] Lem. 1.39]). Then A ~ (degf — 1)T
by —Kx ~ 2I', and hence, A = (degf — 1)T’ by (I, X) = 0, contradicting:
I' ¢ Supp A. Thus, we are done. ([
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Proof of Theorem L7l Assume that degh = 1 for the endomorphism h: T — T in
Lemma L9 Then, by 24, Thm. 4.9], we have a finite Galois cover v: P! x T" — X
étale in codimension 1 for a non-singular projective curve 7" and an endomorphism
f' of P x T" such that vo f' = f¥ov for some k > 0. Here, T’ is not rational, since
—Kpiyr = v*(—Kx) is not big. Thus, Theorem .7 holds true when degh = 1.

For the rest of the proof, we assume that deg h > 1. Note that every fiber of 7 is
irreducible as 7 is the contraction morphism of an extremal ray. Let ¥ be the set
of points ¢ € T such that 7*(t) is not reduced. If ¥ = (), then X is a P!-bundle over
T by [22 Prop. 2.33(4)], and T is an elliptic curve, since K% = 0 (cf. Lemma FL10).
This P*-bundle is associated with a semi-stable locally free sheaf by Lemma ELI).

Thus, we may assume that ¥ # (). By Corollary .10, any prime component
of Ry dominates T. Then, by applying [24, Lems. 4.1 and 4.2 and Prop. 4.3] to
morphisms 7: X — T and h: T — T in Lemma .9 we have a finite cyclic cover
7: T" — T from an elliptic curve T” with an endomorphism h': T" — T” such that
Toh' = h¥or for some k > 0 and that the normalization X’ of X xp T" satisfies
the following conditions:

e The induced finite cyclic cover v: X’ — X is étale in codimension 1.

e The induced P!-fibration 7': X’ — T" has only reduced fibers.

e There is an endomorphism f': X’ — X’ such that #’ o f/ = A/ o 7’ and

vof =fkou.

Since A’ is étale with degh’ = (degh)® > 1, X' is a P'-bundle over T’ by [24
Cor. 4.7]. This P!-bundle is associated with a semi-stable locally free sheaf, since
—Kx =v*(—Kx) and —Kx is nef (cf. Corollary AI0]). Thus, Theorem 7] holds
true when deg h > 1, and we are done. O

Proof of Proposition 8 By the assumption: deg f # Ay and by Lemma I9([d]),
we have 1 < degh < deg f. Note that

degh’ =degh, degf' =degf, and Ay = \;=max{degh,degf/degh}

for endomorphisms k' and f’ in the proof of Theorem H.7 considered in the case
where ¥ # (). By the proof of Theorem 7] and by Lemma EII] we may assume
that T is an elliptic curve and 7: X — T is a P!-bundle associated with a stable
locally free sheaf £ of degree 1. There is a point o € T such that h(o) = o, since
degh > 1. Then h is a group homomorphism with respect a Lie group structure
on T in which o is the zero element. In particular, pg) o h = h o ugy for the
multiplication map p): T'= Ty — T by 2. Here, X(3) = X x1 T(3) ~ P! x T2
by a property of stable locally free sheaf of degree 1 (cf. Fact Z23|(C)). The first
projection py: X(9) — X is étale, and there is an endomorphism f(o): X(2) = X(g)
such that py o fio) = fopy by [24, Lem. 4.1]. Hence, we can take Pl x X ~ X2y as
V. Thus, we are done. ([l

5. PROOFS OF THEOREMS IN THE INTRODUCTION

5.1. The number of prime components of S;: Proof of Theorem [I.3l We
shall prove Theorem in the introduction. Let f be a non-isomorphic surjective
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endomorphism of a normal projective surface X. Theorem announces the in-
equality n(S;) < p(X) + 2 with characterization of X in case n(Sy) > p(X) + 1.
Here, n(Sy) stands for the number of prime components of Sy (cf. Definition FT]).

Lemma 5.1. Let f be a non-isomorphic surjective endomorphism of a normal
projective surface X. Then (X, Sy) is not a pseudo-toric surface of defect 1 in the
sense of [22 Def. 6.1].

Proof. Assume that (X, Sy) is a pseudo-toric surface of defect 1. Then Sy is a
cyclic chain of rational curves and n(Sy) = p(X) + 1.

First, we consider the case where Ay > §;. Then p(X) = 2 and f*: N(X) —
N(X) has two eigenvalues Ay > )\} = deg f/A; by [24, Prop. 3.25], since Kx ~ —S;
is not pseudo-effective. In particular, n(Sy) = 3, and hence, Sy is a cyclic chain of
rational curves consisting of three prime components I'y, I's, and I's. By replacing
f with a power f¥, we may assume that f*I'; = m;T; for any 1 < i < 3 (cf. [24]
Lem. 2.17(1)]), where m; = Ay or m; = )\}. If i # j, then m;m; = deg f by
I,T; > 0 (cf. [24, Prop. 2.20(1)]). This is impossible.

Therefore, A\; = d;. By replacing f with some power f*, we may assume that
f i N(X) — N(X) is a scalar map by [24) Cor. 3.23], and moreover, we may
assume that f*I' = ;I for any prime component I' of Sy (cf. [24, Def. 2.16]). By
[22, Thm. 6.5], there is a toroidal blowing up p: X' — X with respect to (X, Sf)
(cf. [22], Def. 4.19]) such that

e (X’,9") is a pseudo-toric surface of defect 1 for S" = u~1(Sy),

o Kx/ +8 = p*(Kx + Sf) ~0,

e there is a negative curve on X’ not contained in S’ (cf. [22, Def. 6.7]).
Moreover, there is an endomorphism f': X’ — X’ such that po f' = f o u by [23]
Prop. 5.6]. Then Sy = pu~1(Sy) = S’ by [24, Lem. 3.15(3)]. This is a contradiction,
since S contains all the negative curves on X (cf. [24, Prop. 2.20(3)]). Therefore,
(X, Sf) is not a pseudo-toric surface of defect 1. O

Lemma 5.2. Let f be a mon-isomorphic surjective endomorphism of a normal
projective surface X such that Kx + S is not pseudo-effective. If one of the three
conditions below is satisfied, then —(Kx + Sy) is nef:

L] )\f = 5f;

e n(Sf) = p(X);

o —Kx is pseudo-effective.

In particular, if —Kx is big, then —(Kx + Sy) is semi-ample.

Proof. The last assertion follows from the previous one by [24, Prop. 1.5]. Assume
first that Ay = d;. By [24, Cor. 3.23] and by replacing f with a power f*, we may
assume that f*: N(X) — N(X) is a scalar map. Then —(Kx + S) is nef by

—(0y —1)(Kx + Sf) ¥ Kx + S — f*(Kx + Sf) = Ay,

where the refined ramification divisor Ay is nef (cf. [24, Prop. 2.20(4)]). Thus, we
may assume that Ay > dy.
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By applying [24], Prop. 3.25] to Kx+S¢, we see that p(X) = 2, X has no negative
curves, and there exist a P!-fibration 7: X — T to a non-singular projective curve
T and an endomorphism h: T"— T such that

o mof=nhom, degh |degf, A\; = max{degh,deg f/degh},

o (Kx + Sf)F <0 and Feq ~ P! for any fiber F of .
Here, R = R>g cl(F) is an extremal ray of NE(X) = Nef(X) and 7 is the contraction
morphism of R. Let R’ be the other extremal ray. This is generated by the numerical
class of a nef Q-divisor L such that f*L & (deg f/degh)L and L? = 0. There exist
rational numbers o and 8 such that

—(Kx +Sf) ¥ aF + BL.
Here, 8 > 0 by (Kx + S¢)F < 0. Moreover, a(degh — 1) > 0, since
Ay=Kx+85—f"(Kx+Sy) ®a(degh—1)F + B(deg f/degh — 1)L

is nef. If degh > 1, then o > 0, and —(Kx + S¢) is nef. Hence, we may assume
that degh = 1. Then Ay = deg f, and there is a positive integer m such that
(f™)T = (deg f)™T for any prime component I' of Sy (cf. [24, Lem. 2.17(1)]).
Consequently, cl(Sy) € R" = R>gcl(L) and SyL = 0. In particular, every prime
component of Sy dominates T. Since 0 > (Kx + Sy)F = —2 + S¢F, we have
n(Sy) < 1 and n(Sy) < 2 = p(X); by contraposition, if n(Sy) > p(X), then
degh > 1 and —(Kx + Sy) is nef. If —K x is pseudo-effective, then Kx L < 0, and
we have
aFL=—(Kx+S;)L=—-KxL>0

by SyL = 0; hence, a > 0, and —(Kx + Sy) is nef. Thus, we are done. |

Lemma 5.3. Let f be a mon-isomorphic surjective endomorphism of a normal
projective surface X. If —(Kx + Sy) is not nef, then n(Sy) < p(X).

Proof. We shall derive a contradiction assuming that —(Kx + Sf) is not nef and
n(Sy) > p(X). Then Kx+S; is pseudo-effective by Lemmal5.2l Since Kx+Sy % 0
and Sy # 0, by Theorem 3] and Remark [32] we have a finite surjective morphism
v: P! x T — X étale in codimension 1 for a non-singular projective curve T with
g(T) > 2, and v=1(Sf) = {P1, P2} x T for two points P; and P, of P!; in other
words, the case (Il only occurs in Theorem Bl where S = S;. Thus, p(X) <
n(Sy) < n(v*Sy) = 2. On the other hand p(X) > 1, since the semi-ample Q-
divisor Kx + Sy defines a fibration from X to a non-singular projective curve (cf.
[24, §5.1]). This is a contradiction. O

We shall prove Theorem [L.3

Proof of Theorem [[.3l We may assume that n(Sy) > p(X). Then —(Kx + S) is
nef by Lemmal[5.3] Since (X, Sy) is log-canonical (cf. [23] Cor. 3.6], [24, Thm. E]), we
can apply Shokurov’s criterion [29, Thm. 6.4] for toric surfaces (cf. [22, Thm. 1.1])
to (X, S¢). Then n(Sy) < p(X)+2, where the equality holds if and only if (X, S¢)
is a toric surface. If n(Sy) = p(X) + 1, then one of the following holds by [22]
Thm. 1.3]:
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e (X,B+ Sy) is a toric surface for a prime divisor B ¢ S§;
e (X,Sy) is a pseudo-toric surface of defect 1;
e (X,Sy) is a half-toric surface.

Here, the second case does not occur by Lemma [5.J1 Thus, we are done. (I

5.2. On non-quotient singularities: Proof of Theorem We shall prove
Theorem after proving Proposition 0.4 and Lemma below.

Proposition 5.4. Let X be a normal projective surface admitting a non-isomorphic
surjective endomorphism f. Assume that X has only rational singularities and that
X has a non-quotient singular point P. Then:

(1) X is a rational surface with p(X) =1 and —Kx is ample;
(2) P is a unique non-quotient singular point of X and f~1(P) = {P};
(3) f is étale in codimension 1 on an open neighborhood of P;
(4) the index 1 cover of (X, P) with respect to Kx (cf. [23, Def. 4.18(4)]) is a
simple elliptic singularity.
Let p: Y — X be a birational morphism from a normal projective surface Y such
that ¢ is an isomorphism outside ¢~'(P) and that ¢ gives a standard partial res-
olution of the log-canonical pair (X,0) at P (cf. [23] Def. 3.24]). Then;
(5) Y has only quotient singularities with p(Y') = 2;
(6) Ky + E = ¢*Kx for E = ¢ }(P) ~ P
(7) E is a unique negative curve on Y
(8) there is an endomorphism fy:Y — Y such that ¢ o fy = fo .

Proof. The surface X is rational and Kx is not pseudo-effective by [24, Thm. 6.1].
In fact, surfaces satisfying conditions in [24] Thm. 6.1] have only quotient singu-
larities or simple elliptic singularities. Let A be the set of non-quotient singular
points of X. If P € A, then f~1(P) C A. Hence, there is an integer k¥ > 0 such
that (f*)~1(P) = {P} for any P € A (cf. [24, Lem. 2.2]). Then f* induces a non-
isomorphic finite surjective endomorphism (X, P) — (X, P) of the germ (X, P) of
a normal complex analytic surface for any P € A. Hence, A N Supp Ry = 0 by
[6, Thm. B(3)] (cf. [23, Cor. 3.7]). In particular, A N Supp Ry = (), and hence, [ is
étale in codimension 1 on an open neighborhood of P.

Let ¢: Y — X be a birational morphism from a normal projective surface Y
such that ¢ is an isomorphism outside ¢ ~'A and that ¢ gives standard partial
resolutions of the log-canonical pair (X,0) at all P € A. See [23, Exam. 4.29] for a
detailed description of the standard partial resolution. Then the following hold for
the p-exceptional locus E = ¢~ 1A by properties of essential blowings up (cf. [23|
Def. 4.24]):

e (Y, E) is log-canonical with Ky + F = ¢*Kx;

o (Y, E) is 1-log-terminal outside Sing E' (cf. [23] Def. 2.1]);

e Y has only quotient singularities.
Since (X, P) is not a cusp singularity for any P € A, by applying [23, Thm 5.3], we
have an endomorphism g: Y — Y such that pog = f?*o¢. Then .S, = S = Sy
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(cf. 24, Lem. 3.15(3)]), and moreover, E < Sy, since E consists of negative curves
(cf. [24, Prop. 2.20(3))).

We shall show that ¢~!(P) is a connected component of S, for any P € A:
Let T be a prime component of S, not contained in ¢~!(P). Then I' is completely
invariant under g' for some I, and (T") is also completely invariant under f2'. Hence,
(X, u(T)) is log-canonical (cf. [23, Cor. 3.6], [24, Thm. E]), and X has only quotient
singularities along u(T") (cf. [23, Fact 2.5]). Thus, P & u(T) and o= 1(P)NT = 0.
Therefore, ¢~ (P) is a connected component of S,.

We shall show that p(Y') = 2. Assume the contrary. Then p(Y') > 3. If Ky + .5,
is pseudo-effective, then there is a finite Galois cover v: V — Y from a toric surface
V with u‘ng as the boundary divisor, by Theorem [3I] and Remark 3.2 since
Sy # 0. In this case, S; is connected and big, but the connected component
¢~ !(P) is not big for P € A: This is a contradiction. Therefore, Ky + S, is not
pseudo-effective. However, even in this case, we have a contradiction, since Sy is
connected and big by Proposition and Theorem Hence, p(Y) = 2.

Consequently, p(X) = 1, —Kx is ample, A consists of one point P, and E =
@~ Y(P) is irreducible. In particular, f~1(P) = {P}. By [23, Exam. 4.29], we see
that the index 1 cover of (X, P) is a simple elliptic singularity and E ~ P!. Thus,
we have shown all the assertions except (7)) and (§]). Here, ([§) follows from [23]
Lem. 5.23]. The remaining assertion () is shown as follows: If E’ is a negative
curve on Y different from E, then ¢(E’) is not a negative curve, since p(X) = 1,
and we have E N E’ # (. On the other hand, S, contains all the negative curves
onY, and E is a connected component of S;. Thus, such E’ does not exist. This
proves ([0), and we are done. ]

On the index 1 cover of (X, P), we note the following:

Lemma 5.5. In the situation of Proposition [B.4], let X and X° be connected open
neighborhoods of P in X such that

Sing X = {P}, x°CcXnfYX), and rKy~0

for the local Cartier index r of Kx at P (cf. [23, Def. 4.18(1)]). Let £&:V — X be
an index 1 cover with respect to Kx (cf. [23] Def. 4.18(2)]). Then:

(1) The morphism & is étale in codimension 1, and £~1(P) consists of one point
Q@ at which V has a simple elliptic singularity.

(2) The action of the Galois group G of § on V lifts to the minimal resolution
W of V, and the quotient variety G\W is isomorphic to Y := o~ 1X over
X. In particular, (¢|y) on = & o ¢ for the minimal resolution ¢: W — V
and the quotient morphism n: W — G\W ~ ).

(3) By replacing X° with an open neighborhood of P, one can find morphisms
fr:V° =V and fiy: W° — W satisfying equalities

Eofv=_(flxe)o&lyve, oofw=Ffvodlwe, mnofiw=_(frlye)onlwe,

where V° := £71(X°), Y° := o 1(X°), and W° := ¢~ 1(V°) =n~1()°). In
particular, the cubic diagram in Figure [l is commutative.
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We dlywo yo
k . %
W———V
Nlwo in E\L &lyo
Yy X
fV ‘P‘y w
yo XO
®lye

FIGURE 1. A cubic diagram

(4) The elliptic curve C = ¢=1(Q) = ¢~ 1(¢71(P)) admits an endomorphism
fo such that (n|c)o fo = (fy|g)on|c for the induced morphism n|c: C —
E = }(P).

Proof. We have ({l) by Proposition [4#). The minimal resolution of the singu-
larity (X, P) is known to be obtained as the minimal resolution of singularities of
G\W. Hence, G\W — X gives the standard partial resolution of (X, P) (cf. [23]
Exam. 4.29(4)]). Thus, G\W ~ Y = ¢~ !X, and we have ). By replacing X°
with an open neighborhood of P, we have a morphism fy: V° — V such that

(V-1) §ofy = (flxe) o lve

by [23] Lem. 4.21(2)], since Kxo = f*Kx (cf. Proposition B4[)). On the other
hand, the restriction of fy to the open subset Y° = ¢~1(X°) is regarded as a
morphism fy|ye: V° — Y = ¢~ 1X such that

(V-2) (¢ly) o fylye = foplye

by Proposition B4Y{]). Since W is isomorphic to the normalization of V x » ) and
since W° = ¢~ 1V° = n~1)° is isomorphic to the normalization of V° x yo Y°, the
morphism fp X fy|ye: V° x Y° — V x ) defines a morphism fy,: W° — W such
that

dpofw=foodlwe and no fiw = (frlye)onlwe,
by (V=1) and (V=2)). This shows (3). For ), it is enough to set fc to be fyy|c. O
We shall prove Theorem

Proof of Theorem [L2 Now X has a non-quotient singular point. If X has an
irrational singularity, then X is a projective cone over an elliptic curve by [24]
Prop. 6.2]. Thus, we may assume that X has only rational singularities, and we can
apply Proposition [5.4l We proceed the arguments in the proof of Proposition (5.4l
By replacing f with a power f*, we may assume that f;-: N(Y) — N(Y) is a scalar
map by [24, Lem. 3.7], since p(Y) = 2 and Y has a negative curve.
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Since —Kx is ample, Ky + F = ¢*Kx is not nef (cf. Proposition B4([d)), and
there is an extremal ray R of NE(Y) such that (Ky + E)R < 0 by the cone the-
orem (cf. [24, Thm. 1.9]). Hence, NE(Y) = R + Rsocl(E) as (Ky + E)E = 0,
and the contraction morphism 7: Y — T of the extremal ray R is a fibration to
a non-singular projective curve T, since E is a unique negative curve on X (cf.
Proposition [.4I[7)). Here, T~ P! as X is rational (cf. Proposition E.4I()). Since
fy is a scalar map preserving R, there is an endomorphism h: T' — T such that
mo fy =hom and degh = d; (cf. [24, Lem. 3.16]). Let F be a general fiber of =.
Then 0 > (Ky + E)F = —2 + EF. Thus, FE is a section of 7, and fy|g: E — E
corresponds to h: T — T by the isomorphism 7|g: E — T.

Let n|c: C — E be the finite surjective morphism in Lemma B5I[E), where
C = ¢~1(¢71P) is an elliptic curve. Then 7|¢ is a cyclic cover, since the morphism
7: W — Y in Lemma BB is so. Let 7: C — T be the composite (7|g) o n|c.
Then, for the endomorphism fo: C — C in Lemma BE5HE), we have

7o fo=(mlr)o (fyle)onlc =ho(nlg)onlc =hoT
by mo fy = homw. Let W be the normalization of Y xp C, which induces a

commutative diagram

W1—9>Y

c —— T
We have an endomorphism fy: W — W such that wo fiy = focow and Yo fiy =
fy o9 (cf. 24, Lem. 4.1]). Then w is a P'-bundle by [24, Cor. 4.8], since C' is
an elliptic curve, fo is étale, w is a P!'-fibration, and ¥*E is an elliptic curve
being a negative section of w. We shall show that ¢ is étale in codimension 1:
The ramification divisor Ry is supported on a union of fibers of w, and we have
Ky +%E= ﬂ*(Ky + E) + Ry. Then

Ry(0*E) = (Kw + 0" E)0*E — (9*(Ky + E))9*E = —(deg¥)(Ky + E)E = 0.

Hence, Ry = 0. This means that 1 is étale in codimension 1.

Let W — V 5 X be the Stein factorization of p o®. Then W — V is the
contraction morphism of ¥*E, and V is isomorphic to a projective cone over the
elliptic curve C' ~ ¢*E. The finite morphism v: V' — X is also a cyclic cover
and is étale in codimension 1 as ¥ is so. The endomorphism fy descends to an
endomorphism fy: V — V satisfying v o fiy = f o v, since we have ¢ o o fyy =
po fy ol = fopod. Thus, we have finished the proof of Theorem O

5.3. Proof of Theorem [I.1l Finally, we shall prove Theorem [[.11

Proof of Theorem [LIl If X satisfies () of Theorem [Tl then it admits a non-
isomorphic surjective endomorphism by Lemmas and 2.6] Corollary 4] and
Theorems and 2.2]1 Hence, we are reduced to proving the following four
assertions for any normal projective surface X having non-isomorphic surjective
endomorphism f:

(a) If Kx is pseudo-effective, then either (I2) or (I=3) of Theorem [L] holds.
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x 18 not pseudo-effective and p > 3, then either or o

b) If Kx i do-effecti d p(X 3, th ith f
Theorem [LT] holds.

(c) If Kx is not pseudo-effective, p(X) < 2, and —K x is big, then one of (=),
(&), ([6), and () of Theorem [L1] holds.

(d) If Kx is not pseudo-effective, p(X) = 2, and —Kx is not big, then either
(=) or () of Theorem [T holds.

Here, “(I-j) of Theorem [T holds” for 1 < j < 6 means that the condition (I-j) is
satisfied for a finite Galois cover V' — X étale in codimension 1. Note that if Kx
is not pseudo-effective and p(X) = 1, then —Kx is big; this case is treated in (@).

Assertions (@) and (d]) are consequences of [24, Thm. A] and Theorem E.7], respec-
tively. We shall show ([0)). If Kx + Sy is pseudo-effective, then ([=6) of Theorem 1]
holds by [24, Thm. A}, since p(X) > 3 and Sy # 0. Suppose that Kx + Sy is not
pseudo-effective. Then (X, Sy) is an L-surface by Proposition B3] since p(X) > 3.
Hence, X is rational, and —Kx is big by () and (@) of Theorem Moreover,
X has only quotient singularities by Theorem Thus, X satisfies ([Il) of Theo-
rem [T and we have proved ().

Finally, we shall prove (@). If X is irrational, then cases (2) and (3) of [24]
Thm. 4.16] occurs, since —Kx is big. Thus, in this case, ([4) or (Z5) of Theo-
rem [[.1]is satisfied for V = X. If X is rational and non-singular, then X is a toric
surface by [20, Thm. 3]; thus, it satisfies (=€) of Theorem [Tl for V = X. If X is
rational and singular and if there is no finite Galois cover V' — X étale in codi-
mension 1 satisfying ([E5) of Theorem [[] then X has only quotient singularities
by Theorem [[.2] and hence, it satisfies ([Il) of Theorem [Tl This proves (@). Thus,
the proof of Theorem [[1] has been completed. O
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