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Abstract. Normal projective surfaces admitting non-isomorphic surjective

endomorphisms are classified up to isomorphism except singular rational sur-

faces with only quotient singularities and with big anti-canonical divisor. A

surface in our list admits a finite Galois cover étale in codimension 1 from

one of the following surfaces: a toric surface with Galois invariant open torus,

an abelian surface, a P1-bundle over an elliptic curve, a projective cone over

an elliptic curve, and the direct product of a non-singular projective curve of

genus at least 2 and of a rational or elliptic curve.

1. Introduction

As a continuation of [24], we study normal Moishezon surfaces X admitting non-

isomorphic surjective endomorphisms f : X → X. We know the following by [24,

Cors. B and C, and Thm. E]:

• X is projective;

• the Weil–Picard number ρ̂(X) equals the Picard number ρ(X);

• (X,S) is log-canonical for any f -completely invariant divisor S.

Here, a reduced divisor S is said to be f -completely invariant if f−1S = S (cf.

[24, Def. 2.12]). Moreover, we have a structure theorem [24, Thm. A] on (X,S, f)

for an f -completely invariant divisor S such that KX + S is pseudo-effective, but

it gives only necessary conditions for the existence of non-isomorphic surjective

endomorphisms. We can prove that these conditions are also sufficient for the

existence by constructing several examples, and we have a complete version of [24,

Thm. A] as Theorem 3.1 below. By studying further cases in which KX + S is not

pseudo-effective, we have the following theorem as the main result in this article:

Theorem 1.1. Let X be a normal projective surface. If X admits a non-isomorphic

surjective endomorphism, then either (I) or (II) below holds. Conversely, if X

satisfies (I), then X admits a non-isomorphic surjective endomorphism:

(I) There is a finite Galois cover V → X étale in codimension 1 satisfying one

of the six conditions below :

(I-1) V ≃ P1 × T for a non-singular projective curve T of genus at least 2;
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(I-2) V ≃ C × T of an elliptic curve C and a non-singular projective curve

T of genus at least 2;

(I-3) V is an abelian surface;

(I-4) V is a P1-bundle over an elliptic curve;

(I-5) V is a projective cone over an elliptic curve (cf. [24, Def. 1.16]);

(I-6) V is a toric surface and the action of the Galois group Gal(V/X)

preserves the open torus.

(II) The surface X is rational and singular with only quotient singularities, and

the anti-canonical divisor −KX is big.

The proof of Theorem 1.1 is given in Section 5.3 below. The first assertion of

Theorem 1.1 has been proved in [24] for some special cases. In deed, X satisfies

(I) either if KX + S is pseudo-effective for an f -completely invariant divisor S or

if X is irrational (cf. [24, Thms. A and 4.16]). For the proof of Theorem 1.1, we

need some examples constructed in Section 2, the study of some special cases in

which KX + S is not pseudo-effective in Section 4, and the following theorem on

non-quotient singularity:

Theorem 1.2. Let X be a normal projective surface admitting a non-isomorphic

surjective endomorphism f . If X has a non-quotient singular point, then there

exists a finite cyclic cover V → X étale in codimension 1 from a projective cone V

over an elliptic curve such that f lifts to an endomorphism of V .

Theorem 1.2 is proved in Section 5.2 below by applying a result of Favre [6,

Prop. 2.1] (cf. [23, Thm. 5.3]). We have also the following result on the num-

ber n(Sf ) of prime components of the characteristic completely invariant divisor

Sf (cf. [24, Def. 2.16]):

Theorem 1.3. Let f be a non-isomorphic surjective endomorphism of a normal

projective surface X. Then n(Sf ) ≤ ρ(X) + 2. If n(Sf ) = ρ(X) + 2, then (X,Sf )

is a toric surface, i.e., X is a toric surface with Sf as the boundary divisor. If

n(Sf ) = ρ(X) + 1, then one of the following holds :

(1) (X,B + Sf ) is a toric surface for a prime divisor B 6⊂ Sf ;

(2) (X,Sf ) is a half-toric surface in the sense of [22].

Theorem 1.3 is proved in Section 5.1 below by applying [22, Thm. 1.3] on a variant

of Shokurov’s criterion for toric surfaces (cf. [29, Thm. 6.4]). This is a generalization

of Theorem 4.5(5) below on L-surfaces.
Section 5 is devoted to proving these three theorems. We shall explain results

obtained in the other sections along the following topics:

(A) Examples of endomorphisms.

(B) Classification of completely invariant curves with positive arithmetic genus.

(C) Classification of (X, f) in the case where the refined ramification divisor

∆f (cf. [24, Def. 2.16]) is zero.

(D) Study of (X, f) in the case where ρ(X) > 2 and KX + Sf is not pseudo-

effective.
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(E) Study of (X, f) in the case where ρ(X) = 2, KX is not pseudo-effective,

and −KX is not big.

For (A), in Section 2, we shall construct several endomorphisms of varieties which

are equivariant under actions of finite groups, and as a result, we have endomor-

phisms of the quotient varieties: Lemmas 2.2, 2.5, and 2.6 below treat the projective

space Pn, an abelian variety, and a toric varieties, respectively, as a variety with

actions of a finite group. Equivariant endomorphisms of P1-bundles are studied by

the notion of G-linearizations. Especially, Propositions 2.15 and 2.16 below give

sufficient conditions in terms of G-linearization for the existence of equivariant non-

isomorphic surjective endomorphisms of a P1-bundle associated with the direct sum

of two invertible sheaves. By these results, we can prove the existence of equivariant

non-isomorphic surjective endomorphisms for any P1-bundle over an elliptic curve

and any projective cone over an elliptic curve in Theorems 2.20 and 2.21. Some

other examples of endomorphisms are obtained in Examples 2.30, 2.31, 2.32, and

2.33 below which are related to results in [24].

Theorem 3.1, a complete version of [24, Thm. A], is proved in Section 3 by us-

ing examples obtained in Section 2. As an application of Theorem 3.1, we have

Theorem 3.4 concerning (B), where the structure of a normal projective surface X

is determined when it has a non-isomorphic surjective endomorphism f and an f -

completely invariant curve C of positive arithmetic genus. Moreover, Theorem 3.5

gives a finer description in the case where ∅ 6= SingC ⊂ Xreg. As another appli-

cation of Theorem 3.1, we have Theorem 3.10 as a classification theorem for (C).

Note that ∆f = 0 if and only if the induced endomorphism of X \ Sf is étale in

codimension 1. Theorem 3.11 below is a classification theorem on endomorphisms

étale in codimension 1, i.e., the case where the ramification divisor Rf is zero.

Moreover, Theorem 3.12 below treats the subcase of Theorem 3.10 not considered

in [24, Thm. A], i.e., the case where ∆f = 0 and KX +S is not pseudo-effective for

any f -completely invariant divisor.

Topics (D) and (E) are treated in Section 4. For (X, f) in (D), in Proposi-

tion 4.3 below, we shall show that (X,Sf ) is an L-surface in the sense of Defini-

tion 4.2. Theorem 4.5 collects basic properties of L-surfaces. Corollary 4.6 proves

that (X,B+Sf ) is a toric surface or a half-toric surface for a prime divisor B 6⊂ Sf
if −(KX + Sf ) is not big in addition. Theorem 4.7 below is a structure theorem

for (X, f) in (E). We have an additional result as Proposition 4.8 giving a finer

description in case λf 6= deg f .

As a consequence of Theorems 1.1, 4.5, and 4.7, we can determine the structure of

a normal projective surfaceX admitting a non-isomorphic surjective endomorphism

except the following cases:

(i) ρ(X) = 1, and X is a log del Pezzo surface (cf. [1, Def. 1.1]), i.e., X is a

rational surface with only quotient singularities and −KX is ample.

(ii) X is a rational surface with ρ(X) = 2, −KX is big, and X has only quotient

singularities.

(iii) (X,Sf ) is an L-surface and n(Sf ) = ρ(X) ≥ 3.

Some examples belonging to (ii) are in Examples 2.19 and 2.28 below.
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Notation and conventions. We use the same notation and conventions as in

[24]. In particular, we treat complex analytic spaces rather than schemes over C,

and a complex analytic variety is called a variety, for short. Our specific notations

are listed in Table 1.

Table 1. List of notations

C⋆ 1-dimensional algebraic torus (= C \ {0})
q(X) irregularity of a normal projective variety X (= dimH1(X,OX))

ρ(X) Picard number of a normal projective variety X

N(X) vector space of numerical classes of R-divisors on a normal projective

surface X (cf. [24, §1.1])
NE(X) pseudo-effective cone in N(X) (cf. [24, §1.1])
Nef(X) nef cone in N(X) (cf. [24, §1.1])
cl(D) numerical class of an R-divisor D

κ(D,X) Iitaka’s D-dimension for a divisor D on X (cf. [13])

π1(U) fundamental group of a topological space U

e(U) Euler number of a topological space U

p
a
(C) arithmetic genus of a projective curve C (= dimH1(C,OC))

g(C) (geometric) genus of a projective curve C

n(S) number of prime components of a reduced divisor S (cf. Definition 4.1

below)

For an endomorphism f :

Rf ramification divisor (cf. [23, §1.5])
Sf characteristic completely invariant divisor (cf. [24, Def. 2.16])

∆f refined ramification divisor (cf. [24, Def. 2.16])

λf the first dynamical degree (cf. [24, Def. 3.1])

deg f (mapping) degree

δf := (deg f)1/2 > 0 (cf. [24, Def. 3.2])
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2. Examples of endomorphisms

We shall construct several examples of normal projective surfaces (and varieties

of higher dimension) admitting non-isomorphic surjective endomorphisms. In Sec-

tions 2.1, 2.2, and 2.3, we shall construct endomorphisms of a variety X equivariant

under an action of a finite group G on X. The equivariant endomorphisms induce

endomorphisms of the quotient variety G\X. Section 2.1 treats the case where X is

a projective space, an abelian variety, or a toric variety. In Section 2.2, we consider

some P1-bundles over a variety, and in Section 2.3, we shall show that P1-bundles

and projective cones over an elliptic curve have equivariant non-isomorphic surjec-

tive endomorphisms. In Section 2.4, we present some examples of endomorphisms

related to discussions in [24].

Convention. Let X be a complex analytic space and let G be a finite group acting

on X from the left.

• The left action of σ ∈ G is denoted by σX : X → X. Here, (στ)X = σX ◦τX
for any σ, τ ∈ G.

• Let f : X → Y be a morphism to another complex analytic space Y with a

left action of G. We say that f is G-equivariant, or equivariant under the

action of G, if f ◦ σX = σY ◦ f for any σ ∈ G.

• A subset S of X is said to be G-invariant, or preserved by the action of G,

if σXS ⊂ S for any σ ∈ G.

• A closed analytic subspace Z of X is said to be G-invariant if σX : X → X

induces an isomorphism σX |Z : Z → Z for any σ ∈ G. In this case, G acts

on Z and the closed immersion Z →֒ X is G-equivariant.

• When X is normal, a divisor D on X is said to be G-invariant if σ∗
XD = D.

Remark. The quotient space G\X exists as a complex analytic space, and the

quotient map X → G\X is a morphism of complex analytic spaces (cf. [5, Thm. 1]).

If X is normal, then so is G\X.

Remark 2.1. A G-equivariant endomorphism f : X → X induces an endomorphism

f̄ of the quotient space G\X such that π ◦ f = f̄ ◦ π for the quotient morphism

π : X → G\X. Here, deg f̄ = deg f . In particular, if f is non-isomorphic surjective,

then so is f̄ . Furthermore, when X is a normal variety and π is étale in codimension

1, the endomorphism f is étale in codimension 1 if and only if f̄ is so. In fact, by

KX = π∗KG\X , we have Rf = π∗Rf̄ for the ramification divisors Rf and Rf̄ .

2.1. Equivariant endomorphisms of Pn, abelian varieties, and toric vari-

eties. We shall construct G-equivariant non-isomorphic surjective endomorphisms

of a projective variety X, in the case where X is the projective space Pn, an abelian

variety, or a toric variety whose open torus is G-invariant. The following result on

Pn is shown by Amerik in the first part of [2, §1]. We write the proof for readers’

convenience.

Lemma 2.2. Let G be a finite group acting on Pn. Then there exists a G-

equivariant non-isomorphic surjective endomorphism of Pn whose degree is coprime

to the order of G.
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Proof. We may assume that G is a subgroup of GL(n + 1,C). The action of σ ∈
GL(n+ 1,C) on Pn is defined by

(II-1) σ∗(xi) =
∑n

j=0
ai,j(σ)xj ,

where σ = (ai,j(σ))0≤i,j≤n as a matrix and where σ∗ is regarded as an automor-

phism of the polynomial ring C[x0, . . . , xn]. Let S ⊂ Pn be the pullback of a general

ample divisor on the quotient variety G\Pn by the quotient morphism Pn → G\Pn.

Then S is non-singular by Bertini’s theorem. We may assume that degS is divis-

ible by the order of G. Let F ∈ C[x0, . . . , xn] be a defining equation of S, i.e., a

homogeneous polynomial defining S as the zero locus {F = 0} in Pn. Then we can

define a group homomorphism χ : G→ C⋆ by

(II-2) σ∗(F ) = F (σ∗(x0), . . . , σ
∗(xn)) = χ(σ)F

for σ ∈ G. Let φ : Pn → Pn be an endomorphism corresponding to an endomor-

phism Φ: C[x0, . . . , xn] → C[x0, . . . , xn] defined by Φ(xi) = ∂F/∂xi for 0 ≤ i ≤ n.

Note that φ is holomorphic by the Jacobian criterion, since S is non-singular, and

that φ is surjective with deg φ = (degS − 1)n > 1. Taking partial differentials to

(II-2), we have

(II-3) χ(σ)∂F/∂xj =
∑n

i=0
ai,j(σ)σ

∗(∂F/∂xi)

for any 0 ≤ j ≤ n. Thus,

(II-4) σ∗(∂F/∂xi) = χ(σ)
∑n

j=0
ai,j(σ

′)∂F/∂xj

for the matrix σ′ = (ai,j(σ
′)) := tσ−1 = t(ai,j(σ))

−1. Hence, φ ◦ σPn = σ′
Pn ◦ φ for

the automorphism σ′
Pn : Pn → Pn, since we have

σ∗(Φ(xi)) = σ∗(∂F/∂xi) = χ(σ)
∑n

j=0
ai,j(σ

′)∂F/∂xj

= χ(σ)Φ
(∑n

j=0
ai,j(σ

′)xj

)
= χ(σ)Φ(σ′∗(xi))

by (II-1) and (II-4). Let G′ be the finite subgroup {σ′ | σ ∈ G} ⊂ GL(n + 1,C)

and let S′ ⊂ Pn be the pullback of a general ample divisor on G′\Pn, where we

assume that degS′ is a multiple of the order of G. For a defining equation F ′ ∈
C[x0, . . . , xn] of S′, let φ′ : Pn → Pn be an endomorphism corresponding to an

endomorphism Φ′ of C[x0, . . . , xn] defined by Φ′(xi) = ∂F ′/∂xi for 0 ≤ i ≤ n. Then

φ′ is surjective, deg φ′ = (degS′ − 1)n > 1, and φ′ ◦ σ′
Pn = σPn ◦ φ′ for any σ ∈ G,

by the same argument as above. Thus, φ′ ◦ φ is a G-equivariant non-isomorphic

surjective endomorphism of Pn, and deg φ′◦φ = (degS−1)n(degS′−1)n is coprime

to the order of G. �

Lemma 2.3. Let B be a compact normal variety and let G be a finite group acting

on both B and Pn×B so that the second projection p2 : P
n×B → B is G-equivariant.

Then the action of G on Pn × B is diagonal, i.e., G acts on Pn so that σPn×B =

σPn × σB for any σ ∈ G, and there exists a G-equivariant non-isomorphic finite

surjective endomorphism f of Pn×B such that p2◦f = p2 and that deg f is coprime

to the order of G.
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Proof. The action of an element σ ∈ G on Pn ×B is expressed as

Pn ×B ∋ (x, b) 7→ σPn×B(x, b) = (ψσ(x, b), σB(b)) ,

where ψσ : P
n × B → Pn is a holomorphic map inducing an automorphism x 7→

ψσ(x, b) of Pn for any b ∈ B. Here, ψσ(x, b) does not depend on b ∈ B, since any

holomorphic map B → Aut(Pn) ≃ PGL(n+1,C) is constant. Therefore, for a fixed

point b ∈ B, we have an action of σ ∈ G on Pn by σPn(x) := ψσ(x, b), and the

action of G on Pn × B is diagonal. There is a G-equivariant non-isomorphic finite

surjective endomorphism φ : Pn → Pn by Lemma 2.2, in which deg φ is coprime to

the order of G. Then φ × idB : Pn × B → Pn × B satisfies required conditions for

f . �

Corollary 2.4. Let X be a normal projective surface admitting a finite surjective

morphism ν : P1 × B → X étale in codimension 1 for an irrational non-singular

projective curve B. Then X admits a non-isomorphic surjective endomorphism.

Proof. Let V → X be the Galois closure of ν. Then the induced Galois cover

V → P1 × B is étale. Let V → B′ → B be the Stein factorization of the smooth

morphism V → P1 ×B → B. Then the induced étale morphism V → P1 ×B′ over

B′ is an isomorphism, since P1 is simply connected. Therefore, we may assume

that ν is Galois. Since B is irrational, the second projection p2 : P
1 × B → B is

the Albanese morphism. Thus, the Galois group G of ν acts on B so that p2 is

G-equivariant. Hence, a non-isomorphic surjective endomorphism of X exists by

Lemma 2.3 and Remark 2.1. �

The following result on abelian varieties is proved by essentially the same argu-

ments as in the proof of [8, Thm. 2.26] and in [7, App. to §4].

Lemma 2.5. Let A be an abelian variety and B a variety, and let G be a finite

group acting on A × B and B so that the second projection p2 : A × B → B is

G-equivariant. Then there exists a G-equivariant non-isomorphic finite surjective

étale endomorphism f : A × B → A × B such that p2 ◦ f = p2 and that deg f is

coprime to the order of G.

Proof. We fix a point 0 ∈ A and an abelian group structure of A with 0 being the

zero element. Then the set Hom(B,A) of morphisms of varieties from B to A is

regarded as an abelian group. The action of σ ∈ G on A×B is given by

A×B ∋ (a, b) 7→ σA×B(a, b) = (λσ(a+ ζσ(b)), σB(b)),

for some λσ ∈ Aut(A, 0) and ζσ ∈ Hom(B,A). Here, Aut(A, 0) denotes the group

of automorphisms of A fixing 0, σ 7→ λσ gives rise to a group homomorphism

G→ Aut(A, 0), and Hom(B,A) has a right G-module structure by

ϕσ(b) := λ−1
σ ϕ(σB(b))

for ϕ ∈ Hom(B,A), σ ∈ G, and b ∈ B. The collection {ζσ}σ∈G is a 1-cocycle of

Hom(B,A), i.e., the cocycle condition

ζσσ′ = ζσ′ + ζσ
′

σ
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is satisfied for any σ, σ′ ∈ G. The group cohomology H1(G,Hom(B,A)) is a torsion

module annihilated by the order of G. Let n be a positive integer divisible by the

order of G. Then one can find a morphism ψ ∈ Hom(B,A) such that

(II-5) nζσ = ψ − ψσ

for any σ ∈ G. Let f be an endomorphism of A×B defined by

A×B ∋ (a, b) 7→ ((n+ 1)a+ ψ(b), b).

Then p2 ◦f = p2, and deg f = (n+1)2 dimA is coprime to the order of G. Moreover,

f is a G-equivariant non-isomorphic étale surjective endomorphism, since

f ◦ σA×B(a, b) = f (λσ(a+ ζσ(b)), σB(b))

= ((n+ 1)λσ(a+ ζσ(b)) + ψ(σB(b)), σB(b))

= (λσ((n+ 1)a+ ζσ(b) + nζσ(b) + ψσ(b)), σB(b))

= (λσ((n+ 1)a+ ψ(b) + ζσ(b)), σB(b)) = σA×B ◦ f(a, b)
for any (a, b) ∈ A×B and σ ∈ G by (II-5). Thus, we are done. �

The following is on toric varieties.

Lemma 2.6. Let X be a compact toric variety and let G be a finite group acting on

X preserving the open torus T. Then there exists a G-equivariant non-isomorphic

finite surjective endomorphism f : X → X such that f−1(T) = T and that deg f is

coprime to the order of G.

Proof. Let N be a free abelian group such that T ≃ N⊗Z C
⋆ as an algebraic group.

Then there is a complete fan △ of N such that

X = TN(△) =
⋃

σ∈△
TN(σ),

where TN(σ) is the affine toric variety SpecanC[σ∨ ∩M] for M = HomZ(N,Z): In

[26], TN(△) and TN(σ) are written as TNemb(△) and Uσ, respectively. The open

torus TN({0}) is identified with T. For an element u ∈ T, let Lu : X → X denote

the automorphism of action of u on X. In other words, u 7→ Lu gives rise to a

group homomorphism T → Aut(X) corresponding to the action of T on X. Note

that u 7→ Lu is injective, i.e., the action of T on X is faithful. Let End(N,△) (resp.

Aut(N,△)) be the set of endomorphisms (resp. automorphisms) φ : N → N which

gives rise to a morphism (N,△) → (N,△) of fans, i.e., for any σ ∈ △, there is a

cone τ ∈ △ satisfying φ(σ) ⊂ τ (cf. [26, §1.5]). For φ ∈ End(N,△), let Tφ : X → X

denote the T-equivariant endomorphism extending φ⊗ id : N⊗C⋆ → N⊗C⋆, whose

existence is shown in [26, Thm. 1.13]. Here, we write φ(u) := Tφ(u) ∈ T for an

element u of the open torus T, for simplicity. Then

(II-6) Tφ ◦ Lu = Lφ(u) ◦ Tφ
as an endomorphism of X for any u ∈ T. For an integer m, we define νm :=

Tφm
: X → X for the multiplication map φm : N → N by m. Then νm induces the

power map u 7→ um as an endomorphism of T, and we have

(II-7) νm ◦ Lu = lum ◦ νm and νm ◦ Tφ = Tφ ◦ νm
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for any u ∈ T and any φ ∈ End(N,△) by (II-6) and by the property that φ

commutes with the multiplication map φm.

We note that an automorphism of X preserving the open torus is expressed

as Lu ◦ Tϕ for some u ∈ T and ϕ ∈ Aut(N,△): To show it, by composition

with Lu for some u, it is enough to consider only an automorphism Ψ: X → X

preserving the open torus T and fixing the identity element of T. Then Ψ|T is a

group homomorphism associated with an automorphism ϕ : N → N. It implies that

Ψ is equivariant under the action of T with respect to the group homomorphism

Ψ|T : T → T, i.e., Ψ ◦ Lu = LΨ(u) ◦ Ψ for any u ∈ T. Then ϕ ∈ Aut(N,△) and

Ψ = Tϕ by [26, Thm. 1.13].

By the action of G on X, we have a group homomorphism G ∋ σ 7→ λσ ∈
Aut(N,△) and elements uσ ∈ TN for σ ∈ G such that

(II-8) σX = Luσ
◦ Tλσ

.

Then, by (II-6) and by the injectivity of u 7→ Lu, we have

(II-9) uσ1σ2
= uσ1

λσ1
(uσ2

)

for any σ1, σ2 ∈ G. Hence, T has a structure of left G-module by u 7→ λσ(u) =

Tλσ
(u) for u ∈ T and σ ∈ G, and the collection {uσ}σ∈G is a 1-cocycle of T by

(II-9). The group cohomology H1(G,T) is a torsion module annihilated by the

order of G. Let n be a positive integer divisible by the order of G. Then there is

an element v ∈ T such that

(II-10) unσ = λσ(v)v
−1

for any σ ∈ G. We set f := Lv ◦ νn+1 as a finite surjective endomorphism of

X. Then deg f = (n + 1)dimX is greater than 1 and coprime to the order of G,

f−1(T) ⊂ T for the open torus T, and moreover,

f ◦ σX = Lv ◦ νn+1 ◦ Luσ
◦ Tλσ

by (II-8)

= Lv ◦ Lun+1
σ

◦ Tλσ
◦ νn+1 by (II-7)

= Luσ
◦ Lλσ(v) ◦ Tλσ

◦ νn+1 by (II-10)

= Luσ
◦ Tλσ

◦ Lv ◦ νn+1 = σX ◦ f by (II-6)

for any σ ∈ G. Thus, f is G-equivariant, and we are done. �

2.2. G-linearizations and equivariant endomorphisms of P1-bundles. We

shall study equivariant endomorphisms of P1-bundles by the notion of G-lineariza-

tions (cf. Definition 2.7 below). Especially, in Propositions 2.15 and 2.16 below,

we shall give sufficient conditions for the existence of G-equivariant non-isomorphic

surjective endomorphisms of a P1-bundle associated with the direct sum of two

invertible sheaves. These are applied to P1-bundles over an elliptic curve in Sec-

tion 2.3.

Definition 2.7. Let X be a complex analytic space with a left action of a finite

group G. For an OX -module F , a G-linearization of F is a collection ε = {εσ}σ∈G
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of isomorphisms εσ : σ
∗
XF → F of OX -modules such that εe = idF for the unit

element e ∈ G and that, for any σ, τ ∈ G, the diagram

τ∗X(σ∗
XF)

τ∗
X(εσ)−−−−→ τ∗XF

≃

y
yετ

(στ)∗XF εστ−−−−→ F
is commutative, where the left vertical arrow indicates the canonical isomorphism

on composition (στ)X = σX ◦ τX . Sometimes, we write

εστ = ετ ◦ τ∗X(εσ)

modulo the canonical isomorphism (στ)∗XF ≃ τ∗X(σ∗
XF) for the diagram. For

two G-linearized OX -modules F = (F , εF ) and G = (G, εG), a homomorphism

φ : F → G is said to be G-linear if

σ∗
XF σ∗

X(φ)−−−−→ σ∗
XG

εFσ

y
yεGσ

F φ−−−−→ G
is commutative for any σ ∈ G.

Remark. The notion of G-linearizations is introduced for invertible sheaves in [17, I,

§3]. The category of G-linearized OX -modules with G-linear homomorphisms is an

abelian category. If G acts on X trivially, then a G-linearization of an OX -module

F is just a right G-module structure of F .

Remark 2.8. The structure sheaf OX has a canonical G-linearization. In fact,

for a morphism f : U → V of ringed spaces, we have a canonical homomorphism

OV → f∗OU of sheaves of rings on V , and its left adjoint cf : f
∗OV → OU as an

isomorphism of sheaves of rings on U . Hence, for any σ ∈ G, we have a canonical

isomorphism cσX
: σ∗

XOX → OX , and {cσX
} is the canonical G-linearization of OX .

Remark 2.9. For G-linearized OX -modules F = (F , εF ) and G = (G, εG), the tensor
product F ⊗ G = F ⊗OX

G and the hom sheaf Hom(F ,G) = HomOX
(F ,G) have

canonical G-linearizations given by

σ∗
X(F ⊗ G) ≃ σ∗

XF ⊗ σ∗
XG εFσ ⊗εGσ−−−−−→ F ⊗ G and

σ∗
X Hom(F ,G) ≃ Hom(σ∗

XF , σ∗
XG) (†)−−→ Hom(F ,G)

for σ ∈ G, where (†) is defined by (εFσ )
−1 : F → σ∗

XF and εGσ : σ
∗
XG → G. In partic-

ular, the set PicG(X) of G-linearized invertible sheaves on X modulo isomorphisms

is an abelian group (cf. [17, I, §3]).

Remark 2.10. Let f : X → Y be a G-equivariant morphism for complex analytic

spaces X and Y with left actions of G. For a G-linearized OX -module F = (F , εF )
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and a G-linearized OY -module G = (G, εG), the direct image f∗F and the inverse

image f∗G have canonical G-linearizations given by isomorphisms

σ∗
Y (f∗F) ≃ f∗(σ

∗
XF)

f∗(ε
F
σ )−−−−→ f∗F and σ∗

X(f∗G) ≃ f∗(σ∗
Y G)

f∗(εGσ )−−−−→ f∗G
for σ ∈ G. In particular, by considering the case where Y = SpecC, we have a

canonical right G-module structure of H0(X,F) by the G-linearization εF . More-

over, the canonical bijection

HomOY
(G, f∗F) ≃ HomOX

(f∗G,F)

on OY -module homomorphisms and OX -module homomorphisms given by the ad-

joint pair (f∗, f∗) of functors induces a bijection

HomOY
(G, f∗F)G ≃ HomOX

(f∗G,F)G

onG-linearOY -module homomorphisms andG-linearOX -module homomorphisms.

Since the isomorphism cf : f
∗OY → OX in Remark 2.8 is G-linear, the canonical

morphism OY → f∗OX is also G-linear.

Remark 2.11. For X and G in Definition 2.7, let Z be a G-invariant closed analytic

subspace of X. Then the canonical surjection OX → OZ is G-linear. Thus, the

ideal sheaf IZ of Z is also G-linearized as the kernel of OX → OZ .

Lemma 2.12. Let Y be a complex analytic space with a left action of a finite group

G of order n and let ̟ : Y → Y := G\Y be the quotient morphism. Let E be a

locally free sheaf of finite rank on Y admitting a G-linearization. Then:

(1) The G-linearization defines a left action of G on the projective bundle X =

PY (E) so that the structure morphism X → Y is G-equivariant.

(2) Assume that G acts on Y freely. Then E ≃ ̟∗E for a locally free sheaf E on

Y . In particular, the quotient morphism X → G\X by the action in (1) is

isomorphic to the base change of ̟ by the structure morphism PY (E) → Y .

(3) If E is an invertible sheaf and if H0(Y, E) 6= 0, then H0(Y, E⊗n)G 6= 0.

(4) If E is an invertible sheaf, then there is an invertible sheaf M on Y such

that ̟∗M ≃ E⊗n as a G-linearized OY -module, where we regard M as a

OY -module with a trivial right action of G.

Proof. Let π : X = PY (E) → Y be the structure morphism and let {εσ : σ∗
Y E →

E}σ∈G be the G-linearization of E . For σ ∈ G, let πσ : Xσ → Y be the base change

of π by σY : Y → Y and let pσ : Xσ → X be the induced morphism, which is just

the base change of σY by π. For the isomorphism eσ := PY (εσ) : X = PY (E) →
PY (σ

∗
Y E) over T associated with εσ, we have a commutative diagram

X
eσ //

π
  ❇

❇
❇
❇
❇
❇
❇
❇

Xσ
pσ //

πσ

��

X

π

��
Y

σY // Y.

We set σX := pσ ◦ eσ as an automorphism of X. Then π ◦ σX = σY ◦ π, and

G ∋ σ 7→ σX ∈ Aut(X) is a group homomorphism, since {εσ} is a G-linearization

of E . Thus, G acts on X by σ 7→ σX and π is G-equivariant. This shows (1).
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We shall show (2), where G acts on Y freely. Then the quotient morphism

̟ : Y → Y = G\Y is a finite Galois étale cover with Galois group G, since we have

an isomorphism G × Y ≃ Y ×Y Y by (σ, y) 7→ (σY (y), y). The direct image ̟∗E
is a right G-module by Remark 2.10. We set E to be the G-invariant part of ̟∗E .
It suffices to show that E ≃ ̟∗E . In fact, by the isomorphism, we have a cartesian

diagram

X
φ−−−−→ PY (E)

π

y
yπ̄

Y
̟−−−−→ Y ,

in which the upper horizontal arrow φ is isomorphic to the quotient morphism

X → G\X by the action of G in (1).

In order to prove: E ≃ ̟∗E , by localizing Y , we may assume that Y = G × Y

over Y . Then the restriction of E to the open and closed subset {τ} × Y for τ ∈ G

is identified with a locally free sheaf E(τ) on Y . The isomorphism εσ : σ
∗
Y E → E

corresponds to a collection {εσ|τ : E(στ) → E(τ)}τ∈G of isomorphisms on Y and

εσ′σ|τ = εσ|τ ◦ εσ′|στ

as an isomorphism E(σ′στ) → E(τ) for any σ, σ′, and τ ∈ G, since {εσ} is a G-

linearization. The right G-module structure of

̟∗E =
∏

τ∈G
E(τ)

is given by {εσ|τ} for σ ∈ G. Thus, we have an isomorphism E ≃ E(τ) for any τ ,

and hence, E ≃ ̟∗E , and (2) has been proved.

Finally, we shall prove (3) and (4), where E is an invertible sheaf. For a non-zero

element ξ of the right G-module H0(Y, E), the product

(II-11) ξ =
∏

σ∈G
ξσ

is regarded as a non-zero G-invariant element of H0(Y, E⊗n). This shows (3). Let

M be the G-invariant part (̟∗(E⊗n))G of ̟∗(E⊗n). For (4), it is enough to prove

that M is an invertible sheaf and that the canonical composite homomorphism

Φ: ̟∗M → ̟∗(̟∗(E⊗n)) → E⊗n

is an isomorphism. Let us take an arbitrary point Q ∈ G\Y and let U be a

Stein open neighborhood of Q. Then U = ̟−1U is a G-invariant Stein open

neighborhood of ̟−1Q, and there is a section ξ ∈ H0(U, E) such that ̟−1Q ⊂
{ξ 6= 0}. Let ξ be the product (II-11) over U . Then ξ is a G-invariant element

of H0(U, E⊗n), the G-invariant open subset V = {ξ 6= 0} ⊂ U contains ̟−1Q,

and ξ|V : OV → E⊗n|V is an isomorphism. Then ξ is regarded as an element of

H0(U,M), V = ̟−1V for the open subset V = ̟(V ) ⊂ U , and ξ|V : OV → M|V
is an isomorphism. Since Q ∈ V , M is invertible at Q, and Φ is an isomorphism

along ̟−1Q. Thus, (4) has been proved, and we are done. �

Remark. WhenG acts on Y freely, theG-linearization {εσ} corresponds to a descent
datum of E relative to ̟ : Y → Y and one can find E satisfying E ≃ ̟∗E as
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a consequence of the descent theory (cf. [11, Exp. VIII, Cor. 1.3]) in the case of

schemes.

Lemma 2.13. Let Y be a compact variety with a left action of a finite group G

of order n and let f : Y → Y be a G-equivariant endomorphism. Let L be a G-

linearized invertible sheaf on Y with an isomorphism f∗L ≃ L⊗m of OY -modules

for an integer m coprime to n. Then there exists an isomorphism (fk)∗L ≃ L⊗mk

of G-linearized OY -modules for a positive integer k > 0.

Proof. By Remarks 2.9 and 2.10, we can consider N := f∗L ⊗ L⊗−m as a G-

linearized OY -module. Since N ≃ OY as an OY -module, the G-linearization of

N is determined by the right action of G on H0(Y,N ) ≃ C, which corresponds

to a group homomorphism χ : G → C⋆. Since C ≃ H0(X,N ) ≃ H0(X, f∗N ), the

G-linearization of f∗N is also determined by χ. By induction, we have a canonical

isomorphism ⊗k−1

i=0
(f i)∗N⊗mk−1−i ≃ (fk)∗L ⊗ L⊗−mk

of G-linearized OY -modules for any k ≥ 0. Hence, the G-linearization of the right

hand side is determined by χl(k) for l(k) = 1+m+ · · ·+mk−1. Since gcd(m,n) = 1,

ma ≡ 1 mod n for some a > 0, and

l(an) =
∑an−1

i=0
mi = l(a)

∑n−1

j=0
maj ≡ 0 mod n.

Thus, it is enough to set k = an. �

Lemma 2.14. Let π : X → T be a P1-bundle over a compact variety T with a

section Γ. Let G be a finite group acting on X and T such that π is G-equivariant

and that Γ is G-invariant. If Γ′ ∩Γ = ∅ for another section Γ′ of π, then Θ∩Γ = ∅
for a G-invariant section Θ of π.

Proof. Note that the section Γ is a Cartier divisor on X. We can regard 0 →
OX(−Γ) → OX → OΓ → 0 as an exact sequence of G-linearized OX -modules (cf.

Remark 2.11). Hence, OX(Γ) has an induced G-linearization (cf. Remark 2.9) and

the defining equation of Γ corresponding to OX(−Γ) → OX is a G-invariant section

of the right G-module H0(X,OX(Γ)) (cf. Remark 2.10). The invertible sheaves

L := π∗(OX(−Γ)⊗OΓ) and M := π∗L ⊗OX(Γ)

on T and X, respectively, have also induced G-linearizations (cf. Remarks 2.9 and

2.10). Then we have an isomorphism M⊗OΓ ≃ OΓ of G-linearized OΓ-modules.

Note that Γ′ ∈ |M|. In fact, OX(Γ′) ≃ M⊗ π∗N for an invertible sheaf N on T ,

but we have N ≃ OT by OX(Γ′)⊗OΓ ≃ OΓ. Now, we have an exact sequence

(II-12) 0 → π∗L → M → M⊗OΓ ≃ OΓ → 0

of G-linearized OX -modules and an exact sequence

(II-13) 0 → L → π∗M → OT → 0

of G-linearized OT -modules (cf. Remarks 2.9 and 2.10). The existence of Γ′ implies

that (II-13) is split as an exact sequence of OT -modules. Thus,

0 → H0(T,L) → H0(X,M) → H0(Γ,OΓ) → 0
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is an exact sequence of G-modules. Since G is finite, H1(G,H0(T,L)) = 0 and

we have a G-invariant element θ of H0(X,M) which goes to 1 ∈ H0(Γ,OΓ). In

particular, (II-13) is also split as an exact sequence of G-linearized OX -modules.

Then the effective divisor Θ := div(θ) ∈ |M| is G-invariant, and Θ ∩ Γ = ∅. This

Θ is a desired section of π. �

Proposition 2.15. Let π : X → T be a P1-bundle over a compact normal variety T ,

and let Θ1 and Θ2 be mutually disjoint sections of π. Let G be a finite group acting

on X and T such that π is G-equivariant and that Θ1 and Θ2 are G-invariant.

Then:

(1) There is a G-linearized invertible sheaf L on T such that OX(Θ1 − Θ2) ≃
π∗L as a G-linearized OX-module.

Let h : T → T be a G-equivariant surjective endomorphism with an isomorphism

h∗L ≃ L⊗m of G-linearized OT -modules for an integer m > 1. Then:

(2) There exists a G-equivariant non-isomorphic surjective endomorphism f of

X such that

• deg f = mdeg h, π ◦ f = h ◦ π,
• f∗Θ1 = mΘ1, f

∗Θ2 = mΘ2, Sf = π∗Sh +Θ1 +Θ2, and

• Γ 6= f−1f(Γ) for any prime divisor Γ dominating T except Θ1 and Θ2.

(3) Assume that m > 2 and that H0(T,L⊗j)G 6= 0 for some 1 ≤ j < m. Then

there exists a G-equivariant non-isomorphic surjective endomorphism f of

X such that

• deg f = mdeg h, π ◦ f = h ◦ π,
• f∗Θ2 = mΘ2, Sf = π∗Sh +Θ2, and

• Γ 6= f−1f(Γ) for any prime divisor Γ dominating T except Θ2.

Here, Sh and Sf stand for the characteristic completely invariant divisors of h and

f , respectively (cf. [24, Def. 2.16]).

Proof. Assertion (1) is shown by an argument in the proof of Lemma 2.14. For (2)

and (3), let us consider a homomorphism

Ψ: OT ⊕ h∗L → Symm(OT ⊕ L) =
⊕m

j=0
L⊗j

of OT -modules defined by the following conditions:

(i) The induced homomorphism ℓj : OT → L⊗j from the factor OT is G-linear

for any 0 ≤ j ≤ m, and ℓ0 is the identity morphism OT → OT .

(ii) The induced homomorphism h∗L → L⊗j from the factor h∗L is zero for

any 0 ≤ j < m, and h∗L → L⊗m is a G-linear isomorphism.

Note that ℓj corresponds to a G-invariant section of H0(T,L⊗j). The homomor-

phism Ψ is G-linear by (i) and (ii), since the diagram

σ∗
T (OT ⊕ h∗L) −−−−→ σ∗

T Symm(OT ⊕ L) ≃†

−−−−→ ⊕m
j=0 σ

∗
TL⊗j

cσT
⊕εσ

y
y⊕

ε⊗j
σ

OT ⊕ h∗L −−−−→ Symm(OT ⊕ L) ≃†

−−−−→ ⊕m
j=0 L⊗j
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is commutative for any σ ∈ G, where {εσ : σ∗
TL → L}σ∈G is the G-linearization of

L, {cσT
: σ∗

TOT → OT }σ∈G is the canonical G-linearization of OT (cf. Remark 2.8),

and ≃† stands for canonical isomorphisms. By adjunction for (π∗, π∗), Ψ corre-

sponds to a surjective homomorphism

Ψ̃: π∗(OT ⊕ h∗L) → OX(mΘ1)

of OX -modules, since π∗OX(Θ1) ≃ OT ⊕ L and since homomorphisms OT → OT

and h∗L → L⊗m in (i) and (ii), respectively, are surjective. Let πh : Xh → T be

the base change of π : X → T by h. Then we have a morphism

ψ : X = PX(OT ⊕ L) → Xh ≃ PT (OT ⊕ h∗L)
over T of degree m associated with Ψ̃, and an isomorphism ψ∗(p∗1OX(Θ1)) ≃
OX(mΘ1) for the first projection p1 : Xh = X ×T,h T → X. In particular, we

have a commutative diagram

X
ψ //

π
  ❇

❇
❇
❇
❇
❇
❇
❇

Xh
p1 //

πh

��

X

π

��
T

h // T.

The morphism p1 is G-equivariant, since π and h are so, and the morphism ψ is also

G-equivariant, since Ψ is G-linear. Hence, f := p1 ◦ ψ : X → X is a G-equivariant

endomorphism, and we have π ◦ f = h ◦ π and deg f = mdeg h > 1.

For other assertions, we want to determine prime divisors Γ on X such that

Γ = f−1f(Γ) and π(Γ) = T when one of the following conditions for ℓj is satisfied:

(A) ℓj = 0 for any 1 ≤ j ≤ m;

(B) m > 2 and ℓj 6= 0 for some 1 ≤ j < m.

Note that, for a point t ∈ T , the morphism

ψt := ψ|π−1(t) : P
1 = π−1(t) → P1 = π−1

h (t) ≃ π−1(h(t))

of fibers over t is expressed as

(x : y) 7→ (xm +
∑m

j=1
ℓj(t)x

m−jyj : ym)

for a suitable homogeneous coordinate (x : y) by (i) and (ii), where Θ1 ∩ π−1(t) =

{(0 : 1)} and Θ2 ∩ π−1(t) = {(1 : 0)}. Hence, f∗Θ2 = ψ∗(p∗1Θ2) = mΘ2. By the

same reason, f∗Θ1 = mΘ1 when (A) holds. Suppose that ψ−1
t (q′ : 1) = {(q : 1)}

for some q, q′ ∈ C. Then

xm +
∑m

j=1
ℓj(t)x

m−j = q′ + (x− q)m ∈ C[x].

In particular, for any 1 ≤ j ≤ m− 1,

(II-14) ℓj(t) = (−1)j
(
m

j

)
qj .

If (A) holds, then q = q′ = 0, and it implies that Γ 6= f−1f(Γ) for any prime divisor

Γ dominating T except Θ1 and Θ2. When (B) holds, by replacing ℓj by constant

multiples, we may assume that (II-14) does not hold for any q ∈ C for some t ∈ T .
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In fact, we may assume that ℓj(t) 6= 0 for some 1 ≤ j < m, and (II-14) implies that

q 6= 0 and ℓj(t) 6= 0 for any 1 ≤ j < m. Hence, if we replace ℓj with cjℓj for some

cj 6∈ {0, 1}, then (II-14) does not hold for any q, since m > 2. Under the additional

assumption for (B), Γ 6= f−1f(Γ) for any prime divisor Γ dominating T except Θ2.

For the assertion (2), it is enough to take ℓj to satisfy (A), and for the assertion

(3), it is enough to take ℓj to satisfy (B) with the additional assumption. In fact,

in this situation, we have verified required conditions for f in (2) and (3) except

conditions on characteristic completely invariant divisors Sf and Sh. Note that

Sf = π∗Sh +D for the union D of prime divisors Γ on X such that π(Γ) = T and

that (fk)∗Γ = bΓ for some k ≥ 1 and b ≥ 2 (cf. [24, Def. 2.16, Lem. 2.19(2)]). Then

D = Θ1 +Θ2 in case (2), and D = Θ2 in case (3). Thus, we are done. �

The following is a variant of Proposition 2.15.

Proposition 2.16. Let π : X → T be a P1-bundle over a compact normal variety

T with mutually disjoint sections Θ1 and Θ2. Let G be a finite group acting on X

and T such that π is G-equivariant, Θ1 + Θ2 is G-invariant, and σ(Θ1) = Θ2 for

some σ ∈ G. Let G0 be the subgroup {σ ∈ G | σ(Θ1) = Θ1}. Then:

(1) There is a G0-linearized invertible sheaf L on T with an isomorphism

OX(Θ1 −Θ2) ≃ π∗L as a G0-linearized OX-module.

Let h : T → T be a G-equivariant surjective endomorphism with an isomorphism

h∗L ≃ L⊗m of G0-linearized OT -modules for an integer m > 1. Then:

(2) there exists a G-equivariant surjective endomorphism f of X such that

• deg f = mdeg h, π ◦ f = h ◦ π,
• f∗Θ1 = mΘ1, f

∗Θ2 = mΘ2, Sf = π∗Sh +Θ1 +Θ2, and

• Γ 6= f−1f(Γ) for any prime divisor Γ dominating T except Θ1 and Θ2.

For the proof, we use:

Notation 2.17. Let ϕ : L → M be an isomorphism of invertible sheaves on a

complex analytic space X. For a positive integer m, ϕ⊗m denotes the induced

isomorphism L⊗m → M⊗m as usual. Let ϕ⊗0 denote the identity morphism OX →
OX . For a negative integer m, let ϕ⊗m : L⊗m → M⊗m denote the inverse of the

dual homomorphism

(ϕ⊗−m)∨ : M⊗m = HomOX
(M⊗−m,OX) → L⊗m = HomOX

(L⊗−m,OX).

Remark. For integers m and m′, the isomorphism (ϕ⊗m)⊗m
′

is equal to ϕ⊗mm′

under canonical isomorphisms (L⊗m)⊗m
′ ≃ L⊗mm′

and (M⊗m)m
′ ≃ M⊗mm′

.

Proof of Proposition 2.16. Assertion (1) is just Proposition 2.15(1) for the action

of G0. For i = 1, 2, let {ε(i)σ }σ∈G0
be the G0-linearization of OX(Θi). Then, by

Remark 2.11, we have a commutative diagram

σ∗
XOX(−Θi) −−−−→ σ∗

XOX

(ε(i)σ )⊗−1

y
ycσX

OX(−Θi) −−−−→ OX
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for any σ ∈ G0, where cσX
is the isomorphism associated with the morphism

σX : X → X of ringed spaces (cf. Remark 2.8), and where (ε
(i)
σ )⊗−1 is the isomor-

phism in Notation 2.17. For any τ ∈ G \G0, we can define isomorphisms

η12(τ) : τ
∗OX(Θ1) → OX(Θ2) and η21(τ) : τ

∗OX(Θ2) → OX(Θ1)

by commutative diagrams

τ∗XOX(−Θ1) −−−−→ τ∗XOX

η12(τ)
⊗−1

y
ycτX

OX(−Θ2) −−−−→ OX ,

τ∗XOX(−Θ2) −−−−→ τ∗XOX

η21(τ)
⊗−1

y
ycτX

OX(−Θ1) −−−−→ OX .

Then we can identify η12(στσ
′) with the composite

(στσ′)∗XOX(Θ1) ≃ σ′∗
X(τ∗X(σ∗

XOX(Θ1)))
σ′∗
X (τ∗

Xε
(1)
σ )−−−−−−−→ σ′∗

X(τ∗XOX(Θ1))

σ′∗
Xη12(τ)−−−−−−→ σ′∗

XOX(Θ2)
ε
(2)

σ′−−→ OX(Θ2)

for any σ, σ′ ∈ G0, and identify ε
(1)
ττ ′ with the composite

(ττ ′)∗XOX(Θ1) ≃ τ ′∗X (τ∗XOX(Θ1))
τ ′∗
X η12(τ)−−−−−−→ τ ′∗XOX(Θ2)

η21(η
′)−−−−→ OX(Θ1)

for any τ ′ ∈ G \ G0. We have similar identifications for η21(τ). Since L =

π∗OX(Θ1 −Θ2), an isomorphism

ητ : τ
∗
TL → L⊗−1

is induced by η12(τ)⊗ η21(τ)
⊗−1. Let {εσ : σ∗

TL → L}σ∈G0
be the G0-linearization

of L. Then ηστσ′ is identified with the composite

(στσ′)∗TL ≃ σ′∗
T (τ

∗
T (σ

∗
TL))

σ′∗
T (τ∗

T εσ)−−−−−−→ σ′∗
T (τ

∗
TL)

σ′∗
T (ητ )−−−−−→ σ′∗

T L⊗−1
ε⊗−1

σ′−−−→ L⊗−1

for any σ, σ′ ∈ G0, and εττ ′ is identified with the composite

(ττ ′)∗TL ≃ τ ′∗T (τ∗L) τ ′∗
T ητ−−−→ τ ′∗T L⊗−1

η⊗−1

τ′−−−→ L
for any τ ′ ∈ G\G0. For any τ ∈ G\G0, the automorphism τX of X = PT (OT ⊕L)
is induced from the isomorphism

τ∗T (OT ⊕ L) cτT ⊕ητ−−−−−→ OT ⊕ L⊗−1 ≃ L⊗−1 ⊗OT
(L ⊕OT ),

since it is identified with the isomorphism

τ∗T (π∗OX(Θ1)) ≃ π∗(τ
∗
XOX(Θ1))

π∗(η12(τ))−−−−−−−→ π∗OX(Θ2) ≃ L⊗−1 ⊗OT
π∗OX(Θ1).

Let α : h∗L → L⊗m be an isomorphism of G0-linearized OT -modules. Then, for

any τ ∈ G \G0, there is a non-zero constant c(τ) ∈ C such that the diagram

h∗(τ∗TL)

h∗ητ
��

oo ≃ // τ∗T (h
∗L)

τ∗
Tα // τ∗TL⊗m

η⊗m
τ

��
h∗L⊗−1

c(τ)α⊗−1

// L⊗−m
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is commutative. Since α is G0-linear, we have c(στσ′) = c(τ) for any σ, σ′ ∈ G0,

and c(τ) is independent of the choice of τ ∈ G \G0. Hence, by replacing α with a

constant multiple, we may assume that c(τ) = 1.

Let Ψ: OT ⊕ h∗L → Symm(OT ⊕ L) be the G0-linear homomorphism defined

in the proof of Proposition 2.15 for the action of G0, in which ℓj = 0 for any

1 ≤ j ≤ m: this is given by the identity morphism OT → OT and the G0-linear

isomorphism α : h∗L → L⊗m above. Then Ψ corresponds to a homomorphism

π∗(OT ⊕ h∗L) → OX(mΘ1) and we have an associated morphism

ψ : X = T(OT ⊕ L) → Xh := PT (OT ⊕ h∗L)
over T , whereXh → T is the base change of π : X → T by h. For the first projection

p1 : Xh ≃ X ×T,h T → X, we set f := p1 ◦ ψ as an endomorphism of X. Then ψ

and f are G0-equivariant, and f satisfies the following conditions by the proof of

Proposition 2.15:

• deg f = mdeg h, π ◦ f = f ◦ π,
• f∗Θ1 = mΘ1, f

∗Θ2 = mΘ2, Sf = π∗Sh +Θ1 +Θ2, and

• Γ 6= f−1f(Γ) for any prime divisor Γ dominating T except Θ1 and Θ2.

Thus, it suffices to prove that ψ is G-equivariant. Let us consider a commutative

diagram

h∗L⊗−1 ⊗ (OT ⊕ h∗L) α⊗−1⊗Ψ−−−−−−→ L⊗−m ⊗ Symm(OT ⊕ L)

≃†

y
y≃†

OT ⊕ h∗L⊗−1 Ψ′

−−−−→ Symm(OT ⊕ L⊗−1),

where ≃† are canonical isomorphisms induced by interchange isomorphisms

h∗L⊗−1 ⊕OT ≃ OT ⊕ h∗L⊗−1 and L⊗−1 ⊕OT ≃ OT ⊕ L⊗−1.

Then the bottom homomorphism Ψ′ is a G0-linear, and the diagram

τ∗T (OT ⊕ h∗L) τ∗
TΨ−−−−→ τ∗T Symm(OT ⊕ L) ≃‡

−−−−→ ⊕m
j=0 τ

∗
TL⊗j

cτT ⊕h∗(ητ )

y
y⊕

η⊗j
τ

OT ⊕ h∗L⊗−1 Ψ′

−−−−→ Symm(OT ⊕ L⊗−1)
≃‡

−−−−→ ⊕m
j=0 L⊗−j

is commutative for any τ ∈ G \ G0, where ≃‡ stands for canonical isomorphisms.

The commutativity of the diagram for τ implies that τXh
◦ ψ = ψ ◦ τX . Thus, ψ is

G-equivariant, and we are done. �

Corollary 2.18. Let X = PT (OT ⊕ OT (e)) be the Hirzebruch surface of degree

e > 0, where T = P1, and let π : X → T be the P1-bundle structure. Let G be

a finite group acting on X. Then G acts on T so that π is G-equivariant, and

the negative section Θ of π is G-invariant. Moreover, there exist G-equivariant

non-isomorphic surjective endomorphisms f : X → X and h : T → T such that

deg f = (deg h)2, π ◦ f = h ◦π, and f∗Θ = (deg h)Θ. Furthermore, one can require

(1) Sh = 0
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for the endomorphism h, and require each of the following conditions for f :

(2) there is another G-invariant section Θ′ such that f∗Θ′ = (deg h)Θ′, Sf =

π∗Sh + Θ + Θ′, and Γ 6= f−1f(Γ) for any prime divisor Γ dominating T

except Θ and Θ′;

(3) Sf = π∗Sh + Θ, and Γ 6= f−1f(Γ) for any prime divisor Γ dominating T

except Θ.

Proof. The negative section Θ is G-invariant, since it is a unique negative curve

on X. On the other hand, π is a unique surjective morphism onto a curve up to

isomorphism. Thus, G acts on T so that π is G-equivariant. By Lemma 2.14, there

is a G-invariant section Θ′ of π such that Θ∩Θ′ = ∅. Then OX(Θ′−Θ) ≃ π∗OT (e),

and OT (e) has an induced G-linearization. By Lemma 2.2, there is a G-equivariant

non-isomorphic surjective endomorphism h : T → T such thatm := deg h is coprime

to the order of G. By replacing h with a power hk and by Lemma 2.13, we may

assume that h∗O(e) ≃ O(e)⊗m as a G-linearized OT -module. Then we have a

G-equivariant non-isomorphic surjective endomorphism f of X such that deg f =

mdeg h = m2, π ◦f = h◦π, and f∗Θ = mΘ by Proposition 2.15. Moreover, we can

require the condition (2) for f by Proposition 2.15(2). By replacing h with a power

hk and by Lemma 2.12(3), we may assume that m > 2 and H0(T,O(e)⊗j)G 6= 0

for some 1 ≤ j < m. Then we can require (3) for f by Proposition 2.15(3).

It remains to show (1) by replacing h. Note that Sh = Shk for any k > 0 and

that the equality KT + Sh = h∗(KT + Sh) + ∆h holds for an effective divisor ∆h

(cf. [24, Lem. 2.17]). Then deg(KT + Sh) ≤ 0, i.e., degSh ≤ 2. If degSh = 2, then

h is isomorphic to the standard cyclic cover φm : (x : y) 7→ (xm : ym) for m = deg h

for a homogeneous coordinate (x : y) of P1 = T . Let h̄ : T → T be the induced

endomorphism of the quotient curve T = G\T , where ϑ ◦h = h̄ ◦ϑ for the quotient

morphism ϑ : T → T . Then Sh = ϑ−1Sh̄ by [24, Lem. 2.19]. Moreover, degSh̄ ≤ 2

by the same reason above. Let G be the image of G in Aut(T ), which is the Galois

group of ϑ. Note that if G fixes a point in T , then it is a cyclic group, and ϑ is

isomorphic to φd for d = deg ϑ. If degSh̄ = 2, then ϑ−1(P ) consists of one point for

any P ∈ Sh̄, and hence, G is a cyclic group. If degSh̄ = 1, then degSh = 2, and G

is a dihedral group by the well-known classification of finite subgroups of Aut(P1).

If Sh̄ = 0, then Sh = 0 and we have nothing to prove. Consequently, (1) holds for

the original h when G is not a cyclic group nor a dihedral group.

For an integer n ≥ 2 and for ζ := exp(2π
√
−1/n), let Cn be the cyclic subgroup

of Aut(T ) generated by the automorphism (x : y) 7→ (ζx : y) for a homogeneous

coordinate (x : y) of P1. Let Dn be the subgroup of Aut(T ) generated by Cn and

the involution (x : y) 7→ (y : x). We may assume that G = Cn or Dn. Let us take

a complex number c 6∈ {0, 1,−1} and a positive integer r such that rn > 2 and rn

is divisible by the order of G. Then we can define a G-equivariant endomorphism

h† of T by

h† : (x : y) 7→ (x(xrn − cyrn) : y(cxrn − yrn)).

Here, deg h† = rn + 1 is coprime to the order of G. We can show that h†−1(P )

consists of at least two points for any P ∈ P1. In fact, if h†−1(P ) = {Q} for some
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Q ∈ T , then P = (a : 1) and Q = (b : 1) for some a, b ∈ C \ {0} with cbrn 6= 1, and

(x− by)rn+1 = x(xrn − cyrn)− ay(cxrn − yrn).

By comparing coefficients of the monomial xrn−1y2, we have
(
rn+1

2

)
b2 = 0, since

rn > 2: This contradicts b 6= 0. Note that a point P ∈ T is contained in Sh if and

only if (hl)−1(P ) = {P} for some l > 0 (cf. [24, Def. 2.16]). Therefore, Sh† = 0.

For (1), it is enough to take h as a suitable power of h† as in the argument above.

Thus, we are done. �

Example 2.19. As an application of Corollary 2.18, we shall construct some special

endomorphisms of the quotient surface X = G\X of the Hirzebruch surface X =

PP1(O ⊕ O(2)) by a suitable action of a non-commutative polyhedral group G on

X. We consider G as a finite subgroup of PGL(2,C) = Aut(P1) and set G̃ to be the

inverse image by SL(2,C) → PGL(2,C). By a homogeneous coordinate (x : y : z)

of P2, we consider the following action of the binary polyhedral group G̃ on P2:

σP2(x : y : z) := (ax+ by : cx+ dy : z), where σ =

(
a b

c d

)
∈ G̃ ⊂ SL(2,C).

We set U := {z 6= 0} ≃ C2. It is well known that G̃ acts on U \ {(0 : 0 : 1)} freely,

and the image of (0 : 0 : 1) by the quotient morphism U → G̃\U is a rational

double point of type Dn (n ≥ 3), E6, E7, or E8, depending on G. The kernel of

G̃ → G is generated by the minus −I2 of the unit matrix I2 ∈ SL(2,C). The

quotient variety of P2 by the kernel is just the weighted projective space P(1, 1, 2),

and the quotient morphism is given by (x : y : z) 7→ (x : y : z2) for a weighted

homogeneous coordinate (x : y : w) of degree (1, 1, 2). Thus, we have an induced

action of G on P(1, 1, 2), which lifts to an action on X by the minimal resolution

µ : X → P(1, 1, 2) of singularities. Here, the following hold:

(1) The P1-bundle structure π : X → T = P1 is G-equivariant, where the action

of G on T is given by (x : y) 7→ (ax+ by : cx+ dy) for σ ∈ G̃ above.

(2) The inverse image Θ of {w = 0} ⊂ P(1, 1, 2) by µ and the unique (−2)-curve

Γ on X are mutually disjoint G-invariant sections of π.

(3) The action of G on X \ (Γ ∪Θ) is fixed point free.

We set X := G\X and T := G\T as quotient varieties and set π̄ : X → T to be

the morphism induced by π. Then we have a commutative diagram

X
ξ−−−−→ X

π

y
yπ̄

T
τ−−−−→ T ,

where ξ and τ are quotient morphisms. Since deg ξ = deg τ = #G, the normal-

ization of X ×T T is isomorphic to X. In particular, π̄ is a P1-fibration. The

morphism ξ is étale in codimension 1 by (3), since the actions of G on Γ and Θ

of π are faithful. It is well known that τ has just three branched points P1, P2,

P3 ∈ T . For 1 ≤ i ≤ 3, let mi be the ramification index of τ at a point over Pi,

i.e., τ∗(Pi) = miτ
−1(Pi). Since ξ is étale in codimension 1, the P1-fibration π̄ is
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smooth over T \ {P1, P2, P3}, and π̄∗(Pi) = miF i for a prime divisor F i ≃ P1 for

any 1 ≤ i ≤ 3 (cf. [24, Lem. 4.2]). As a consequence, X is not a toric surface. In

fact, if it is toric, then π̄ is a toric morphism, since ρ(X) = 2, but now we have

at least three non-smooth fibers of π̄. The images Γ = ξ(Γ) and Θ = ξ(Θ) are

mutually disjoint sections of π̄, Γ = ξ∗Γ and Θ = ξ∗Θ, and −(KX + Γ +Θ) is nef,

since

−2F ∼ KX + Γ +Θ = ξ∗(KX + Γ+Θ)

for a fiber F of π.

In this situation, by Corollary 2.18, we have two G-equivariant non-isomorphic

surjective endomorphisms f and g of X such that Sf = Γ+Θ and Sg = Γ. There-

fore, f and g, respectively, induce non-isomorphic surjective endomorphisms f̄ and

ḡ of X such that Sf̄ = Γ+Θ and Sḡ = Γ (cf. [24, Lem. 2.19(3)]). Here, −(KX+Sf̄ )

is nef and not numerically trivial, and −(KX+Sḡ) is nef and big. Hence, (X,Sf̄ , f̄)

and (X,Sḡ, ḡ) are not treated in [24, Thm. A] nor in Section 4.2 below.

Remark. If G is a dihedral group Dn with (m1,m2,m3) = (2, 2, n), then (X,Γ +

Θ+ F 3) is a half-toric surface (cf. [22, §7]). In fact, we have

0 ∼ KX + Γ +Θ+ π−1(Q) + π−1(Q′) = ξ∗(KX + Γ +Θ+ F 3)

for τ−1(P3) = {Q,Q′}, and it implies that (X,Γ+Θ+F 3) is log-canonical (cf. [23,

Prop. 2.12(1)]) and that KX+Γ+Θ+F 3
∼∼∼ 0. Since ρ(X) = 2 and since Γ+F 3+Θ

is a linear chain of rational curves, the pair (X,Γ + Θ+ F 3) is a half-toric surface

by [22, Thm. 1.3].

2.3. Equivariant endomorphisms of P1-bundles and projective cones over

elliptic curves. Any P1-bundle over an elliptic curve admits a non-isomorphic

surjective endomorphism (cf. [20, Prop. 5]). We shall prove the following equivariant

version:

Theorem 2.20. Let X be a P1-bundle over an elliptic curve and let G be a fi-

nite group acting on X. Then there is a G-equivariant non-isomorphic surjective

endomorphism of X. As a consequence, the quotient surface G\X admits a non-

isomorphic surjective endomorphism.

The P1-bundle X is associated with a locally free sheaf E of rank 2 on the

elliptic curve. Here, E is decomposable or semi-stable (cf. Fact 2.23 below). For

constructing a G-equivariant endomorphism of X, Proposition 2.25 below treats the

case where E is an indecomposable semi-stable sheaf of degree 0, and Corollary 2.27

below treats some cases where E is decomposable. The proof of Corollary 2.27

uses Propositions 2.15(2) and 2.16(2) in Section 2.2 and Lemma 2.26 below on

equivariant endomorphisms of an elliptic curve. We have also the following by

applying Theorem 2.20:

Theorem 2.21. Let X be a projective cone over an elliptic curve in the sense

of [24, Def. 1.16] and let G be a finite group acting on X. Then there is a G-

equivariant non-isomorphic surjective endomorphism of X. As a consequence, the

quotient surface G\X admits a non-isomorphic surjective endomorphism. If G
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preserves a cross section C of X, then C is completely invariant under some G-

equivariant non-isomorphic surjective endomorphism of X.

Proofs of Theorems 2.20 and 2.21 are given at the end of Section 2.3.

Remark 2.22. In the situation of Theorem 2.20, the action of G on X descends to

T so that π is G-equivariant, since π is the Albanese morphism.

We begin with recalling the following fact on P1-bundles over an elliptic curve:

Fact 2.23. Let π : X → T be a P1-bundle over an elliptic curve T . Then X ≃ PT (E)
for a locally free sheaf E , and we may assume that E satisfies one of the following

conditions (cf. [4], [12, V, Thm. 2.15]):

(A) There is an isomorphism E ≃ OT ⊕ L for an invertible sheaf L.
(B) There is a non-split exact sequence 0 → OT → E → OT → 0.

(C) There is a non-split exact sequence 0 → OT → E → A → 0 for an invertible

sheaf A of degree 1.

We shall explain known properties of X and E separately in each case of (A)–(C).

(A): Let Γ1 and Γ2 be sections of π corresponding to projections OT⊕L → L and

OT ⊕L → OT , respectively. Then Γ1 ∩ Γ2 = ∅, KX +Γ1 +Γ2 ∼ 0, OX(Γ1 − Γ2) ≃
π∗L, and Γ2

1 = −Γ2
2 = degL. Here, E is not stable, and it is semi-stable (resp.

unstable) if and only if degL = 0 (resp. 6= 0). Moreover:

• If degL > 0, then Γ2 is a unique negative curve on X, and any prime

divisor on X dominating T except Γ2 has positive self-intersection number.

• If degL = 0, then X contains no negative curve.

• If L is a torsion invertible sheaf, i.e., a torsion element of Pic(T ), then Γ1,

Γ2, and −KX are semi-ample with κ(−KX , X) = κ(Γ1, X) = κ(Γ2, X) = 1.

• If degL = 0 and if L is not a torsion invertible sheaf, then any prime divisor

on X dominating T except Γ1 and Γ2 has positive self-intersection number,

and κ(−KX , X) = κ(Γ1, X) = κ(Γ2, X) = 0.

(B): The locally free sheaf E in this case is said to be normalized and indecom-

posable of degree 0 (cf. [12, V, Not. 2.8.1]). The section Γ of π corresponding to the

surjection E → OT is a unique section of self-intersection number 0, and we have

−KX ∼ 2Γ and κ(−KX , X) = κ(Γ, X) = 0. Moreover, any prime divisor Θ on X

dominating T has positive self-intersection number if Θ 6= Γ. In fact, Θ ∼ dΓ+π∗L

for a divisor L on T and for an integer d > 0, where Θ2 = 2d degL and ΘΓ = degL.

If Θ2 = 0, then Θ∩Γ = ∅ and we have L ∼ 0 by (π∗L)|Γ ∼ Θ|Γ = 0; thus, Θ ∈ |dΓ|
contradicting κ(Γ, X) = 0. The automorphism group AutT (E) of E over T is iso-

morphic to C⋆ × C (cf. Remark 2.24 below).

(C): The P1-bundle X = PT (E) is essentially constructed as ℘−1 in [3, Thm. 6.1],

or asA−1 in the proof of [30, Thm. 5] (cf. [27, p. 100]). Furthermore,X is isomorphic

to the symmetric product Sym2(T ) in which the P1-bundle structure π : X → T is

induced by the addition morphism T × T ∋ (x, y) 7→ x + y ∈ T with respect to a

group structure of T (cf. [4, p. 451, §3]). In particular, there is an elliptic fibration

ψ : X → P1 such that OX(−2KX) ≃ ψ∗OP1(1) and that ψ has three singular fibers
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of type 2I0 in Kodaira’s notation (cf. [15]). Moreover, X ×T T(2) ≃ P1 × T(2) over

T(2) for the multiplication map µ(2) : T(2) = T → T by 2.

Remark 2.24. For a normalized and indecomposable locally free sheaf E of rank

2 and degree 0 on an elliptic curve T , let i : OT → E and p : E → OT be the

injection and the surjection in the exact sequence in Fact 2.23(B). For v ∈ C, we

set ρ(v) := idE +v(i ◦ p) as an automorphism of E . Then ρ : v 7→ ρ(v) is regarded

as a group homomorphism C → AutT (E), i.e., ρ(v1 + v2) = ρ(v1) ◦ ρ(v2) for any

v1, v2 ∈ C. Moreover, we have a group isomorphism C⋆ × C → AutT (E) by

(u, v) 7→ uρ(v). This is shown by the indecomposability of E . In fact, for any

automorphism Φ ∈ AutT (E), there is a constant u ∈ C⋆ such that the diagram

0 −−−−→ OT
i−−−−→ E p−−−−→ OT −−−−→ 0

u idOT

y Φ

y
yu idOT

0 −−−−→ OT
i−−−−→ E p−−−−→ OT −−−−→ 0

of exact sequences is commutative. The automorphism PT (ρ(v)) : PT (E) → PT (E)
associated with ρ(v) is the identity if and only if v = 0.

Proposition 2.25. Let π : X → T be a P1-bundle over an elliptic curve T associ-

ated with an indecomposable locally free sheaf of degree 0. Assume that X admits

a left action of a finite group G. Then

(1) the quotient morphism X → G\X is étale in codimension 1, and

(2) X admits a G-equivariant non-isomorphic surjective étale endomorphism.

Proof. By Remark 2.22, π is G-equivariant for an action of G on T . For the action

σT : T → T of σ ∈ G, the pullback homomorphism σ∗
T : H

1(T,OT ) → H1(T,OT ) is

the multiplication map by a constant ασ ∈ C⋆. The correspondence σ 7→ ασ gives

rise to a group homomorphism G→ C⋆. In the discussion below, we regard C as a

right G-module by setting ζσ = α−1
σ ζ for ζ ∈ C.

We may assume that X = PT (E) for a normalized indecomposable locally free

sheaf E of rank 2 and degree 0 on T (cf. Fact 2.23(B)). We shall construct a G-

linearization of E which induces the original action of G on X. As in the proof of

Lemma 2.12, for σ ∈ G, let πσ : Xσ → T be the base change of π by σT : T → T and

let pσ : Xσ → X be the base change of σT by π : X → T . Then the automorphism

σX is expressed as pσ ◦ eσ for an isomorphism eσ : X = PT (E) → Xσ = PT (σ
∗
T E)

over T , and we have a commutative diagram:

X
eσ //

π
$$❍

❍❍
❍❍

❍❍
❍❍

σX

''
Xσ

pσ //

πσ

��

X

π
��

T
σT // T.

Since σ∗
TE is also normalized and indecomposable of degree 0, the isomorphism eσ

is induced by an isomorphism Φσ : σ
∗
TE → E of OT -modules, i.e., eσ = PT (Φσ).
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Multiplying by a non-zero constant if necessary, we can normalize Φσ so that the

diagram

(II-15)

0 −−−−→ σ∗
TOT

σ∗
T (i)−−−−→ σ∗

TE
σ∗
T (p)−−−−→ σ∗

TOT −−−−→ 0

α−1
σ cσT

y≃ Φσ

y≃ cσT

y≃

0 −−−−→ OT
i−−−−→ E p−−−−→ OT −−−−→ 0

of exact sequences of OT -modules is commutative, where i and p are homomor-

phisms in Remark 2.24, cσT
: σ∗

TOT → OT is the canonical isomorphism associated

with the morphism σT of ringed spaces (cf. Remark 2.8). By the normalization and

by Remark 2.24, for any σ, τ ∈ G, we have

Φστ = Φτ ◦ τ∗T (Φσ)

modulo the canonical isomorphism τ∗T (σ
∗
TE) ≃ (στ)∗T E , since (στ)X = σX ◦ τX and

since {cσT
} is a G-linearization of OT (cf. Remark 2.8). This means that {Φσ}σ∈G

is a G-linearization of E . Thus, the original action of G on X is recovered by the

G-linearization as in Lemma 2.12(1).

We shall show (1): Let G1 be the kernel of the natural homomorphism G →
Aut(H1(T,Z)) induced by (σT )∗ : H1(T,Z) → H1(T,Z) for σ ∈ G. ThenG1\T is an

elliptic curve. By the existence of the G-linearization {Φσ} and by Lemma 2.12(2),

E is isomorphic to the pullback of a locally free sheaf E1 by the étale quotient

morphism T → G1\T , and the quotient morphism X → G1\X is also étale. It is

enough to prove that G1\X → G\X is étale in codimension 1. Since E1 is also

indecomposable of degree 0, we may assume that G → Aut(H1(T,Z)) is injective.

Then the homomorphism G→ C⋆ given by σ 7→ ασ is also injective, and hence, G

is a cyclic group. We may assume that G 6= {1}. Thus, the stabilizer GP := {σ ∈
G | σ(P ) = P} is non-trivial at a point P ∈ T . The action of σ ∈ GP on the fiber

π−1(P ) ≃ P1 is expressed as (x : y) 7→ (ασ(x + βσy) : y) for some βσ ∈ C by the

description of ρ in Remark 2.24. Hence, G acts on X freely outside finitely many

points. As a consequence, X → G\X is étale in codimension 1. Thus, (1) holds.

We shall show (2): We have a G-equivariant non-isomorphic surjective étale

endomorphism h : T → T by Lemma 2.5 applied to the case where A = T and

B is a point. The pullback endomorphism h∗ : H1(T,OT ) → H1(T,OT ) is the

multiplication map by a constant λ ∈ C⋆. We can find an isomorphism Ψ: h∗E → E
such that the diagram

0 −−−−→ h∗OT
h∗(i)−−−−→ h∗E h∗(p)−−−−→ h∗OT −−−−→ 0

λ−1ch

y≃ Ψ

y≃ ch

y≃

0 −−−−→ OT
i−−−−→ E p−−−−→ OT −−−−→ 0

of exact sequences is commutative for the canonical isomorphism ch : h
∗OT → OT .

Comparing with (II-15), for any σ ∈ G, we can find an element vσ ∈ C such that

(II-16) Ψ ◦ h∗(Φσ) = ρ(vσ) ◦ Φσ ◦ σ∗
T (Ψ)
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modulo the canonical isomorphism h∗(σ∗
T E) ≃ σ∗

T (h
∗E), where ρ : C → AutT (E) is

the homomorphism in Remark 2.24. Here, we note that

(II-17) Φσ ◦ σ∗
T (ρ(v)) = ρ(α−1

σ v) ◦ Φσ
and for any σ ∈ G and v ∈ C. For, the equivalent equality

Φσ ◦ σ∗
T (i ◦ p) = α−1

σ (i ◦ p) ◦ Φσ
is verified by (II-15), since Φσ ◦ σ∗

T (i) = i ◦α−1
σ cσT

and p ◦Φσ = cσT
◦ σ∗

T (p). Then

Ψ ◦ h∗(Φστ ) = Ψ ◦ h∗(Φτ ◦ τ∗T (Φσ)) = (Ψ ◦ h∗(Φτ )) ◦ τ∗T (h∗(Φσ))
= ρ(vτ ) ◦ Φτ ◦ τ∗T (Ψ ◦ h∗Φσ) = ρ(vτ ) ◦ Φτ ◦ τ∗T (ρ(vσ) ◦ Φσ ◦ σ∗

T (Ψ))

= ρ(vτ ) ◦ ρ(α−1
τ vσ) ◦ Φτ ◦ τ∗T (Φσ ◦ σ∗

T (Ψ)) = ρ(vτ + α−1
τ vσ) ◦ Φστ ◦ (στ)∗T (Ψ)

for any σ, τ ∈ G by (II-16) and (II-17). Therefore, vστ = vτ +α
−1
τ vσ, and {vσ}σ∈G

is a 1-cocycle of the right G-module C mentioned above, where ζσ = α−1
σ ζ for any

ζ ∈ C. Since H1(G,C) = 0, by replacing Ψ with ρ(v) ◦ Ψ for suitable v ∈ C, we

may assume that vσ = 0 for any σ ∈ G.

Let πh : Xh → T be the base change of π by h : T → T and let ph : Xh → X be

the base change of h by π. Then we have an isomorphism ψh := P(Ψ): X → Xh

over T with a commutative diagram:

X
ψh //

π
%%❏

❏❏
❏❏

❏❏
❏❏

❏ Xh
ph //

πh

��

X

π
��

T
h // T.

We set f := ph ◦ ψh : X → X as an étale endomorphism of X. Then π ◦ f = h ◦ π,
deg f = deg h, and f ◦σX = σX ◦f for any σ ∈ G by (II-16) with vσ = 0. Therefore,

(2) holds, and we are done. �

Lemma 2.26. Let T be an elliptic curve with an invertible sheaf L of degree δ ≥ 0.

Let G be a finite group acting on T from the left such that σ∗
TL ≃ L or σ∗

TL ≃
L⊗−1 for any σ ∈ G. Then there exists a G-equivariant non-isomorphic surjective

endomorphism h : T → T such that h∗L ≃ L⊗m for an integer m > 1 and that m

and deg h are coprime to the order of G.

Proof. We fix a group structure of the elliptic curve T . The holomorphic automor-

phism group Aut(T, 0) preserving the origin 0 is nothing but the automorphism

group of the complex Lie group T . This is a subgroup of C⋆ ≃ Aut(H0(T,ΘT )) for

the tangent sheaf ΘT = (Ω1
T )

∨. The action of σ ∈ G on T is given by

T ∋ z 7→ σT (z) = ασ(z + wσ)

for certain ασ ∈ Aut(T, 0) ⊂ C⋆ and wσ ∈ T . Here, σ 7→ ασ gives rise to a group

homomorphism α : G→ Aut(T, 0) and {wσ} is a 1-cocycle with respect to the right

G-module structure of T defined by T ∋ z 7→ zσ = α−1
σ z, i.e., wστ = wτ + wτσ for

σ, τ ∈ G. Since H1(G,T ) is a torsion module annihilated by the order k of G, by

replacing the origin 0, we may assume that kwσ = 0.
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We define a point q ∈ T by L ≃ OT (L) for the divisor

L = (δ − 1)[0] + [q],

where [p] denotes the prime divisor corresponding to a point p ∈ T . Let G0 ⊂ G

be the subgroup of elements σ ∈ G such that σ∗
TL ∼ L. Then:

(1) if G 6= G0, then δ = degL = 0;

(2) (1− ασ)q = ασδwσ for any σ ∈ G0;

(3) if δ > 0 and if q is not a torsion point, then the homomorphism G →
Aut(T, 0) is trivial.

In fact, (1) is trivial, and (2) is deduced from

σ∗
TL = (δ − 1)[σ−1

T 0] + [σ−1
T q] = (δ − 1)[−wσ] + [a−1

σ q − wσ]

= δ[0] + δ([−wσ]− [0]) + [a−1
σ q − wσ]− [−wσ]

∼ δ[0] + δ([−wσ]− [0]) + [a−1
σ q]− [0]

∼ δ[0] + [−δwσ + a−1
σ q]− [0] = (δ − 1)[0] + [−δwσ + a−1

σ q].

If ασ 6= 1 for some σ ∈ G0, then (2) implies that q is a torsion point as wσ is so.

Thus, we have (3) by (1) and (2).

Let n be a positive integer such that n is divisible by the order of G and that

nq = 0 in case q is a torsion point. We can choose a point c ∈ T satisfying the

following conditions:

• If δ > 0 and if q is not a torsion point, then (n+ 1)δc = nq.

• If δ = 0 or if q is a torsion point, then c = 0.

Note that (1− aσ)c = 0 and nwσ = 0 for any σ ∈ G by (3) and by the assumption

on wσ. Let h : T → T be an étale endomorphism defined by

h(z) := (n+ 1)(z − c)

for z ∈ T . Then deg h = (n + 1)2, which is coprime to the order of G, and h is

G-equivariant by

σT (h(z))− h(σT (z)) = aσ((n+ 1)(z − c) + wσ)− (n+ 1)(aσ(z + wσ)− c)

= −naσwσ + (n+ 1)(1− aσ)c = 0.

If δ = 0, then L = [q] − [0], and h∗L ∼ (n + 1)L, since h∗ : Pic0(T ) → Pic0(T ) is

the multiplication map by n + 1. Assume that δ > 0. Then G = G0 by (1), and

(n+1)δc = nq by the choice of c. Moreover, h∗L ∼ (n+1)2L. In fact, L = δ[0]+L0

for L0 := [q]− [0], and we have h∗L0 ∼ (n+ 1)L0 and

h∗[0] =
∑

β∈Tn+1

[β + c] = (n+ 1)2[c] +
∑

β∈Tn+1

([β + c]− [c])

∼ (n+ 1)2[0] + (n+ 1)2([c]− [0]) +
∑

β∈Tn+1

([β]− [0])

∼ (n+ 1)2[0] +
[
(n+ 1)2c+

∑
β∈Tn+1

β
]
− [0]

∼ (n+ 1)2[0] + [(n+ 1)2c]− [0],
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where Tn+1 denotes the group of (n+ 1)-torsion points of T . Hence,

h∗L = δh∗[0] + h∗L0 ∼ (n+ 1)2δ[0] + [(n+ 1)2δc]− [0] + (n+ 1)L0

= (n+ 1)2δ[0] + [n(n+ 1)q]− [0] + (n+ 1)L0

∼ (n+ 1)2(δ[0] + L0) = (n+ 1)2L.

Thus, h satisfies the required condition. �

Corollary 2.27. Let π : X → T be a P1-bundle over an elliptic curve T with two

mutually disjoint sections Θ1 and Θ2. Let G be a finite group acting on X preserving

Θ1 + Θ2. Then there is a G-equivariant non-isomorphic surjective endomorphism

f of X such that

(1) f−1Θ1 = Θ1, f
−1Θ2 = Θ2, Sf = Θ1 +Θ2, and

(2) f−1f(Γ) 6= Γ for any prime divisor Γ on X dominating T except Θ1 and

Θ2.

If Θ2 is a negative curve, then there is a G-equivariant non-isomorphic surjective

endomorphism g of X such that

(3) g−1Θ2 = Θ2, Sg = Θ2, and

(4) g−1g(Γ) 6= Γ for any prime divisor Γ on X dominating T except Θ2.

Proof. By Remark 2.22, π is G-equivariant for an action of G on T . There is a

divisor L on T such that Θ1 ∼ Θ2 + π∗L. Interchanging Θ1 and Θ2 if necessary,

we may assume that degL ≥ 0. We set G0 := {σ ∈ G | σ(Θ1) = Θ1}, which is a

subgroup of G of index 1 or 2. For σ ∈ G, if σ ∈ G0 (resp. 6∈ G0), then σ∗L ∼
L (resp. σ∗L ∼ −L). By Lemma 2.26, there is a G-equivariant non-isomorphic

surjective endomorphism h : T → T such that h∗L ∼ mL for some m > 1 and that

m and deg h are coprime to the order of G. Note that Sh = 0, since h is étale.

By replacing h with a power hk and by Lemma 2.13, we have an isomorphism

h∗OT (L) ≃ OT (mL) of G-linearized OT -modules. Hence, the existence of f follows

from Proposition 2.15(2) in case G = G0, and from Proposition 2.16(2) in case

G 6= G0. Assume that Θ2 is a negative section. Then G = G0, degL > 0,

m = deg h, andH0(T,OT (nL))
G 6= 0 for the order n ofG, by Lemma 2.12(3). Thus,

by replacing h with a power, we may assume that m > 2 and H0(T,OT (jL))
G 6= 0

for some 1 ≤ j < m. Hence, the existence of g follows from Proposition 2.15(2). �

In Examples 2.28 and 2.29 below, we shall construct some normal projective

rational surfaces X with P1-fibrations X → T = P1 and construct some non-

isomorphic surjective endomorphisms of X by applying Corollary 2.27.

Example 2.28. Let D be an effective Q-divisor on the rational curve T = P1 of the

form

D =
∑l

j=1
(1−m−1

j )Pj

for distinct points P1, . . . , Pl and integers 2 ≤ m1 ≤ m2 ≤ . . . ≤ ml. Assume

that degD = 2. Then (m1,m2, . . . ,ml) is one of (2, 2, 2, 2), (2, 3, 6), (2, 4, 4), and

(3, 3, 3), and there is a cyclic cover ̟ : T → T from an elliptic curve T such that

̟ is étale over T \ SuppD and KT = ̟∗(KT +D). In other words, ̟ is an index
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1-cover with respect to KT +D ∼Q 0 (cf. [23, Def. 4.18(2)]). Let G be the cyclic

Galois group of ̟. Then the order n of G equals lcm{mj}. Let χ : G → C⋆ be

an injective group homomorphism. The image of χ is the group of n-th roots of

unity. Let L be the invertible sheaf ̟∗OP1(1). We can define a G-linearization

{εσ : σ∗
TL → L}σ∈G of L by the composite

σ∗
TL = σT (̟

∗O(1))
≃†

−−→ ̟∗O(1)
×χ(σ)−−−−→ ̟∗O(1) = L,

where ≃† is the canonical isomorphism on the composite ̟ = ̟ ◦ σT . Then an

action of G on P1-bundle X = PT (OT ⊕ L) is induced by the G-linearized OT -

module OT ⊕ L, and the structure morphism π : X → T is G-equivariant (cf.

Lemma 2.12(1)). By the G-linearization {εσ}, we see that the action of G on X is

free outside finitely many points. Thus, the quotient morphism ξ : X → X = G\X

is étale in codimension 1. Then the induced P1-fibration π̄ : X → T is smooth over

T \ SuppD, and π̄∗Pj = mjF j for a prime divisor F j ≃ P1 for any 1 ≤ j ≤ l (cf.

[24, Lem. 4.2]). Here, X is a rational surface with ρ(X) = 2, and −KX is big,

since −KX = ξ∗(−KX) is so. Let Θ1 (resp. Θ2) be the G-invariant section of π

corresponding to the projection OT ⊕L → L (resp. OT ⊕L → OT ). Then the image

Θi := ξ(Θi) is a section of π̄ and Θi = ξ∗Θi for any i = 1 and 2. In particular, Θ2

is a negative section of π̄.

By Corollary 2.27, we have two G-equivariant non-isomorphic surjective endo-

morphisms f and g of X satisfying conditions (1)–(4) of Corollary 2.27. Let f̄ and

ḡ be endomorphisms of X induced by f and g, respectively, i.e., ξ ◦ f = f̄ ◦ ξ and

ξ ◦ g = ḡ ◦ ξ. Here, deg f̄ = deg f > 1, deg ḡ = deg g > 1, Sf̄ = Θ1 + Θ2, and

Sḡ = Θ2 by [24, Lem. 2.19(3)]. Since ξ is étale in codimension 1, we have

KX + Sf = ξ∗(KX + Sf̄ ) and KX + Sg = ξ∗(KX + Sḡ).

In particular,KX+Sf̄ ∼Q 0, and (X,Sf̄ , f̄) is an example satisfying [24, Thm. A(4)].

On the other hand, −(KX + Sḡ) ∼Q Θ1 is nef and big, and the example (X,Sḡ, ḡ)

is not considered in [24, Thm. A] nor in Section 4.2 below.

Example 2.29. Let ι be an involution of an elliptic curve T with a fixed point and

let P ∈ T be a non-fixed point of ι. The invertible sheaf L = OT (P − ι(P )) on T

is of degree 0, and L is not a torsion invertible sheaf for general P . We have an

isomorphism η : ι∗L → L⊗−1 such that the composite

L ≃†

−−→ ι∗(ι∗L) ι∗η−−→ ι∗L⊗−1 η⊗−1

−−−→ L
is the identity morphism of L for the canonical isomorphism ≃† on the composite

ι ◦ ι = idT . Then we have an isomorphism

ι∗(OT ⊕ L) cι⊕η−−−→ OT ⊕ L⊗−1 ≃ L⊗−1 ⊗OT
(L ⊕OT )

for the canonical isomorphism cι (cf. Remark 2.8), and it defines an involution ιX of

the P1-bundleX = PT (OT⊕L) over T as a lift of ι (cf. the proof of Proposition 2.16).

Hence, G = Z/2Z acts on X and T , and the structure morphism π : X → T is G-

equivariant. Let ξ : X → X = G\X and τ : T → T = G\T be quotient morphisms,

and let π̄ : X → T be the induced P1-fibration. Since ι has a fixed point, T ≃ P1
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and the double cover τ has 4 branched points. Let Θ1 (resp. Θ2) be the section

of π corresponding to the projection OT ⊕ L → L (resp. OT ⊕ L → OT ). Then

ιX(Θ1) = Θ2 and ιX(Θ2) = Θ1. Hence, ιX has only finitely many fixed points,

ξ is étale in codimension 1, and there are 4 non-reduced fibers of π̄ over the 4

branched points of the double cover T → T (cf. [24, Lem. 4.2]). The image Θ of

Θ1 by X → X coincides with the image of Θ2, and Θ is a double section of π̄. In

particular, KX +Θ ∼Q 0 by KX +Θ1 +Θ2 ∼ 0. Consequently, X is rational and

−KX is nef with (−KX)2 = 0 but is not numerically trivial.

By Corollary 2.27, we have a G-equivariant non-isomorphic surjective endomor-

phism f of X satisfying conditions (1) and (2) of Corollary 2.27. Then the endo-

morphism f̄ of X induced by f is also non-isomorphic and surjective, and we have

f̄−1Θ = Θ and Sf̄ = Θ. In particular, (X,Sf̄ , f̄) is an example of [24, Thm. A(4)].

Now, we are ready to prove Theorem 2.20.

Proof of Theorem 2.20. By Remark 2.1, it suffices to prove the existence of a G-

equivariant non-isomorphic surjective endomorphism of X. Now, π is G-equivariant

for an action of G on T by Remark 2.22. Let E be a locally free sheaf of rank 2

on T such that X ≃ PT (E). We may assume that one of conditions in Fact 2.23 is

satisfied for E . If E is normalized indecomposable of degree 0, then the assertion

holds by Proposition 2.25(2).

Assume that E is decomposable, i.e., E ≃ OT ⊕ L for an invertible sheaf L. If

L ≃ OT , then X ≃ P1 × T , and the assertion holds by Lemma 2.3. Thus, we may

assume that L 6≃ OT . Then π has two mutually disjoint sections whose sum is G-

invariant. In fact, if degL = 0, then π has exactly two sections of self-intersection

number 0, and the sum of them is G-invariant. If degL 6= 0, then X has a unique

negative curve Γ as a section of π, and by Lemma 2.14, we can find another G-

invariant section Θ of π such that Θ∩Γ = ∅. Therefore, X admits a non-isomorphic

surjective endomorphism by Corollary 2.27. Thus, the assertion holds when E is

decomposable.

It remains the case where E is stable, and we may assume that E is as in

Fact 2.23(C). We fix an abelian group structure of T . Let µ(2) : T = T(2) → T

be the multiplication map by 2, and let π(2) : X(2) := X ×T T(2) → T(2) be the base

change of π by µ(2). Then X(2) ≃ P1×T(2) over T(2) (cf. Fact 2.23(C)). Let G(2) be

the group of pairs (α, σ) for α ∈ Aut(T(2)) and σ ∈ G such that µ(2) ◦α = σT ◦µ(2),

i.e., the diagram

T(2)
µ(2)−−−−→ T

α

y
yσT

T(2)
µ(2)−−−−→ T

is commutative. Note that, for any β ∈ Aut(T ), there is an automorphism α ∈
Aut(T(2)) such that µ(2) ◦ α = β ◦ µ(2). In fact, if β is given by T ∋ z 7→ a(z) + b

for some a ∈ Aut(T, 0) and b ∈ T , then the automorphism α : z 7→ a(z)+ c satisfies

µ(2) ◦ α = β ◦ µ(2) when b = 2c. Thus, the homomorphism G(2) → G defined by

(α, σ) 7→ σ is surjective, and its kernel is identified with the Galois group Gal(µ(2))
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of µ(2). The group G(2) acts on T(2) by G(2) ∋ (α, σ) 7→ α ∈ Aut(T(2)). We can

define an action of G(2) on X(2) ⊂ X × T(2) by

(α, σ) : X × T(2) ∋ (x, t) 7→ (σX(x), α(t)).

In fact, if π(x) = µ(2)(t), then π(σX(x)) = σT (π(x)) = σT (µ(2)(t)) = µ(2)(α(t)).

Hence, G(2) acts on X(2) and T(2), and π(2) : X(2) → T(2) is G(2)-equivariant. We

have a G(2)-equivariant non-isomorphic surjective endomorphism f(2) of X(2) ≃
P1 × T(2) by Lemma 2.3. It induces a G-equivariant non-isomorphic surjective

endomorphism of X, since X ≃ Gal(µ(2))\X(2) and G ≃ G(2)/Gal(µ(2)). Thus,

the assertion holds for any condition of Fact 2.23, and we are done. �

Finally in Section 2.3, we shall prove Theorem 2.21:

Proof of Theorem 2.21. Let µ : M → X be the minimal resolution of singularity.

Then µ is G-equivariant for an action of G on M . Now M has a structure of a P1-

bundle π : M → T over an elliptic curve T , in which the µ-exceptional curve Γ is a

section of π. By Theorem 2.20, we have a G-equivariant non-isomorphic surjective

endomorphism f̃ : M → M . Here, Γ is completely invariant under f̃ . Then we

have a G-equivariant non-isomorphic surjective endomorphism f : X → X such

that µ ◦ f̃ = f ◦µ by [24, Lem. 3.14]. This also induces a non-isomorphic surjective

endomorphism of G\X by Remark 2.1.

The last assertion remains to be proved. Let C be a cross section of X preserved

by the action of G. Then µ∗C is a G-invariant section of π and Γ ∩ µ∗C = ∅. By

Corollary 2.27, we have a G-equivariant non-isomorphic surjective endomorphism

f̃ : M → M such that f̃−1(µ∗C) = µ∗C. Hence, it descends to a G-equivariant

non-isomorphic surjective endomorphism f of X, and C is completely invariant

under f . Thus, we are done. �

2.4. Examples of endomorphisms related to [24]. We shall give examples of

the following normal surfaces X with non-isomorphic surjective endomorphisms

which are related to results in [24]:

(I) A normal compact complex analytic surface X having cusp singularities.

This X is not a Moishezon surface by [24, Cor. B and Thm. 6.1]. We shall

give an example in Example 2.30 with a remark.

(II) A rational surface X with a non-zero completely invariant divisor S under

the endomorphism such that KX + S ∼ 0. For the surface X, we have a

finite cover ν : V → X étale in codimension 1 satisfying conditions in [24,

Lem. 5.6]. In Example 2.31 below, we shall give two examples of X with

finite covers V → X.

(III) A rational surface X having a finite cover V → X étale in codimension 1

from an abelian surface V (cf. [24, Thm. A(3)]). We shall give an example

of X with ρ(X) = 4 in Example 2.32 below.

(IV) A rational surface X having a finite cover V → X étale in codimension 1

from the product V = C×T for an elliptic curve C and a curve T of genus

≥ 2 (cf. [24, Thm. A(2)]). We shall give an example in Example 2.33 below.
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Example 2.30. We shall give an example of (I). LetM be a hyperbolic Inoue surface

(cf. [14], [25], [18], [19]). This is a non-singular compact complex surface of algebraic

dimension 0 without (−1)-curves and with dimH1(M,C) = 1 such that the set of

prime divisors onM forms a disjoint union D of two cyclic chains of rational curves

(cf. [22, Def. 4.3]). Here, KM +D ∼ 0, and D can be contracted to two points by

a bimeromorphic morphism µ : M → X to a normal surface X. Then KX ∼ 0, and

X has two cusp singularities. There is a non-isomorphic surjective endomorphism

fM : M → M by [7, Prop. 9.2]. Since f−1
M (D) = D, it induces a non-isomorphic

surjective endomorphism f : X → X such that µ ◦ fM = f ◦ µ.

Remark. In [6, Prop. 2.2], Favre has constructed a remarkable example of an en-

domorphism of X for a certain hyperbolic Inoue surface M , in which the endomor-

phism of X does not lift to a holomorphic endomorphism of any non-singular model

of X.

Example 2.31. We shall give examples of (II). More precisely, for a rational (resp.

elliptic) curve T , we shall construct a normal projective rational surface X with

a non-isomorphic surjective endomorphism f , a non-zero f -completely invariant

divisor S, and a finite Galois cover ν : V → X from V = P1 × T satisfying the

following conditions (cf. [24, Lem. 5.6]):

(1) ν is étale in codimension 1;

(2) KX + S ∼ 0 and S ⊂ Xreg;

(3) the Euler number e(V \ ν−1S) = 0;

(4) fk ◦ ν : V → X is a Galois closure of fk : X → X for k ≫ 0.

First, we consider the case: T = P1. For a homogeneous coordinate (x : y) of P1,

let ι be an involution of V = P1 × P1 defined by ((x : y), (u : v)) 7→ ((y : x), (v : u)),

and set X to be the quotient surface of V by ι. Then the quotient morphism

ν : V → X is étale outside the fixed point locus of ι, which consists of four points

((1 : (−1)i), (1 : (−1)j)) for 0 ≤ i, j ≤ 1. For odd integers a > 1 and b > 1, let f ′ be

an endomorphism of V defined by

((x : y), (u : v)) 7→ ((xa : ya), (ub : vb)).

Then ι ◦ f ′ = f ′ ◦ ι, and f ′ induces an endomorphism f of X of degree ab ≥ 2.

By construction, f ◦ ν = ν ◦ f ′ : V → X is a Galois cover and its Galois group is

isomorphic to the semi-direct product Z/2Z ⋉ (Z/aZ ⊕ Z/bZ). Since a and b are

odd, f ◦ ν is a Galois closure of f . By replacing (a, b) with (ak, bk), we see that

the composite fk ◦ ν : V → X is the Galois closure of fk for any k ≥ 1. For prime

divisors

C1,0 = p∗1(1 : 0), C0,1 = p∗1(0 : 1), D1,0 = p∗2(1 : 0), D0,1 = p∗2(0 : 1)

on V , where pi is the i-th projection V → P1 for i = 1, 2, we set

C := ν(C1,0) = ν(C0,1), D := ν(D1,0) = ν(D0,1), and S := C +D.

Then C1,0 + C0,1 + D1,0 + D0,1 = ν−1S and V \ ν−1S ≃ C⋆ × C⋆. In particular,

e(V \ ν−1S) = 0. Moreover, any fixed point of ι is not contained in ν−1S. Thus,
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S ⊂ Xreg. We have KV + ν−1S = ν∗(KX + S) ∼ 0, and furthermore, KX + S ∼ 0

by

ι∗(s−1ds ∧ t−1dt) = s−1ds ∧ t−1dt

for s = x/y and t = u/v. Since f ′∗(Ci,j) = aCi,j and f ′∗Di,j = bDi,j for any

(i, j) ∈ {(1, 0), (0, 1)}, ν−1S is completely invariant under f ′, and S is completely

invariant under f . Thus, (X, f, S, ν) satisfies the required condition.

Second, we consider the case where T is an elliptic curve. For a group structure

of T , let µ(m) : T → T stand for the multiplication map by m ∈ Z. Let θ : P1 → P1

be an involution defined by (x : y) 7→ (y : x) for a homogeneous coordinate (x : y)

of P1. Let X be the quotient surface of V by the involution ι = θ × µ(−1) of

V = P1 ×T . Then the quotient morphism ν : V → X is étale in codimension 1 and

is étale along the disjoint union SV of p∗1(1 : 0) and p
∗
1(0 : 1) for the first projection

p1 : V → P1. In particular, the image S = ν(SV ) is an elliptic curve isomorphic to

T , and we have S ⊂ Xreg, ν
∗(S) = SV , and ν

∗(KX+S) = KV +SV ∼ 0. Moreover,

e(V \ SV ) = 0 by V \ SV ≃ C⋆ × T .

We shall show that X is rational and KX+S ∼ 0. The vector space H0(V,Ω1
V/C)

of global holomorphic 1-forms on V is 1-dimensional and is generated by p∗2(dζ) for

a non-zero global holomorphic 1-form dζ on T for the second projection p2 : V → T .

Since (µ(−1))
∗(dζ) = −dζ, the irregularity q(M) = 0 for the minimal resolution M

of X. The logarithmic 2-form ω := (y/x)d(x/y) ∧ dζ gives a nowhere vanishing

section of OV (KV +SV ) which is invariant under ι∗, i.e., ι∗(ω) = ω. Thus, we have

KX +S ∼ 0. As a consequence, X is rational, since KX is not pseudo-effective and

q(X) = q(M) = 0.

Let ϕn : P
1 → P1 be the endomorphism defined by (x : y) 7→ (xn : yn) for an

integer n > 0. We consider the endomorphism f̃ = ϕa × µ(b) of V = P1 × T for

odd integers a > 1 and b > 1. Then ι ◦ f̃ = f̃ ◦ ι and there is an endomorphism

f of X satisfying ν ◦ f̃ = f ◦ ν. Here, deg f = deg f̃ = ab2 > 1. By definition,

SV is completely invariant under f̃ , and hence, S is completely invariant under f .

By construction, f ◦ ν = ν ◦ f̃ : V → X is a Galois cover and its Galois group

is isomorphic to the semi-direct product Z/2Z ⋉ (Z/aZ ⊕ Tb) for the group Tb of

b-torsion points of T , which is isomorphic to (Z/bZ)⊕2. Since a and b are odd,

f ◦ ν is a Galois closure of f : X → X. By replacing (a, b) with (ak, bk), we see

that fk ◦ ν is a Galois closure of fk for any k > 0. Thus, (X, f, S, ν) satisfies the

required condition.

Example 2.32. We shall give an example of (III). Let E be the elliptic curve

C/(Z
√
−1 + Z) and set V = E × E. Let σ be an automorphism of V of order 4

given by E×E ∋ (x, y) 7→ (
√
−1x,

√
−1y), and setX to be the quotient surface of V

by the action of σ. Then the quotient morphism ν : V → X is étale in codimension

1, since the action of σ is free outside a finite subset of V . Thus, KX ∼Q 0 by

KV = ν∗KX , but KX 6∼ 0 as SingX contains a non-Gorenstein cyclic quotient

singularity of order 4. On the other hand,

H0(M,Ω1
M ) = H0(E × E,Ω1

E×E)
〈σ〉 = 0
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for the minimal resolution M of singularity of X, where the superscript 〈σ〉 stands
for the σ-invariant part. As a consequence, X is rational.

We shall show that the Picard number ρ(X) is equal to 4. The fibers F1 = {0}×E
and F2 = E × {0} over 0 of the first and second projections V → E, respectively,

are σ-invariant. Similarly, the diagonal locus ∆ = {(x, x) | x ∈ E} and the locus

Σ = {(x,
√
−1x) | x ∈ E} are also σ-invariant. The numerical classes cl(F1), cl(F2),

cl(∆), and cl(Σ) form a basis of the 4-dimensional vector space N(V ). Therefore,

ρ(X) = 4.

By Lemma 2.5, there is a σ-equivariant non-isomorphic surjective endomorphism

of V : As a simple example, the endomorphism of V defined by (x, y) 7→ (mx,my)

for an integer m > 1 is σ-invariant. It descends to a non-isomorphic surjective

endomorphism of X, and it gives an example of [24, Thm. A(3)].

Example 2.33. We shall give an example of (IV). Let T be the Fermat quartic

curve {X4 + Y4 + Z4 = 0} ⊂ P2, where (X : Y : Z) is a homogeneous coordinate. Let σ

be an automorphism of T defined by (X:Y:Z) 7→ (X:Y:
√
−1Z). Then the projection

τ : T → P1 defined by (X:Y:Z) 7→ (X:Y) is the quotient morphism of T by the action

of σ, and it is a cyclic cover of degree 4. The intersection T ∩ {Z = 0} consists

of four points P1, . . . , P4. Let Qi be the image τ(Pi) ∈ P1 for 1 ≤ i ≤ 4. Then

τ−1(Qi) = {Pi} for any 1 ≤ i ≤ 4 and τ is étale over P1 \ {Q1, . . . , Q4}. Let C be

the elliptic curve C/(Z + Z
√
−1) and let σ′ be an automorphism of C defined by

z 7→
√
−1z for z ∈ C. Then the automorphism σ̂ := σ′ × σ of C × T has order 4

and it acts freely outside a finite set. Thus, the quotient morphism ν : C × T → X

by σ̂ is étale in codimension 1 and is a cyclic cover of degree 4. Moreover, the

second projection C × T → T induces an elliptic fibration π : X → P1 which is

smooth over P1 \ {Q1, . . . , Q4}. Note that KX is semi-ample with κ(KX) = 1 by

KC×T = ν∗KX .

Let ψ : Y → P1 be the relatively minimal elliptic surface birational to π. Then

the singular fiber over Qi is of type III in Kodaira’s notation (cf. [15]). In fact, Z/X

is a local parameter of T at Pi with σ
∗(Z/X) =

√
−1Z/X, and z ∈ C gives rise to a

local parameter of C with σ′∗(z) =
√
−1z. Thus, the singular fiber type is III (cf.

[15, §8 (iv) Case 31]). By the canonical bundle formula of elliptic surfaces (cf. [16,

Thm. 12], [31, App.]), we have

KY ∼Q ψ
∗
(
KP1 +

∑4

i=1
(1/4)Qi

)
∼Q ψ

∗OP1(−1).

In particular, KY is not pseudo-effective. On the other hand,

H1(Y,OY ) ≃ H1(C × T,OC×T )
〈σ̂〉 = H1(C,OC)

〈σ′〉 ⊕H1(T,OT )
〈σ〉 = 0.

Therefore, Y is a rational surface, and as a consequence, X is also rational.

By Lemma 2.5, there is a σ̂-equivariant non-isomorphic surjective endomor-

phism of C × T : As a simple example, we have an endomorphism defined by

C × T ∋ (z, t) 7→ (mz, t) for m > 1. It descends to a non-isomorphic surjec-

tive endomorphism of X and it gives an example (X,S, f) in [24, Thm. (2)] with

S = 0.
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3. Generalizations and applications of Theorem A in [24]

We shall present generalizations and applications of [24, Thm. A] using results in

Section 2. A complete version of [24, Thm. A] is given as Theorem 3.1 in Section 3.1.

Theorem 3.4 below determines the structure of a completely invariant curve with

positive arithmetic genus, which is proved in Section 3.2 by applying [24, Thm. A].

Section 3.3 concerns Theorem 3.10 on a normal projective surface X admitting a

non-isomorphic surjective morphism f such that the refined ramification divisor ∆f

is zero (cf. [24, Def. 2.16]).

3.1. A complete version of Theorem A in [24].

Theorem 3.1. Let X be a normal Moishezon surface with a reduced divisor S

such that KX+S is pseudo-effective. Then there exists a non-isomorphic surjective

endomorphism f : X → X satisfying f−1S = S if and only if X is projective and

there exists a finite surjective morphism ν : V → X étale in codimension 1 satisfying

one of the conditions (1)–(6) below :

(1) V = P1×T and ν∗(S) = pr∗1(P1+P2)+pr∗2(D) for a non-singular projective

curve T , two points P1 P2 ∈ P1, and a reduced divisor D ⊂ T such that

deg(KT +D) > 0, where pri denotes the i-th projection for i = 1, 2;

(2) V = C × T and ν∗(S) = pr∗2(D) for an elliptic curve C, a non-singular

projective curve T , and a reduced divisor D ⊂ T such that deg(KT+D) > 0;

(3) V is an abelian surface and S = 0;

(4) V is a P1-bundle over an elliptic curve and ν∗(S) is a disjoint union of two

sections ;

(5) V is a projective cone over an elliptic curve and ν∗(S) is a cross section

(cf. [24, Def. 1.16]);

(6) V is a toric surface with ν∗(S) as the boundary divisor.

Remark 3.2. We allow 0 as a reduced divisor. The “only if” part has been proved

by [24, Thm. A]. We may assume that X is projective by [24, Cor. B]. For the

characteristic completely invariant divisor Sf of f (cf. [24, Def. 2.16]), we have

S ≥ Sf by [24, Thm. 2.24]. Moreover, ν∗Sf = pr∗1(P1 + P2) in (1), and Sf = 0 in

(2), by [24, Lem. 5.1].

We shall prove Theorem 3.1 using results in Section 2 and the following:

Lemma 3.3. Let ν : V → X be a finite surjective morphism étale in codimension

1 satisfying one of the six conditions in Theorem 3.1. Then there is a finite Galois

cover ν̃ : Ṽ → X satisfying the same condition.

Proof. Let ν̂ : V̂ → X be the Galois closure of ν and let θ : V̂ → V be the induced

Galois cover such that ν̂ = ν ◦ θ. Then ν̂ is étale in codimension 1. We shall

show that ν̂ satisfies the same condition as ν except the case (2). Note that V is

non-singular and θ is étale except the cases (5) and (6).

In the case (1) (resp. (4)), the étale cover V̂ of V is obtained as the base change

of V → T by an étale cover T̂ → T ; thus, ν̂ satisfies (1) (resp. (4)). In the case (3),
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V̂ is also an abelian surface, and hence, ν̂ satisfies (3). For the cases (5) and (6),

we need more arguments:

(5): Let W be the minimal resolution of singularities of V . Then W is a P1-

bundle over an elliptic curve T , and the exceptional divisor Θ lying over the vertex

is a negative section of the P1-bundle. Hence, W ′ := V̂ ×V W → W is étale over

W \ Θ. Since π1(W \ Θ) ≃ π1(T ), there is a finite étale cover T ′ → T such that

(W \Θ)×WW ′ ≃ (W \Θ)×T T ′ overW \Θ. Therefore,W×T T ′ is the normalization

of W ′, and V̂ is a projective cone over T ′. The pullback of ν∗S by V̂ → V is also

a cross section, since it is isomorphic to S ×T T ′. Thus, ν̂ : V̂ → X satisfies (5).

(6): The Galois cover θ : V̂ → V is étale over the open torus U := V \ ν−1S,

where V is expressed as the toric surface TN(△) associated with the abelian group

N = π1(U) ≃ Z⊕2 and a fan △ of N. For the subgroup N
′ = π1(θ

−1U) ⊂ N, let

p : TN′(△) → TN(△) be the associated morphism of toric surfaces. Then θ−1(U) ≃
p−1(U) as a complex analytic space over U . This extends to an isomorphism V̂ ≃
TN′(△) of normal projective surfaces over V by a theorem of Grauert–Remmert

(cf. [10], [11, XII, Thm. 5.4]). Thus, V̂ satisfies (6).

Finally, we consider the case (2). Here, we shall find another finite Galois cover

étale in codimension 1 satisfying (2). Let V̂ → T̂ → T be the Stein factorization

of pr2 ◦θ : V̂ → V = C × T → T . Then induced finite morphisms T̂ → T and

V̂ → V ×T T̂ ≃ C × T̂ are both étale. We may replace T with T̂ , since C × T̂ → X

satisfies (2). Thus, we may assume that π := pr2 ◦θ : V̂ → T is a fibration. For

the ample divisor KT +D, the linear equivalence class of π∗(KT +D) is preserved

by the Galois group G = Gal(ν̂) of ν̂, since ν∗(KX + S) ∼ pr∗2(KT + D). Thus,

π is G-equivariant for an action of G on T , and we have an induced fibration

X = G\V̂ → T := G\T . Let τ : T → T be the quotient morphism and let V be the

normalization of the fiber product X ×T T . Then we have a commutative diagram

V̂
θ //

π

**❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱ V = C × T
λ //

ν

%%

pr2

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

V
ν̄ //

π̄

��

X

��

T
τ // T ,

where the induced finite covers λ and ν̄ are also étale in codimension 1 and ν̄ is

a Galois cover with the same Galois group as that of τ . Here, π̄∗D = ν̄∗S by

pr∗2D = ν∗S.

It is enough to prove that V ≃ C×T over T for an elliptic curve C. For, the Ga-

lois cover C×T ≃ V → X satisfies (2). Note that π̄ is an elliptic fibration, since λ is

étale in codimension 1. Let T ⋆ be a Zariski-open dense subset of T over which π̄ is

smooth. Then the smooth elliptic fibration π̄|T⋆ : π̄−1(T ⋆) → T ⋆ admits a section,

the associated period map is constant, and the associated monodromy transforma-

tion is also trivial, since these hold for the trivial elliptic fibration C × T ⋆ → T ⋆

and since C×T ⋆ is étale over π̄−1T ⋆. By [15, Thm. 10.2], V is birational over T to

the product C × T for an elliptic curve C. Since V has only rational singularities,

every rational map from V to the elliptic curve C is holomorphic. Therefore, we
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have a birational morphism V → C × T over T , and it is an isomorphism, since

every fiber of π̄ is irreducible. Thus, we are done. �

Proof of Theorem 3.1. It suffices to prove the “if” part, i.e., the existence of a

non-isomorphic surjective endomorphism f : X → X such that f−1S = S in each

case of Theorem 3.1. Here, we may assume that ν : V → X is a Galois cover by

Lemma 3.3. We set G = Gal(ν). For cases (4), (5), and (6), the existence of f

follows from Theorems 2.20 and 2.21, and Lemma 2.6, respectively, onG-equivariant

endomorphisms. For the case (3), the existence of f follows from Lemma 2.5 applied

to the case where B is a point. For (1) and (2), we need more arguments:

(1): The second projection pr2 : V = P1 × T → T is G-equivariant for an action

of G on T , since KT + D is ample and ν∗(KX + S) ∼ pr∗2(KT + D) is preserved

by G. Here, the action of G on V is diagonal by Lemma 2.3, and we have an

action on P1. Since ν∗(S) = pr∗1(P1 + P2) + pr∗2(D) is G-invariant, the divisor

P1+P2 on P1 is also G-invariant. We may assume that P1 = (1 : 0) and P2 = (0 : 1)

for a homogeneous coordinate (x : y) of P1. Then the image of G → Aut(P1)

is either a cyclic group generated by the automorphism e(ζ) : (x : y) 7→ (ζx : y)

for a root ζ of unity or a dihedral group generated by e(ζ) above and by the

involution (x : y) 7→ (y : x). Then, for any integer m > 0 such that ζm = 1, the

endomorphism fm+1 : (x :y) 7→ (xm+1 : ym+1) of P1 is G-equivariant and satisfies

f−1
m+1(P1+P2) = P1+P2. Let f be the endomorphism of X = G\V induced by the

G-equivariant endomorphism fm+1×idT : P
1×T → P1×T . Then deg f = m+1 > 1

and f−1(S) = S by construction.

(2): The second projection pr2 : V = C×T → T is G-equivariant for an action of

G on T , since KT +D is ample and ν∗(KX +S) ∼ pr∗2(KT +D) is preserved by G.

Then there is a G-equivariant non-isomorphic surjective endomorphism fV : V → V

such that pr2 = pr2 ◦fV , by Lemma 2.5. Here, f∗V (ν
∗S) = ν∗S by pr∗2D = ν∗S.

Hence, fV induces a non-isomorphic surjective endomorphism f of X = G\V such

that f−1S = S. Thus, we are done. �

3.2. Completely invariant curves of positive arithmetic genus. We shall

prove Theorems 3.4 and 3.5 below on normal projective surfaces with curves of

positive arithmetic genus which are completely invariant under non-isomorphic sur-

jective endomorphisms.

Theorem 3.4. Let X be a normal projective surface with a non-isomorphic sur-

jective endomorphism f and let C be an f -completely invariant curve such that

p
a
(C) > 0. Then one of the following holds :

(1) The curve C is non-singular and there is a P1-fibration π : X → T to a

non-singular projective curve T such that π(C) = T and degC/T ≤ 2.

Moreover, there is a finite cover T ′ → T from a non-singular projective

irrational curve T ′ such that

• the normalization X ′ of X ×T T ′ is isomorphic to P1 × T ′ over T ′,

• the induced morphism ν : X ′ → X is étale in codimension 1,

• ν∗C is a fiber or a union of two fibers of the first projection X ′ ≃
P1 × T ′ → P1.
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(2) The curve C is an elliptic curve contained in Xreg, and C is a set-theoretic

fiber of an elliptic fibration π : X → T to a non-singular projective curve T .

Moreover, there exist an elliptic curve C ′ and a finite cover T ′ → T from

a non-singular projective curve T ′ such that

• the normalization X ′ of X×T T ′ is isomorphic to C ′×T ′ over T ′, and

• the induced cover X ′ → X is étale in codimension 1.

(3) The surface X is a projective cone over an elliptic curve and C is a cross

section.

(4) The surface X is a P1-bundle over an elliptic curve and C is section.

(5) The surface X is a P1-bundle over an elliptic curve and C is an elliptic

curve such that C + KX ∼Q 0. In particular, C is a double section with

C2 = 0.

(6) The surface X is rational, C is an elliptic curve contained in Xreg, KX +

C ∼ 0, and there is a double cover ν : V → X étale in codimension 1 from

a P1-bundle V over an elliptic curve such that ν∗C is a disjoint union of

two sections.

(7) The curve C is rational with exactly one node P , C ∩SingX ⊂ {P}, KX +

C ∼ 0, and there is a finite Galois cover ν : V → X étale in codimension 1

from a toric surface V with ν∗C as the boundary divisor.

By the list above, C is singular if and only if (7) holds. We have the following

finer description of (X,C) in a special case of (7):

Theorem 3.5. Let f be a non-isomorphic surjective endomorphism of a normal

projective surface X and let C be a singular f -completely invariant curve. Suppose

that SingC ⊂ Xreg. Then C is a rational curve with exactly one node, C ⊂ Xreg, X

is a log del Pezzo surface (cf. [1, Def. 1.1]) of Picard number 1, and there is a finite

cyclic cover ν : V → X étale in codimension 1 from a non-singular toric surface V

with ν∗C as the boundary divisor, where (V, ν∗C, deg ν) is one of the following :

(1) V ≃ P2, ν∗C is a union of three lines without triple points, and deg ν = 3;

(2) V ≃ P1 × P1, ν∗C ≃ p∗1(D1) + p∗2(D2) for reduced divisors D1, D2 ⊂ P1 of

degree 2, where pi denotes the i-the projection for i = 1, 2, and deg ν = 4;

(3) V is a del Pezzo surface of degree 6, ν∗C =
∑6
i=1 Ci for (−1)-curves Ci,

and deg ν = 6.

The proof of Theorem 3.4 is divided into three cases whereKX+C is not pseudo-

effective, nef but not numerically trivial, and numerically trivial: these are treated

in Lemmas 3.7, 3.8, and 3.9, below, respectively. The proofs of Theorems 3.4 and

3.5 are given at the end of Section 3.2. We fix (X, f,C) in Theorem 3.4 throughout

Section 3.2. We begin with:

Lemma 3.6. Assume that H0(X,OX(KX+C)) = 0. Then C is non-singular, and

there is a fibration π : X → T to a non-singular projective irrational curve T such

that π(C) = T , g(C) = g(T ), and π ◦ f = h ◦ π for an étale endomorphism h of T .

Moreover, f∗C = bC for the integer b := deg f/deg h, and the following hold :
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(1) If b = 1, then C and T are elliptic curves, f is étale, and π is a smooth

morphism isomorphic to the Albanese morphism of X.

(2) If 1 < b < deg f , then C and T are elliptic curves and π is a P1-bundle

with degC/T ≤ 2.

(3) If b = deg f , then π is a P1-fibration with degC/T ≤ 2, and there is a finite

cover T ′ → T from a non-singular projective curve T ′ satisfying the same

condition as in Theorem 3.4(1).

Proof. We first show that X has only rational singularities. Assume the contrary.

Then X is a projective cone over an elliptic curve E by [24, Prop. 6.2]. Now,

X has only quotient singularities along C, since (X,C) is log-canonical (cf. [24,

Thm. E]). Thus, C ⊂ Xreg. Since ρ(X) = 1, f∗C = δfC for the positive square root

δf = (deg f)1/2 > 1. Then p
a
(C) = 1 by [24, Lem. 3.11], and we have KX +C ∼∼∼ 0

by (KX + C)C = 2p
a
(C) − 2 = 0. For the minimal resolution µ : M → X of

singularities, the Albanese morphism of M is a P1-bundle ̟ : M → E, and the µ-

exceptional locus Θ is a section of ̟ (cf. [24, Rem. 1.17]). Here, KM +Θ+ µ∗C ∼
µ∗(KX + C) ∼∼∼ 0. Thus, µ∗C is also a section of ̟, and hence, C is an elliptic

curve. Then C is a cross section of the projective cone X and KX + C ∼ 0 by

[24, Lem. 1.18]. This contradicts H0(X,OX(KX +C)) = 0. Therefore, X has only

rational singularities.

By a property of rational singularities, the Albanese morphism of the mini-

mal resolution of singularities of X descends to the Albanese morphism of X.

Let π : X → T be the fibration obtained by the Stein factorization of the Al-

banese morphism. Then π∗ : H1(T,OT ) → H1(X,OX) is an isomorphism and

π∗ : H2(T,OT ) → H2(X,OX) is injective. By our assumption, H0(X,OX(KX +

C)) ≃ H2(X,OX(−C))∨ = 0. Hence, H2(X,OX) = 0 and the restriction ho-

momorphism H1(X,OX) → H1(C,OC) 6= 0 is surjective. As a consequence,

dimT = 1, and the pullback homomorphism (π|C)∗ : H1(T,OT ) → H1(C,OC) is an

isomorphism. In particular, π(C) = T . Then C is non-singular by [24, Prop. 3.13],

and g(C) = g(T ) = q(X). By the universality of the Albanese morphism, there is

an étale endomorphism h of T satisfying π ◦ f = h ◦ π. Then b := deg f/deg h ∈ Z

and f∗C = bC by [24, Props. 2.20(1) and 3.17], since FC > 0 for a general fiber F

of π and since π∗F ∼∼∼ (deg h)F .

If b = 1, then C and T are elliptic curves, f is étale, and π is smooth by [24,

Lem. 4.4(3)]. Thus, (1) holds. Assume that b > 1. Then C ⊂ Sf , and hence, π is a

P1-fibration with degC/T ≤ 2 by [24, Lem. 4.4(5)]. If 1 < b < deg f , then T is an

elliptic curve and π is a P1-bundle by [24, Cor. 4.7]. This shows (2). If b = deg f ,

i.e., deg h = 1, then the conclusion of (3) holds by [24, Thm. 4.9]. �

Lemma 3.7. Suppose that KX + C is not nef. Then either (1) or (4) of Theo-

rem 3.4 holds.

Proof. By [24, Thm. 2.24], KX + C is not pseudo-effective. Hence, we can apply

Lemma 3.6. As a consequence, C is non-singular. Let π : X → T be the fibration

in Lemma 3.6 with the étale endomorphism h of T .
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There is an extremal ray R ⊂ NE(X) with (KX + C)R < 0 by [24, Thm. 1.9].

We shall show that the contraction morphism of R is not birational. Assume the

contrary, i.e., cl(Γ) ∈ R for a negative curve Γ. Then deg f = (deg h)2, T is

an elliptic curve, π is a P1-bundle, and Γ is the unique negative section by [24,

Cor. 4.8]. Since (KX +Γ)Γ = 2 g(Γ)−2 = 0, if C 6= Γ, then (KX +C)Γ ≥ −Γ2 > 0

contradicting (KX + C)Γ < 0.

Therefore, the contraction morphism of R is a fibration ϕ : X → B to a non-

singular projective curve B by [24, Thm. 1.10], since ρ(X) ≥ ρ(T ) + 1 = 2. Every

set-theoretic fiber of ϕ is rational and is contracted to a point by π : X → T , since T

is irrational. Therefore, ϕ ≃ π. In particular, (KX+C)F < 0 for a general fiber F of

π. This implies that C is a section of π. By Lemma 3.6, we see that Theorem 3.4(4)

holds in case deg h > 1, and Theorem 3.4(1) holds in case deg h = 1. �

Lemma 3.8. Suppose that KX + C is nef but not numerically trivial. Then C is

non-singular. If Sf 6= 0, then Sf = C, and Theorem 3.4(1) holds. If Sf = 0, then

Theorem 3.4(2) holds.

Proof. By [24, Thm. 2.24], C ≥ Sf , KX + C is semi-ample, (KX + C)2 = 0, and

KX + C = f∗(KX + C). Then we have a fibration π : X → T to a non-singular

projective curve T such that KX +C is Q-linearly equivalent to the pullback of an

ample Q-divisor on T . As in the argument in [24, §5.1], there is an automorphism

h : T → T such that π ◦ f = h ◦ π by [24, Lem. 3.16]. Hence, Sf is non-singular

by [24, Lem. 4.4(1)]. If C is singular, then f∗C = δfC by [24, Prop. 3.13], and

C ⊂ Sf ; this is a contradiction. Hence, C is non-singular.

Assume that π(C) = T . Since deg h = 1, f∗F ∼∼∼ F for a general fiber F of π,

and we have f∗C = (deg f)C by FC > 0 (cf. [24, Prop. 2.20(1)]). Hence, C = Sf .

By (KX +C)F = 0, we see that π is a P1-fibration and C is a double section of π.

By [24, Thm. 4.9], there exists a finite Galois cover τ : T ′ → T such that

• the normalization X ′ of X ×T T ′ is isomorphic to P1 × T ′ over T ′,

• the induced morphism ν : X ′ → X is étale in codimension 1, and

• ν∗C is a disjoint union of two fibers of the first projection X ′ ≃ P1 × T ′ →
P1.

Here, g(T ′) ≥ 2, since KX′ + ν∗C = ν∗(KX + C) is linearly equivalent to the

pullback of an ample divisor on T ′. Thus, Theorem 3.4(1) holds in this case.

Assume next that π(C) 6= T . Then π is an elliptic fibration, since deg(KF ) =

(KX + C)F = 0 for a general fiber F of π. By [24, Lem. 4.4(2), (5)], C is a set-

theoretic fiber of π, and Sf = 0. Since (X,C) is log-canonical (cf. [24, Thm. E])

with (KX + C)C = 0, C is an elliptic curve contained in Xreg by [22, Prop. 3.29].

Therefore, Theorem 3.4(2) holds by [24, Thm. 4.9]. �

Lemma 3.9. Suppose that KX + C is numerically trivial. Then p
a
(C) = 1 and

Creg ⊂ Xreg. If C is singular, then Theorem 3.4(7) holds. If C is non-singular,

then one of (3), (5), and (6) of Theorem 3.4 holds.

Proof. By [24, Thm. 2.24], we have C ≥ Sf and KX + C ∼Q 0. Then C is either

an elliptic curve or a nodal rational curve with one node, C ∩SingX ⊂ SingC, and



40

KX +C is Cartier along C with OX(KX +C)|C ≃ OC , by [22, Prop. 3.29] applied

to the log-canonical pair (X,C).

Assume first that C is a nodal rational curve. Then f∗C = δfC by [24,

Prop. 3.13], and we have λf = δf by [24, Lem. 3.7 and Thm. 3.22]. Moreover,

KX + C ∼ 0 by Lemma 3.6. Thus, we have a finite Galois cover ν : V → X

satisfying Theorem 3.4(7) by [24, Lems. 5.4, 5.7, and 5.8].

Thus, it is enough to consider the case where C is an elliptic curve. Assume that

X is irrational. If KX+C ∼ 0, then Theorem 3.4(3) holds by [24, Lem. 5.4]. On the

other hand, X satisfies one of three conditions of [24, Thm. 4.16]. We shall show

that, if KX +C 6∼ 0, then X satisfies only [24, Thm. 4.16(2)]: If [24, Thm. 4.16(1)]

holds, then there is a finite morphism P1 × T ′ → X étale in codimension 1 from a

non-singular projective curve T ′ of genus > 1. Here, the inverse image C ′ of C is

étale over C by C ⊂ Xreg, thus, every component of C ′ is an elliptic curve: this is

a contradiction, since an elliptic curve does not dominate T ′ and is not contained

in a fiber of P1 × T ′ → T ′. If [24, Thm. 4.16(3)] holds, then C is a cross section of

X by [24, Lem. 1.18], and hence, KX +C ∼ 0. Therefore, if KX +C 6∼ 0, then [24,

Thm. 4.16(2)] occurs, where KX + C ∼ π∗N for a non-zero divisor N ∼Q 0 on T

for the P1-bundle X → T over an elliptic curve T . Here, C → T is an étale double

cover and C2 = K2
X = 0. Thus, Theorem 3.4(5) holds when X is irrational and

KX + C 6∼ 0.

Assume next that X is rational. Then H1(X,OX) = 0, and the sequence

H0(X,OX(KX + C)) → H0(C,OC) → H1(X,OX(KX)) ≃ H1(X,OX)∨ = 0

induced by OX(KX + C)|C ≃ OC is exact. Thus, KX + C ∼ 0 by KX + C ∼Q 0.

Let ν♯ : V ♯ → X be the morphism ν = τk : Vk → X in [24, Def. 5.5] for k ≫ 0

which satisfies conditions in [24, Lem. 5.6] for S = C. If V ♯ is rational, then ν♯−1C

is a union of rational curves by [24, Lem. 5.7], but C is an elliptic curve; this is a

contradiction. Hence, V ♯ is irrational, and Theorem 3.4(6) holds by [24, Lem. 5.8

and Cor. 5.9]. Thus, we are done. �

Theorem 3.4 is proved by Lemmas 3.7, 3.8, and 3.9, as follows:

Proof of Theorem 3.4. If KX + C is not nef, then either (1) or (4) of Theorem 3.4

holds, by Lemma 3.7. If KX +C is nef and not numerically trivial, then either (1)

or (2) of Theorem 3.4 holds, by Lemma 3.8. If KX +C is numerically trivial, then

one of (3), (5), (6), and (7), of Theorem 3.4 holds, by Lemma 3.9. Thus, we are

done. �

Finally in Section 3.2, we shall prove Theorem 3.5:

Proof of Theorem 3.5. Now Theorem 3.4(7) holds for (X,C). We have C ⊂ Xreg

by the assumption SingC ⊂ Xreg and by the property C ∩ SingX ⊂ {P} in

Theorem 3.4(7) for the node P of C. Hence, the finite Galois cover ν : V → X

in Theorem 3.4(7) is étale along ν−1C. It implies that the toric surface V is non-

singular, since the open torus V \ ν−1C is non-singular. Since C is a rational curve

with one node P , the number of prime components of ν−1C equals deg ν, and the



41

Galois group G = Gal(ν) of ν is a cyclic group, i.e., ν is a cyclic cover. For the

toric surface V , Pic(V ) is generated by invertible sheaves OV (Γi) associated with

prime components Γi of the boundary divisor ν−1C. Since G acts transitively on

the set of prime components of ν−1C, we see that Pic(X) is generated by OX(C) ≃
OX(−KX). As a consequence, X is a Gorenstein log del Pezzo surface of Picard

number 1, i.e., X has only rational double points as singularities, −KX is ample,

and ρ(X) = 1. In particular, −KV = ν∗(−KX) is also ample. So, V is a toric

del Pezzo surface. Now,

e(V ) = e(V \ ν−1C) + e(ν−1C) = e(ν−1C) = deg ν

as ν−1C is a cyclic chain of rational curves with deg ν prime components. We set

b := Γ2
i for a prime component Γi of ν

−1C; this is independent of the choice of Γi
as G acts transitively on the set of prime components of ν−1C. Then (ν∗C)2 =

(deg ν)(b + 2), and C2 = b + 2 > 0. Since the number deg ν of prime components

of the boundary divisor ν−1C is greater than 2 and since

12 = K2
V + e(V ) = (ν∗C)2 + e(V ) = (deg ν)(b+ 3),

the pair (b, deg ν) is one of (1, 3), (0, 4), and (−1, 6). Then (V, ν∗C, deg ν) satisfies

conditions (1), (2), and (3) of Theorem 3.5, respectively in the cases (1, 3), (0, 4),

and (−1, 6). Thus, we are done. �

3.3. Classification theorem in the case: ∆f = 0. We consider normal pro-

jective surfaces X admitting non-isomorphic surjective morphisms f such that

∆f = 0. Theorem 3.10 below classifies such X. Note that ∆f = 0 if and only

if f |X\S : X \ S → X \ S is étale in codimension 1 for an f -completely invariant

divisor S (cf. [24, Prop. 2.21]). If KX + S is pseudo-effective for an f -completely

invariant divisor S, then ∆f = 0 by [24, Thm. 2.24]. Thus, Theorem 3.10 is con-

sidered as a partial generalization of Theorem 3.1.

Theorem 3.10. For a normal projective surface X, it has a non-isomorphic sur-

jective endomorphism f satisfying ∆f = 0 if and only if there exists a finite

Galois cover V → X étale in codimension 1 such that V and its Galois group

G = Gal(V/X) satisfy one of the following conditions :

(1) V is a toric surface and G preserves the open torus of V ;

(2) V = P1 × P1 and G preserves a union of two fibers of the first projection

V → P1 and a union of at least three fibers of the second projection V → P1;

(3) V is an abelian surface;

(4) V is a projective cone over an elliptic curve and G preserves a cross section;

(5) V is a P1-bundle over an elliptic curve and G preserves a disjoint union of

two sections ;

(6) V is a P1-bundle over an elliptic curve associated with an indecomposable

locally free sheaf of degree 0;

(7) V = P1 × T for a non-singular projective curve T of genus at least 2, and

G preserves a disjoint union of two fibers of the first projection V → P1;

(8) V = C × T for an elliptic curve C and a non-singular projective curve T

of genus at least 2.
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Remark. There exist no examples of V → X satisfying two mutually different

conditions in (1)–(8), except for one pair: (1) and (2).

Theorems 3.11 and 3.12 below are considered as special cases of Theorem 3.10.

Theorem 3.11. For a normal projective surface X, it admits a non-isomorphic

surjective endomorphism f : X → X étale in codimension 1 if and only if there

exists a finite Galois cover ν : V → X étale in codimension 1 satisfying one of the

following conditions :

(1) V is an abelian surface;

(2) V = C × T for an elliptic curve C and a curve T of genus at least 2;

(3) V = P1 × T for an elliptic curve T ;

(4) V is a P1-bundle over an elliptic curve associated with an indecomposable

locally free sheaf of degree 0.

Theorem 3.12. Let X be a normal projective surface with a non-isomorphic sur-

jective endomorphism f . Assume that

(i) the refined ramification divisor ∆f = 0, and

(ii) KX + S is not pseudo-effective for any f -completely invariant divisor S.

Then one of the following holds :

(1) X ≃ P1 × T for an elliptic curve T ;

(2) X ≃ P1 × P1;

(3) there is a finite cyclic cover V → X étale in codimension 1 from a P1-

bundle V over an elliptic curve T associated with an indecomposable locally

free sheaf of degree 0.

First, we shall prove Theorem 3.12 using Lemma 3.13 below, and next prove

Theorems 3.10 and 3.11 using Theorems 3.1 and 3.12.

Lemma 3.13. In the situation of Theorem 3.12, the following hold :

(1) There is no negative curve on X, ρ(X) = 2, and NE(X) = Nef(X) = R+R
′

for two rays R and R
′ in which R (resp. R′) is generated by an eigenvector

of f∗ : N(X) → N(X) of eigenvalue deg f (resp. 1).

(2) There is a P1-fibration π : X → T to a non-singular projective curve T with

an endomorphism h : T → T such that π ◦ f = h ◦ π, deg f = deg h, and

cl(F ) ∈ R for any fiber F of π.

Moreover, the following hold for any f -completely invariant divisor S satisfying

S ≥ Sf :

(3) Rf = f∗S − S, SuppRf ⊂ Sf , and Sf = π−1Sh;

(4) −(KX+S) is nef, (KX+S)2 = 0, (KX+S)R < 0, and cl(−(KX+S)) ∈ R
′;

(5) if S 6= Sf , then S − Sf is a section of π, and cl(S − Sf ) ∈ R
′.

Proof. Let S be an f -completely invariant divisor such that S ≥ Sf . Then Rf =

f∗S − S by [24, Lem. 2.18] with Theorem 3.12(i), and −(KX + S) is nef with

(KX + S)2 = 0 and KX + S 6∼∼∼ 0 by [24, Cor. 2.25] with Theorem 3.12(ii). In

particular, cl(KX + S) is an eigenvector of f∗ : N(X) → N(X) with eigenvalue 1.
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Hence, λf = deg f . Thus, ρ(X) = 2 and X has no negative curve by [24, Thm. 3.22

and Prop. 3.24]. There is an extremal ray R such that (KX + S)R < 0, and the

contraction morphism of R is a P1-fibration π : X → T to a non-singular projective

curve T (cf. [24, Thms. 1.9 and 1.10]). By [24, Lem. 3.7], NE(X) = Nef(X) = R+R
′

for R′ := R≥0 cl(−(KX + S)), where R (resp. R′) is generated by an eigenvector of

f∗ with eigenvalue deg f (resp. 1). In particular, R and R
′ are independent of the

choice of S. Since f∗ preserves R, there is an endomorphism h : T → T such that

π ◦ f = h ◦ π and deg h = deg f , by [24, Lem. 3.16]. Thus, (1), (2), and (4) have

been proved. We shall prove the rest of (3) and (5).

(3): We have SuppRf ⊂ Sf ∪ Supp∆f = Sf (cf. [24, Lem. 2.17(4)]). For (3),

it suffices to show the equality Sf = π−1Sh, and by [24, Lem. 2.19(2)], we are

reduced to proving that any prime component of Sf does not dominate T . Let

k be a positive integer such that fk is sufficiently iterated (cf. [24, Def. 2.16]).

For any prime component Γ of Sf , we have (fk)∗Γ = (deg f)kΓ, since (fk)∗ =

(f∗)k : N(X) → N(X) has only two eigenvalues 1 and (deg f)k. This implies that

cl(Γ) ∈ R and that Γ is a fiber of π. Thus, any prime component of Sf does not

dominate T , and we have proved (3).

(5): Assume that S − Sf 6= 0. For a prime component C of S − Sf , we have

(fm)∗C = C for some m > 0. Thus, cl(C) ∈ R
′ and CF > 0 for a general fiber

F of π. Here, (S − Sf )F = SF = 1 by 0 > (KX + S)F = −2 + SF . Therefore,

S−Sf = C and it is a section of π. Thus, (5) has been proved, and we are done. �

We shall prove Theorem 3.12 applying Lemma 3.13.

Proof of Theorem 3.12. We know that −(KX +Sf ) is nef by Lemma 3.13(4). First

assume that −(KX + Sf ) is not semi-ample. Then (KX + Sf )KX ≤ 0 by [24,

Lem. 1.4]. By Lemma 3.13(4), we have (KX + Sf )KX = (KX + Sf )Sf = 0 and

(KX + Sf )F < 0 for a general fiber F of π. Thus, Sf = Rf = 0 and Sh =

0 by Lemma 3.13(3). In particular, −KX is nef but not semi-ample. By [24,

Prop. 4.3], we have a finite cyclic cover τ : T ′ → T from an elliptic curve T ′ with

an endomorphism h′ : T ′ → T ′ such that τ ◦ h′ = h ◦ τ , in which the following

conditions are satisfied for the normalization X ′ of X ×T T ′:

• The induced morphism ν : X ′ → X is étale in codimension 1.

• The induced P1-fibration π′ : X ′ → T ′ has only reduced fibers.

• There is an endomorphism f ′ : X ′ → X ′ such that π′ ◦ f ′ = h′ ◦ π′ and

ν ◦ f ′ = f ◦ ν.
Since h′ is étale, π′ : X ′ → T ′ is a P1-bundle by [24, Lem. 4.6(5)]. Note that

deg f ′ = deg f = deg h = deg h′. In particular, f ′ is an étale endomorphism

isomorphic to the base change of π′ by h′. Since −KX′ = ν∗(−KX) is nef but not

semi-ample, either

• X ′ ≃ PT ′(F) for an indecomposable locally free sheaf of degree 0, or

• X ′ ≃ PT ′(OT ′ ⊕ L) for a non-torsion invertible sheaf L of degree 0

by Fact 2.23. The latter case does not occur. In fact, in this case, we have just two

sections Γ′
1 and Γ′

2 of π′ of self-intersection number 0, and Γ′
1 + Γ′

2 are completely
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invariant under f : This is a contradiction to Lemma 3.13(5), since the image ν(Γ′
1+

Γ′
2) is f -completely invariant but is not a section of π. Hence, the first case occurs,

and as a consequence, Theorem 3.12(3) holds.

Next, assume that −(KX + Sf ) is semi-ample. Since (KX + Sf )F < 0 for a

general fiber F ≃ P1 of π (cf. Lemma 3.13(4)), we have a fibration ψ : X → B ≃ P1

such that OX(−m(KX + Sf )) ≃ ψ∗OB(l) for some m, l > 0. Moreover, there is

an automorphism hB : B → B such that ψ ◦ f = hB ◦ ψ by [24, Lem. 3.16], since

KX + Sf = f∗(KX + Sf ). Since Sf = π−1Sh (cf. Lemma 3.13(3)), a general fiber

of ψ is rational (resp. elliptic) if Sf 6= 0 (resp. = 0). Let Σψ be the set of points

b ∈ B such that ψ∗(b) is not reduced. Then, h−1
B (Σψ) = Σψ by [24, Lem. 4.6(1)].

If Σψ 6= ∅, then #Σψ ≥ 2 by [24, Prop. 4.14, Lem. 4.15], and hence, the reduced

divisor ψ−1(Σψ) is f -completely invariant and it has at least two prime components

dominating T by π: This is a contradiction to Lemma 3.13(5). Therefore, Σψ = ∅
and ψ : X → B is a P1-bundle or a smooth elliptic fibration by [24, Cor. 4.7]. If

ψ is an elliptic fibration, then X is the product of an elliptic curve and B ≃ P1,

i.e., Theorem 3.12(1) holds. If ψ is a P1-bundle, then X ≃ P1 ×B, since X has no

negative section (cf. Lemma 3.13(1)), and hence, Theorem 3.12(2) holds. Thus, we

are done. �

We shall prove Theorem 3.10 applying Theorems 3.1 and 3.12.

Proof of Theorem 3.10. First, we shall prove the “if” part. Namely, we shall prove

the existence of a non-isomorphic surjective endomorphism f ofX such that ∆f = 0

assuming that there is a finite Galois cover ν : V → X satisfying one of conditions

(1)–(8) of Theorem 3.10. If ν satisfies Theorem 3.10(6), then the endomorphism

f exists by Proposition 2.25 (cf. Remark 2.1). For other conditions in (1)–(8) of

Theorem 3.10, we shall construct a reduced divisor S on X such that KX + S is

pseudo-effective and that (V, ν∗S) satisfies one of conditions in Theorem 3.1: This

implies the existence of f by Theorem 3.1 and [24, Thm. 2.24].

If ν satisfies Theorem 3.10(1), then we have a reduced divisor S on X such

that ν∗S is the boundary divisor; thus, (V, ν∗S) satisfies Theorem 3.1(6), where

KX + S ∼Q 0 by KV + ν∗S = ν∗(KX + S).

Assume that ν satisfies Theorem 3.10(2). Then we have a reduced divisor S on

X such that ν∗S = pr∗1(P1 + P2) + pr∗2D for two points P1 6= P2 of P1 and for a

reduced divisor D on P1 with degD ≥ 3, where pri : P
1 × P1 → P1 stands for the

i-th projection for i = 1, 2. Thus, (V, ν∗S) satisfies Theorem 3.1(1) for T = P1,

where KX + S is semi-ample by ν∗(KX + S) = KV + ν∗S = pr∗2(KT +D).

If ν satisfies (3) (resp. (8)) of Theorem 3.10, then (V, S = 0) satisfies Theo-

rem 3.1(3) (resp. 3.1(2)), and KX is semi-ample by KV = ν∗KX .

If ν satisfies Theorem 3.10(4), then we have a prime divisor S onX such that ν∗S

is a cross section of the projective cone V ; thus, (V, ν∗S) satisfies Theorem 3.1(5),

where KX + S ∼Q 0 by KV + ν∗S = ν∗(KX + S) ∼ 0.

If ν satisfies Theorem 3.10(5), then we have a reduced divisor S on X such

that ν∗S is a disjoint union of two sections of the P1-bundle V over an elliptic
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curve; thus, (V, ν∗S) satisfies Theorem 3.1(4), where KX +S ∼Q 0 by KV + ν∗S =

ν∗(KX + S) ∼ 0.

Assume that ν satisfies Theorem 3.10(7). Then we have a reduced divisor S on

X such that ν∗S = pr∗1(P1+P2) for two points P1 6= P2 of P1 for the first projection

pr1 : V = P1 × T → P1; thus, (V, ν∗S) satisfies Theorem 3.1(1). Here, KX + S is

semi-ample, since ν∗(KX + S) = KV + ν∗S = pr∗2KT for the second projection

pr2 : V = P1 × T → T . Thus, we have completed the proof of ‘if’ part.

Second, we shall prove the ‘only if’ part. Now, X is assumed to have a non-

isomorphic surjective endomorphism f such that ∆f = 0, and we shall find a finite

Galois cover ν : V → X étale in codimension 1 satisfying one of conditions (1)–(8)

of Theorem 3.10. We see that X is one of surfaces listed in Theorem 3.1 or in

Theorem 3.12. If X is listed in Theorem 3.12, then one of conditions (1), (2), (5),

and (6) of Theorem 3.10 is satisfied for such a Galois cover V → X. In fact:

• If Theorem 3.12(1) holds, then the identity morphism V = X → X satisfies

Theorem 3.10(5).

• If Theorem 3.12(2) holds, then the identity morphism V = X → X satisfies

(1) and (2) of Theorem 3.10.

• The Galois cover V → X in Theorem 3.12(3) satisfies Theorem 3.10(6).

Thus, we may assume that X is listed in Theorem 3.1. Then there exist an f -

completely invariant divisor S with KX + S being semi-ample and a finite Galois

cover ν : V → X étale in codimension 1 satisfying one of conditions (1)–(6) of

Theorem 3.1. We can verify that V → X satisfies one of conditions of Theorem 3.10.

In fact:

• If Theorem 3.1(1) holds, then (2) (resp. (5), resp. (7)) of Theorem 3.10 is

satisfied when g(T ) = 0 (resp. = 1, resp. ≥ 2).

• If Theorem 3.1(2) holds, then (5) (resp. (3), resp. (8)) of Theorem 3.10 is

satisfied when g(T ) = 0 (resp. = 1, resp. ≥ 2).

Moreover, we have the following implications for conditions for V → X and S:

Theorem 3.1(3) ⇒ Theorem 3.10(3), Theorem 3.1(4) ⇒ Theorem 3.10(5),

Theorem 3.1(5) ⇒ Theorem 3.10(4), Theorem 3.1(6) ⇒ Theorem 3.10(1).

Thus, we are done. �

Finally, we shall prove Theorem 3.11 applying Theorems 3.1, 3.10, and 3.12.

Proof of Theorem 3.11. First, we shall prove the ‘if’ part. Namely, we shall prove

the existence of a non-isomorphic surjective endomorphism f of X such that Rf = 0

assuming that there is a finite Galois cover ν : V → X étale in codimension 1

satisfying one of conditions (1)–(4) of Theorem 3.11. If ν satisfies (1) (resp. (2))

of Theorem 3.11, then (V, S = 0) satisfies (3) (resp. (2)) of Theorem 3.1: In this

case, KX is nef by KV = ν∗KX , and hence, X has an expected endomorphism f by

Theorem 3.1 and [24, Lem. 2.22]. If ν satisfies (3) (resp. (4)) of Theorem 3.11, then

X has such an endomorphism by Lemma 2.5 for V = A×B with (A,B) = (T,P1)

(resp. by Proposition 2.25) and by Remark 2.1. Thus, we have proved the ‘if’ part.
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Second, we shall prove the ‘only if’ part. Now, X is assumed to have a non-

isomorphic surjective endomorphism f such that Rf = 0, and we shall find a finite

Galois cover ν : V → X étale in codimension 1 satisfying one of conditions (1)–

(4) of Theorem 3.11. Hence, X is one of the surfaces listed in Theorem 3.1 or in

Theorem 3.12 in which Rf = 0. If X is listed in Theorem 3.12, then either (3) or

(4) of Theorem 3.11 is satisfied. In fact:

• If Theorem 3.12(1) holds, then the identity morphism V = X → X satisfies

Theorem 3.11(3).

• The case Theorem 3.12(2) does not occur, since P1×P1 is simply connected.

• If Theorem 3.12(3) holds, then the cover V → X satisfies Theorem 3.11(4).

Thus, we may assume that X is listed in Theorem 3.1. Then there exist an f -

completely invariant divisor S with KX + S being semi-ample and a finite Galois

cover ν : V → X étale in codimension 1 satisfying one of (1)–(6) of Theorem 3.1.

We shall finish the proof by showing the following:

(a) If one of (1), (5), and (6) of Theorem 3.1 holds, then Rf 6= 0.

(b) If (3) (resp. (2)) of Theorem 3.1 holds, then ν satisfies (1) (resp. one of (1),

(2), and (3)) of Theorem 3.11.

(c) If Theorem 3.1(4) holds and if Rf = 0, then there is another finite Galois

cover V ′′ → X étale in codimension 1 satisfying Theorem 3.11(3).

Assertion (b) holds trivially. We shall prove (a). If Theorem 3.1(1) holds, then

Sf 6= 0 by Remark 3.2, and it implies: Rf 6= 0 (cf. [24, Lem. 2.17(4)]). If The-

orem 3.1(5) holds, then f∗S = δfS for the cross section S, since ρ(X) = 1 and

f∗ : N(X) → N(X) is the multiplication map by δf > 1; thus, 0 6= S ≤ Sf and

Rf 6= 0. We shall show that Rf 6= 0 when Theorem 3.1(6) holds. In this case, the

non-singular part Vreg is also a toric variety and its fundamental group is finite,

since the 1-dimensional cones in the fan generate a finite index subgroup of the

group of 1-parameter subgroups (cf. [25, Prop. 10.2], [9, §3.2]). Now, f lifts to an

endomorphism fV of V under which the boundary divisor ν∗S is completely invari-

ant, by [24, Thm. A]. If Rf = 0, then RfV = 0 and the m-th power fmV : V → V

induces a finite étale cover (fmV )−1Vreg → Vreg of degree ≫ 1 as m ≫ 1. This is a

contradiction. This shows (a).

We shall show (c). Here, we assume that Rf = 0 and that Theorem 3.1(4) holds

for ν : V → X. By [24, Thm. A], we may assume that there is an endomorphism

fV : V → V satisfying ν ◦ fV = f ◦ ν. Then fV is étale and ν∗S is completely

invariant under fV . Here, X and V have no negative curve by [24, Prop. 2.20(3)].

Since ν∗S is a disjoint union of two sections, V ≃ PT (OT ⊕L) for an elliptic curve

T and an invertible sheaf L on T with degL = 0. Since π1(V ) ≃ π1(T ), the étale

endomorphism fV descends to an étale endomorphism h : T → T such that deg h =

deg f and that π ◦ fV = h ◦ π for the structure morphism π : V → T . In particular,

fV induces an isomorphism V ≃ V ×T,h T . Therefore, h∗L ≃ L or h∗L ≃ L⊗−1,

which implies that L is a torsion invertible sheaf, since h∗± id : Pic0(T ) → Pic0(T )

is surjective. Thus, we can find a finite étale cover τ : T ′ → T such that τ∗L ≃ OT ′ .

Then there is an isomorphism V ′ := V ×T T ′ ≃ P1×T ′ over T ′. Let V ′′ → X be the
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Galois closure of the composite V ′ → V → X. Then V ′′ → V ′ is étale and V ′′ ≃
V ′ ×T ′ T ′′ ≃ P1 × T ′′ for a finite étale cover T ′′ → T ′, since π1(V

′) ≃ π1(T
′). The

finite Galois cover V ′′ → X is étale in codimension 1 and satisfies Theorem 3.11(3).

Thus, (c) has been proved, and the proof of Theorem 3.11 has been completed. �

4. Non pseudo-effective case of Picard number greater than 1

Let X be a normal projective surface with a non-isomorphic surjective endo-

morphism f . By Theorem 3.1 (cf. [24, Thm. A]), the structure of X has been

determined when KX + S is pseudo-effective for an f -completely invariant divisor

S. For non-pseudo-effective KX + S, in Section 4, we shall study the following two

cases:

• ρ(X) ≥ 3 and KX + Sf is not pseudo-effective;

• ρ(X) = 2, KX is not pseudo-effective, and −KX is not big.

These cases are treated in Sections 4.1 and 4.2, respectively.

4.1. The case where Picard number is greater than 2. We introduce the

notion of an L-surface in Definition 4.2 below, and prove in Proposition 4.3 below

that (X,Sf ) is an L-surface when KX + Sf is not pseudo-effective and ρ(X) ≥ 3.

Theorem 4.5 is a basic structure theorem for L-surfaces. In Corollary 4.6, we shall

show that (X,B + Sf ) is a toric surface or a half-toric surface for a prime divisor

B 6⊂ Sf in the sense of [22] provided that −(KX + Sf ) is not big in addition.

Definition 4.1. Let X be a normal projective surface. The number of negative

curves is denoted by neg(X) ≤ ∞. For a reduced divisor D, the number of prime

components of D is denoted by n(D) (cf. [22]).

Definition 4.2. Let X be a normal projective surface and S a reduced divisor on

X. If the following conditions are satisfied, then (X,S) is called an L-surface:
(i) X is rational, ρ(X) ≥ 3, and (X,S) is log-canonical;

(ii) −(KX + S) is nef but not numerically trivial;

(iii) S contains all the negative curves on X.

Remark. The prefix “L-” comes from a property that S is a linear chain of rational

curves (see Theorem 4.5(6) below).

Proposition 4.3. Let f be a non-isomorphic surjective endomorphism of a normal

projective surface X such that ρ(X) ≥ 3 and that KX + Sf is not pseudo-effective.

Then (X,Sf ) is an L-surface.
Proof. By [24, Thm. E and Prop. 2.20(3)], we know that (X,Sf ) is log-canonical

and that Sf contains all the negative curves on X. Now X is ruled, since KX is not

pseudo-effective. Then X is rational by [24, Thm. 4.16] and by ρ(X) ≥ 3. Since

Sf = Sfk for any k > 0 (cf. [24, Lem. 2.17(3)]), we may assume that f∗ : N(X) →
N(X) is the multiplication map by δf = (deg f)1/2 > 1, by [24, Thm. 3.22]. Then

∆f = KX + Sf − f∗(KX + Sf ) = −(δf − 1)(KX + Sf ).

Thus, −(KX +Sf ) is nef. This is not numerically trivial as KX +Sf is not pseudo-

effective. Therefore, (X,Sf ) is an L-surface. �
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Lemma 4.4. Let X be a normal projective surface. For a nef Q-divisor D and a

prime divisor C on X, if DC > 0, then there is a positive rational number α such

that tC +D is nef and big for any 0 < t < α.

Proof. It is enough to take a positive rational number α such that (tC +D)C > 0

for any 0 < t < α. For, tC + D is nef and (tC + D)2 ≥ t(tC + D)C > 0 for any

0 < t < α. �

Theorem 4.5. The following hold for any L-surface (X,S):

(1) The surface X has only rational singularities. In particular, X is Q-

factorial, the Weil–Picard number ρ̂(X) (cf. [24, §1.1]) equals the Picard

number ρ(X), and the numerical equivalence ∼∼∼ coincides with the Q-linear

equivalence ∼Q for Q-divisors on X.

(2) The pseudo-effective cone NE(X) is polyhedral and generated by the numer-

ical classes of negative curves on X.

(3) The divisors −KX and S are big, and −(KX + S) is semi-ample.

(4) One has inequalities

ρ(X) ≤ neg(X) ≤ n(S) ≤ ρ(X) + 1.

(5) If n(S) = ρ(X) + 1, then (X,B + S) is a toric surface for a prime divisor

B 6⊂ S.

(6) The divisor S is a linear chain of rational curves (cf. [22, Def. 4.1]), and

one end component C of S is a negative curve satisfying (KX + S)C < 0.

(7) Let S♮ be the union of non-end components of S. Then KX + S is Cartier

along S♮ and OX(KX + S)⊗OS♮ ≃ OS♮ .

(8) If the intersection matrix of S♮ is not negative definite, then there exist a

prime divisor B 6⊂ S and a P1-fibration π : X → P1 such that

• (X,B + S) is a toric surface,

• S♮ is a set-theoretic fiber of π, the other fibers are all irreducible,

• B is a fiber of π, and end components of S are sections of π.

Proof. (1): This is a consequence of [22, Lem. 2.31], since −KX is not pseudo-

effective and H2(X,OX) ≃ H0(X,OX(KX))∨ = 0.

(2) and (3): The cone NE(X) is defined in N(X) (cf. [24, §1.1]), but now N(X) =

NS(X)⊗R by (1) for the Néron–Severi group NS(X). By the cone and contraction

theorems (cf. [24, Thm. 1.9 and 1.10 and Cor. 1.11(2)]) and by ρ(X) ≥ 3, there is a

rational curve C on X such that (KX +S)C < 0 and C2 < 0. Then tC− (KX +S)

is nef and big for 0 < t ≪ 1 by Lemma 4.4. Hence, −KX is big by C ⊂ S (cf.

Definition 4.2(iii)). Therefore, −(KX +S) is semi-ample by [24, Prop. 1.5], and (2)

holds by [24, Thm. 1.13]. Then S is big by (2) and Definition 4.2(iii). Thus, (3)

has been shown.

(4) and (5): We have neg(X) ≤ n(S) by Definition 4.2(iii), and ρ(X) ≤ neg(X)

by (2). On the other hand, n(S) ≤ ρ(X) + 1 by Shokurov’s criterion for toric

surfaces [29, Thm. 6.4] (cf. [22, Thm. 1.1]), since (X,S) is log-canonical and −(KX+

S) is nef. Thus, we have inequalities in (4). Moreover, (5) holds by [22, Thm. 1.3],

since KX + S 6∼∼∼ 0.
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(6): Since (X,S) is log-canonical and −(KX + S) is nef, if S is connected, then,

by [22, Lem. 4.4], S is a linear chain of rational curves and the negative curve C in

the proof of (2) and (3) is an end component. To prove the connectedness of S, we

first show the following weaker assertion:

(6′) S−Γ is connected for any prime component Γ of S such that (KX+S)Γ < 0.

By Lemma 4.4, tΓ− (KX + S) is nef and big for 0 < t ≪ 1. Then H1(X,OX(Γ−
S)) = 0 by a version of Kawamata–Viehweg vanishing’s theorem [28, Thm. (5.1)]

(cf. [23, Prop. 2.15]), since

Γ− S = KX + ptΓ− (KX + S)q.

In particular, C ≃ H0(X,OX) → H0(X,OS−Γ) is surjective, and (6′) has been

shown. The connectedness of S is proved as follows: Assume the contrary. Then

S has two connected components S − C and C by (6′). Here, (KX + S)Γ = 0 for

any prime component Γ of S −C. For, otherwise, S = C ⊔Γ by (6′), contradicting

n(S) ≥ neg(X) ≥ ρ(X) ≥ 3 (cf. (4)). Then (tC − (KX + S))(S − C) = 0 and it

implies that the intersection matrix of S − C is negative definite. This contradicts

the bigness of S = (S−C)+C. Therefore, S is connected, and we have proved (6).

(7): This follows from (6) and [22, Lem. 4.4(3)], since (X,S) is log-canonical and

−(KX + S) is nef.

(8): Assume that the intersection matrix of S♮ is not negative definite. Then the

positive P of the Zariski-decomposition (cf. [23, Lem.-Def. 2.16]) of S♮ is not zero,

and P ∼∼∼ −c(KX + S) for a rational number c > 0 by the Hodge index theorem,

since −(KX + S) is nef and (KX + S)P = 0 (cf. (7)). Let π : X → T ≃ P1 be a

fibration defined by the semi-ample divisor −(KX + S), i.e., −(KX + S) ∼Q π∗H

for an ample Q-divisor H on T . Then P ∼∼∼ π∗D for a Q-divisor D on T , and S♮

is contained in a fiber of π. Thus, SuppP = S♮ is a set-theoretic fiber of π. End

components of S dominate T , since S♮ intersects them. Hence, π is a P1-fibration by

KXF = −SF < 0 for a general fiber F of π. In particular, the end components are

sections of π. The fiber of π different from S♮ is irreducible, since any negative curve

is contained in S. Thus, n(X) = 2 + n(S♮)− 1 = n(S)− 1 by [22, Prop. 2.33(7)].

Then (X,B + S) is a toric surface for a prime divisor B 6⊂ S by (5). Here, B is a

fiber of π by B ∩ S♮ = ∅. This shows (8). Thus, we are done. �

Corollary 4.6. Let X be a normal projective surface admitting a non-isomorphic

surjective endomorphism f such that ρ(X) ≥ 3, KX + Sf is not pseudo-effective,

and −(KX + Sf ) is not big. Then (X,B + Sf ) is a toric surface or a half-toric

surface (cf. [22, Def. 7.1]) for a prime divisor B 6⊂ Sf .

Proof. The pair (X,Sf ) is an L-surface by Proposition 4.3, and −(KX+Sf ) is semi-

ample by Theorem 4.5(3). Since X is rational, we have a fibration π : X → T ≃ P1

such that −(KX + Sf ) ∼Q π∗A of an ample Q-divisor A on T . By (6) and (7)

of Theorem 4.5, Sf is a linear chain of rational curves and the union (Sf )
♮ of

non-end components is contained in a fiber π−1(t) for some point t ∈ T . Since

negative curves of X are all contained in Sf (cf. [24, Prop. 2.20(3)]), we see that

π−1(t) ⊂ Sf and that every fiber of π different from π−1(t) is irreducible. In
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particular, n(π−1(t)) + 1 = ρ(X) by [22, Prop. 2.33(7)]. Thus, (Sf )
♮ = π−1(t) if

and only if n(Sf ) = ρ(X)+1; in this case, (X,B+Sf ) is a toric surface for a prime

divisor B ⊂ Sf by Theorem 4.5(5).

Therefore, we may assume that (Sf )
♮ 6= π−1(t) and n(Sf ) = ρ(X). In this case,

we can write π−1(t) = Sf − C1 = (Sf )
♮ + C2 for end components C1 and C2 of

Sf , since Sf is big (cf. Theorem 4.5(3)). The curve C1 is a double section of π by

(KX + Sf )F = (KX + C1)F = −2 + C1F = 0 for a general fiber F of π. Here,

C1 ∩ π−1(t) = C1 ∩ (Sf )
♮ consists of one point. Thus, t is a branched point of

the double cover π|C1
: C1 → T . Let t′ ∈ T be the other branched point of π|C1

.

Then Sf ∩ π−1(t′) = C1 ∩ π−1(t′) consists of one point x′, and (X,Sf + π−1(t′))

is log-canonical by [24, Prop. 3.17(6)]. Let m be the multiplicity of π∗(t′), i.e.,

π∗(t′) = mπ−1(t′). Then Sfπ
−1(t′) = C1π

−1(t′) = 2/m. Hence, m is even, and

if m > 2 (resp. m = 2), then (X,x′) is a cyclic quotient singularity of order m/2

(resp. x′ ∈ Xreg). Since #(Sf −C1)∩C1 = #π−1(t)∩C1 = 1 and (KX + Sf )C1 =

−(π∗A)C1 = −2 degA < 0, we have (KX + Sf )C1 = −2/m by [22, Prop. 3.29].

Therefore, KX + Sf + π−1(t′) ∼∼∼ 0. Now (X,Sf + π−1(t′)) is log-canonical and

Sf + π−1(t′) is a linear chain of rational curves. Since n(Sf + π−1(t)) = ρ(X) + 1

and since ρ(X) = ρ̂(X) (cf. Theorem 4.5(1) or [24, Prop. C]), (X,Sf + π−1(t′)) is

a half-toric surface by [22, Thm. 1.3]. Thus, we are done. �

4.2. The case where the Picard number equals 2 and −KX is not big. We

shall prove Theorem 4.7 and Proposition 4.8 below:

Theorem 4.7. Let f : X → X be a non-isomorphic surjective endomorphism of

a normal projective surface X with Picard number ρ(X) = 2. Assume that KX

is not pseudo-effective and that −KX is not big. Then there exist a finite Galois

cover ν : V → X étale in codimension 1 and an endomorphism fV : V → V such

that ν ◦ fV = fk ◦ ν for some k > 0 and that V is one of the following surfaces :

(1) The direct product P1×T for a non-singular projective curve T of genus at

least 2.

(2) A P1-bundle over an elliptic curve associated with a semi-stable locally free

sheaf of rank 2.

Remark. When X is irrational, Theorem 4.7 is deduced from [24, Thm. 4.16], since

X is ruled, ρ(X) = 2, and −KX is not big.

Proposition 4.8. In Theorem 4.7, assume in addition that deg f 6= λf . Then the

surface V can be taken as the P1-bundle PT (OT ⊕ L) over an elliptic curve T for

an invertible sheaf L of degree 0.

For the proof of Theorem 4.7, we begin with the following:

Lemma 4.9. The following hold in the situation of Theorem 4.7:

(1) The cone NE(X) is the sum R+R
′ of two extremal rays R and R

′ such that

KXR < 0 and KXR
′ ≥ 0.

(2) The pullback homomorphism f∗ : N(X) → N(X) preserves R and R
′, i.e.,

f∗R = R and f∗R′ = R
′.
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(3) There is no negative curve on X.

(4) The contraction morphism of the extremal ray R is a fibration π : X → T

to a non-singular projective curve T .

(5) There is an endomorphism h : T → T such that π ◦ f = h ◦ π.
(6) The eigenvalues of f∗ : N(X) → N(X) are deg h and deg f/deg h, where

deg f/deg h is also an integer.

Proof. Since ρ(X) = 2, NE(X) is spanned by two extremal rays R and R
′. Either

KXR or KXR
′ is negative, since KX is not pseudo-effective (cf. [24, Thm. 1.9]).

If both KXR and KXR
′ are negative, then −KX is ample, contradicting the as-

sumption. Thus, we may assume that KXR < 0 and KXR
′ ≥ 0. This shows

(1).

We have (3)⇒ (4) by the contraction theorem (cf. [24, Thm. 1.10]), since ρ(X) =

2. Moreover, we have (2) + (4) ⇒ (5) by [24, Lem. 3.16]. The implication (4) + (5)

⇒ (6) is shown by [24, Prop. 3.17] and by ρ(X) = 2, since R (resp. R′) is generated

by an eigenvector of f∗ with eigenvalue deg h (resp. deg f/deg h).

If λf 6= δf , then (2) and (3) hold by [24, Lem. 3.7]. Thus, we may assume that

λf = δf and it is enough to prove (2) and (3). Then (f2)∗ = (f∗)2 : N(X) → N(X)

is the multiplication map by deg f , by [24, Lem. 3.7]. Hence, −KX is numerically

equivalent to an effective Q-divisor by

Rf2 = KX − (f2)∗(KX) ∼∼∼ (deg f − 1)(−KX).

Since −KX is not big, cl(−KX) is contained in an extremal ray of NE(X). If

cl(−KX) ∈ R, then (−KX)2 > 0 by KXR < 0; it implies that −KX is big by

[22, Lem. 2.16(2)], and this is a contradiction. Therefore, cl(−KX) ∈ R
′, and

K2
X ≤ 0 by KXR

′ ≥ 0. Note that cl(Γ) ∈ R
′ for any prime component Γ of

Rf2
∼∼∼ (deg f − 1)(−KX) as R′ is an extremal ray.

We shall show that R′ is nef, i.e., it is generated by the numerical class of a nef

Q-divisor. Assume the contrary. Then R
′ = R≥0 cl(Γ) for a negative curve Γ. Let

φ : X → X be the contraction morphism of Γ. Then there is an endomorphism

f̄ : X → X such that φ ◦ f = f̄ ◦ φ by [24, Lem. 3.14], and we have KX
∼∼∼ 0 by

cl(−KX) ∈ R
′. By [24, Thm. A], there exist a finite Galois cover A → X étale in

codimension 1 from an abelian surface A and an endomorphism fA : A→ A as a lift

of f̄ . Let A′ be the normalization of X×XA. Then f×fA induces a non-isomorphic

surjective endomorphism f ′ : A′ → A′. Any prime component of the pullback of Γ

to A′ is a negative curve. Hence Rf ′ 6= 0. This contradicts [24, Lem. 2.22], since

KA′ is pseudo-effective.

Any prime component of Rf2 and −KX are nef, since R
′ is so. Any negative

curve on X is contained in Sf (cf. [24, Prop. 2.20(3)]), but Sf = Sfk ≤ Rfk

for an integer k > 0 such that fk is sufficiently iterated (cf. [24, Def. 2.16 and

Lem. 2.17(4)]). Hence, there is no negative curve on X, i.e., (3) holds. If f∗R′ =

R, then KXf
∗(−KX) < 0 and Rff

∗(−KX) < 0; this is a contradiction, since

f∗(−KX) is nef. Hence, f∗R = R and f∗R′ = R
′, i.e., (2) holds. Thus, we are

done. �
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Corollary 4.10. In the situation of Lemma 4.9, cl(Rf ) ∈ R
′. In particular, π(Γ) =

T for any prime component Γ of Rf . If deg h = 1, then Rf 6= 0. If deg h > 1, then

cl(−KX) ∈ R
′, in particular, −KX is nef, and K2

X = 0.

Proof. Let F be a general fiber of π. Then 0 6= cl(F ) ∈ R. Let D be a Q-divisor

such that 0 6= cl(D) ∈ R
′. Then F 2 = D2 = 0 and FD > 0. There exist rational

numbers α and β such that −KX
∼∼∼ αF + βD. Here β > 0 by 2 = −KXF = βFD.

We have

Rf ∼∼∼ α(deg h− 1)F + β(deg f/deg h− 1)D

by KX = f∗(KX) + Rf , f
∗F ∼∼∼ (deg h)F , and f∗D ∼∼∼ (deg f/deg h)D. Since

cl(Rf ) ∈ NE(X) = R+ R
′, we have

α(deg h− 1) ≥ 0.

If deg h = 1, then Rf ∼∼∼ β(deg f − 1)D, and hence, Rf 6= 0 and cl(Rf ) ∈ R
′.

Assume that deg h > 1. Then α ≥ 0 and −KX is nef. Since −KX is not big

and KXF < 0, we have cl(−KX) ∈ R
′. It implies that α = 0, K2

X = 0, and

Rf ∼∼∼ β(deg f/deg h − 1)D. In particular, cl(Rf ) ∈ R
′ even when deg h > 1. For

any prime component Γ of Rf , we have cl(Γ) ∈ R
′ as R

′ is an extremal ray, and

hence, FΓ > 0 and π(Γ) = T . �

Lemma 4.11. Let X be a P1-bundle over an elliptic curve T associated with an

indecomposable locally free sheaf of rank 2 and degree 0. Then λf = deg f for any

surjective endomorphism f : X → X.

Proof. We may assume that deg f > 1. The structure morphism π : X → T of the

P1-bundle is just the Albanese morphism of X. Thus, there is an endomorphism

h : T → T such that π ◦ f = h ◦ π. Here, deg h | deg f by [24, Prop. 3.17(1)]. If

λf = δf , then deg h = δf by [24, Lem. 3.7(1), Prop. 3.17(2)]. Hence, if deg h =

deg f , then λf > δf , and λf = deg f by [24, Prop. 3.25]. Hence, for the proof, it

suffices to derive a contradiction assuming that deg h < deg f .

We may assume that X = PT (E) for a locally free sheaf E with a non-split exact

sequence 0 → OT → E → OT → 0 (cf. Fact 2.23(B)). Then h∗E ≃ E . Thus, the

base change πh : Xh = X ×T T → T of π by h : T → T is isomorphic to π. There

is a surjective morphism g : X → Xh over T such that f = p1 ◦ g for the first

projection p1 : Xh → X. Since πh ≃ π, g is regarded as a non-isomorphic surjective

endomorphism of X over T , where deg g = deg f/deg h. Therefore, we may assume

that h = idT .

Let Γ be a section of π corresponding to the surjection E → OT . Then KX ∼
−2Γ, κ(Γ, X) = 0, and Γ is a unique prime divisor of self-intersection number

zero which dominates T (cf. Fact 2.23(B)). As a consequence, f∗Γ = mΓ for a

positive integer m, where m = deg f , since (f∗Γ)F = Γ(f∗F ) = (deg f)ΓF for a

fiber F of π. There is an effective divisor ∆ on X such that Γ 6⊂ Supp∆ and

that KX + Γ = f∗(KX + Γ) + ∆ (cf. [23, Lem. 1.39]). Then ∆ ∼ (deg f − 1)Γ

by −KX ∼ 2Γ, and hence, ∆ = (deg f − 1)Γ by κ(Γ, X) = 0, contradicting:

Γ 6⊂ Supp∆. Thus, we are done. �
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Proof of Theorem 4.7. Assume that deg h = 1 for the endomorphism h : T → T in

Lemma 4.9. Then, by [24, Thm. 4.9], we have a finite Galois cover ν : P1×T ′ → X

étale in codimension 1 for a non-singular projective curve T ′ and an endomorphism

f ′ of P1×T ′ such that ν ◦f ′ = fk ◦ν for some k > 0. Here, T ′ is not rational, since

−KP1×T ′ = ν∗(−KX) is not big. Thus, Theorem 4.7 holds true when deg h = 1.

For the rest of the proof, we assume that deg h > 1. Note that every fiber of π is

irreducible as π is the contraction morphism of an extremal ray. Let Σ be the set

of points t ∈ T such that π∗(t) is not reduced. If Σ = ∅, then X is a P1-bundle over

T by [22, Prop. 2.33(4)], and T is an elliptic curve, since K2
X = 0 (cf. Lemma 4.10).

This P1-bundle is associated with a semi-stable locally free sheaf by Lemma 4.9(3).

Thus, we may assume that Σ 6= ∅. By Corollary 4.10, any prime component

of Rf dominates T . Then, by applying [24, Lems. 4.1 and 4.2 and Prop. 4.3] to

morphisms π : X → T and h : T → T in Lemma 4.9, we have a finite cyclic cover

τ : T ′ → T from an elliptic curve T ′ with an endomorphism h′ : T ′ → T ′ such that

τ ◦ h′ = hk ◦ τ for some k > 0 and that the normalization X ′ of X ×T T ′ satisfies

the following conditions:

• The induced finite cyclic cover ν : X ′ → X is étale in codimension 1.

• The induced P1-fibration π′ : X ′ → T ′ has only reduced fibers.

• There is an endomorphism f ′ : X ′ → X ′ such that π′ ◦ f ′ = h′ ◦ π′ and

ν ◦ f ′ = fk ◦ ν.
Since h′ is étale with deg h′ = (deg h)k > 1, X ′ is a P1-bundle over T ′ by [24,

Cor. 4.7]. This P1-bundle is associated with a semi-stable locally free sheaf, since

−KX′ = ν∗(−KX) and −KX is nef (cf. Corollary 4.10). Thus, Theorem 4.7 holds

true when deg h > 1, and we are done. �

Proof of Proposition 4.8. By the assumption: deg f 6= λf and by Lemma 4.9(6),

we have 1 < deg h < deg f . Note that

deg h′ = deg h, deg f ′ = deg f, and λf ′ = λf = max{deg h, deg f/deg h}

for endomorphisms h′ and f ′ in the proof of Theorem 4.7 considered in the case

where Σ 6= ∅. By the proof of Theorem 4.7 and by Lemma 4.11, we may assume

that T is an elliptic curve and π : X → T is a P1-bundle associated with a stable

locally free sheaf E of degree 1. There is a point o ∈ T such that h(o) = o, since

deg h > 1. Then h is a group homomorphism with respect a Lie group structure

on T in which o is the zero element. In particular, µ(2) ◦ h = h ◦ µ(2) for the

multiplication map µ(2) : T = T(2) → T by 2. Here, X(2) = X ×T T(2) ≃ P1 × T(2)
by a property of stable locally free sheaf of degree 1 (cf. Fact 2.23(C)). The first

projection p1 : X(2) → X is étale, and there is an endomorphism f(2) : X(2) → X(2)

such that p1 ◦ f(2) = f ◦ p1 by [24, Lem. 4.1]. Hence, we can take P1 ×X ≃ X(2) as

V . Thus, we are done. �

5. Proofs of Theorems in the introduction

5.1. The number of prime components of Sf : Proof of Theorem 1.3. We

shall prove Theorem 1.3 in the introduction. Let f be a non-isomorphic surjective
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endomorphism of a normal projective surface X. Theorem 1.3 announces the in-

equality n(Sf ) ≤ ρ(X) + 2 with characterization of X in case n(Sf ) ≥ ρ(X) + 1.

Here, n(Sf ) stands for the number of prime components of Sf (cf. Definition 4.1).

Lemma 5.1. Let f be a non-isomorphic surjective endomorphism of a normal

projective surface X. Then (X,Sf ) is not a pseudo-toric surface of defect 1 in the

sense of [22, Def. 6.1].

Proof. Assume that (X,Sf ) is a pseudo-toric surface of defect 1. Then Sf is a

cyclic chain of rational curves and n(Sf ) = ρ(X) + 1.

First, we consider the case where λf > δf . Then ρ(X) = 2 and f∗ : N(X) →
N(X) has two eigenvalues λf > λ†f = deg f/λf by [24, Prop. 3.25], since KX ∼ −Sf
is not pseudo-effective. In particular, n(Sf ) = 3, and hence, Sf is a cyclic chain of

rational curves consisting of three prime components Γ1, Γ2, and Γ3. By replacing

f with a power fk, we may assume that f∗Γi = miΓi for any 1 ≤ i ≤ 3 (cf. [24,

Lem. 2.17(1)]), where mi = λf or mi = λ†f . If i 6= j, then mimj = deg f by

ΓiΓj > 0 (cf. [24, Prop. 2.20(1)]). This is impossible.

Therefore, λf = δf . By replacing f with some power fk, we may assume that

f∗ : N(X) → N(X) is a scalar map by [24, Cor. 3.23], and moreover, we may

assume that f∗Γ = δfΓ for any prime component Γ of Sf (cf. [24, Def. 2.16]). By

[22, Thm. 6.5], there is a toroidal blowing up µ : X ′ → X with respect to (X,Sf )

(cf. [22, Def. 4.19]) such that

• (X ′, S′) is a pseudo-toric surface of defect 1 for S′ = µ−1(Sf ),

• KX′ + S′ = µ∗(KX + Sf ) ∼ 0,

• there is a negative curve on X ′ not contained in S′ (cf. [22, Def. 6.7]).

Moreover, there is an endomorphism f ′ : X ′ → X ′ such that µ ◦ f ′ = f ◦ µ by [23,

Prop. 5.6]. Then Sf ′ = µ−1(Sf ) = S′ by [24, Lem. 3.15(3)]. This is a contradiction,

since Sf ′ contains all the negative curves on X (cf. [24, Prop. 2.20(3)]). Therefore,

(X,Sf ) is not a pseudo-toric surface of defect 1. �

Lemma 5.2. Let f be a non-isomorphic surjective endomorphism of a normal

projective surface X such that KX + Sf is not pseudo-effective. If one of the three

conditions below is satisfied, then −(KX + Sf ) is nef :

• λf = δf ;

• n(Sf ) ≥ ρ(X);

• −KX is pseudo-effective.

In particular, if −KX is big, then −(KX + Sf ) is semi-ample.

Proof. The last assertion follows from the previous one by [24, Prop. 1.5]. Assume

first that λf = δf . By [24, Cor. 3.23] and by replacing f with a power fk, we may

assume that f∗ : N(X) → N(X) is a scalar map. Then −(KX + Sf ) is nef by

−(δf − 1)(KX + Sf ) ∼∼∼ KX + Sf − f∗(KX + Sf ) = ∆f ,

where the refined ramification divisor ∆f is nef (cf. [24, Prop. 2.20(4)]). Thus, we

may assume that λf > δf .
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By applying [24, Prop. 3.25] toKX+Sf , we see that ρ(X) = 2, X has no negative

curves, and there exist a P1-fibration π : X → T to a non-singular projective curve

T and an endomorphism h : T → T such that

• π ◦ f = h ◦ π, deg h | deg f , λf = max{deg h, deg f/deg h},
• (KX + Sf )F < 0 and Fred ≃ P1 for any fiber F of π.

Here, R = R≥0 cl(F ) is an extremal ray of NE(X) = Nef(X) and π is the contraction

morphism of R. Let R′ be the other extremal ray. This is generated by the numerical

class of a nef Q-divisor L such that f∗L ∼∼∼ (deg f/deg h)L and L2 = 0. There exist

rational numbers α and β such that

−(KX + Sf ) ∼∼∼ αF + βL.

Here, β > 0 by (KX + Sf )F < 0. Moreover, α(deg h− 1) ≥ 0, since

∆f = KX + S − f∗(KX + Sf ) ∼∼∼ α(deg h− 1)F + β(deg f/deg h− 1)L

is nef. If deg h > 1, then α ≥ 0, and −(KX + Sf ) is nef. Hence, we may assume

that deg h = 1. Then λf = deg f , and there is a positive integer m such that

(fm)∗Γ = (deg f)mΓ for any prime component Γ of Sf (cf. [24, Lem. 2.17(1)]).

Consequently, cl(Sf ) ∈ R
′ = R≥0 cl(L) and SfL = 0. In particular, every prime

component of Sf dominates T . Since 0 > (KX + Sf )F = −2 + SfF , we have

n(Sf ) ≤ 1 and n(Sf ) < 2 = ρ(X); by contraposition, if n(Sf ) ≥ ρ(X), then

deg h > 1 and −(KX + Sf ) is nef. If −KX is pseudo-effective, then KXL ≤ 0, and

we have

αFL = −(KX + Sf )L = −KXL ≥ 0

by SfL = 0; hence, α ≥ 0, and −(KX + Sf ) is nef. Thus, we are done. �

Lemma 5.3. Let f be a non-isomorphic surjective endomorphism of a normal

projective surface X. If −(KX + Sf ) is not nef, then n(Sf ) ≤ ρ(X).

Proof. We shall derive a contradiction assuming that −(KX + Sf ) is not nef and

n(Sf ) > ρ(X). ThenKX+Sf is pseudo-effective by Lemma 5.2. SinceKX+Sf 6∼∼∼ 0

and Sf 6= 0, by Theorem 3.1 and Remark 3.2, we have a finite surjective morphism

ν : P1 × T → X étale in codimension 1 for a non-singular projective curve T with

g(T ) ≥ 2, and ν−1(Sf ) = {P1, P2} × T for two points P1 and P2 of P1; in other

words, the case (1) only occurs in Theorem 3.1, where S = Sf . Thus, ρ(X) <

n(Sf ) ≤ n(ν∗Sf ) = 2. On the other hand ρ(X) > 1, since the semi-ample Q-

divisor KX + Sf defines a fibration from X to a non-singular projective curve (cf.

[24, §5.1]). This is a contradiction. �

We shall prove Theorem 1.3.

Proof of Theorem 1.3. We may assume that n(Sf ) > ρ(X). Then −(KX + Sf ) is

nef by Lemma 5.3. Since (X,Sf ) is log-canonical (cf. [23, Cor. 3.6], [24, Thm. E]), we

can apply Shokurov’s criterion [29, Thm. 6.4] for toric surfaces (cf. [22, Thm. 1.1])

to (X,Sf ). Then n(Sf ) ≤ ρ(X)+2, where the equality holds if and only if (X,Sf )

is a toric surface. If n(Sf ) = ρ(X) + 1, then one of the following holds by [22,

Thm. 1.3]:
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• (X,B + Sf ) is a toric surface for a prime divisor B 6⊂ Sf ;

• (X,Sf ) is a pseudo-toric surface of defect 1;

• (X,Sf ) is a half-toric surface.

Here, the second case does not occur by Lemma 5.1. Thus, we are done. �

5.2. On non-quotient singularities: Proof of Theorem 1.2. We shall prove

Theorem 1.2 after proving Proposition 5.4 and Lemma 5.5 below.

Proposition 5.4. Let X be a normal projective surface admitting a non-isomorphic

surjective endomorphism f . Assume that X has only rational singularities and that

X has a non-quotient singular point P . Then:

(1) X is a rational surface with ρ(X) = 1 and −KX is ample;

(2) P is a unique non-quotient singular point of X and f−1(P ) = {P};
(3) f is étale in codimension 1 on an open neighborhood of P ;

(4) the index 1 cover of (X,P ) with respect to KX (cf. [23, Def. 4.18(4)]) is a

simple elliptic singularity.

Let ϕ : Y → X be a birational morphism from a normal projective surface Y such

that ϕ is an isomorphism outside ϕ−1(P ) and that ϕ gives a standard partial res-

olution of the log-canonical pair (X, 0) at P (cf. [23, Def. 3.24]). Then;

(5) Y has only quotient singularities with ρ(Y ) = 2;

(6) KY + E = ϕ∗KX for E = ϕ−1(P ) ≃ P1;

(7) E is a unique negative curve on Y ;

(8) there is an endomorphism fY : Y → Y such that ϕ ◦ fY = f ◦ ϕ.

Proof. The surface X is rational and KX is not pseudo-effective by [24, Thm. 6.1].

In fact, surfaces satisfying conditions in [24, Thm. 6.1] have only quotient singu-

larities or simple elliptic singularities. Let Λ be the set of non-quotient singular

points of X. If P ∈ Λ, then f−1(P ) ⊂ Λ. Hence, there is an integer k > 0 such

that (fk)−1(P ) = {P} for any P ∈ Λ (cf. [24, Lem. 2.2]). Then fk induces a non-

isomorphic finite surjective endomorphism (X,P ) → (X,P ) of the germ (X,P ) of

a normal complex analytic surface for any P ∈ Λ. Hence, Λ ∩ SuppRfk = ∅ by

[6, Thm. B(3)] (cf. [23, Cor. 3.7]). In particular, Λ ∩ SuppRf = ∅, and hence, f is

étale in codimension 1 on an open neighborhood of P .

Let ϕ : Y → X be a birational morphism from a normal projective surface Y

such that ϕ is an isomorphism outside ϕ−1Λ and that ϕ gives standard partial

resolutions of the log-canonical pair (X, 0) at all P ∈ Λ. See [23, Exam. 4.29] for a

detailed description of the standard partial resolution. Then the following hold for

the ϕ-exceptional locus E = ϕ−1Λ by properties of essential blowings up (cf. [23,

Def. 4.24]):

• (Y,E) is log-canonical with KY + E = ϕ∗KX ;

• (Y,E) is 1-log-terminal outside SingE (cf. [23, Def. 2.1]);

• Y has only quotient singularities.

Since (X,P ) is not a cusp singularity for any P ∈ Λ, by applying [23, Thm 5.3], we

have an endomorphism g : Y → Y such that ϕ◦g = f2k◦ϕ. Then µ∗Sg = Sf2k = Sf
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(cf. [24, Lem. 3.15(3)]), and moreover, E ≤ Sg, since E consists of negative curves

(cf. [24, Prop. 2.20(3)]).

We shall show that ϕ−1(P ) is a connected component of Sg for any P ∈ Λ:

Let Γ be a prime component of Sg not contained in ϕ−1(P ). Then Γ is completely

invariant under gl for some l, and µ(Γ) is also completely invariant under f2l. Hence,

(X,µ(Γ)) is log-canonical (cf. [23, Cor. 3.6], [24, Thm. E]), and X has only quotient

singularities along µ(Γ) (cf. [23, Fact 2.5]). Thus, P 6∈ µ(Γ) and ϕ−1(P ) ∩ Γ = ∅.
Therefore, ϕ−1(P ) is a connected component of Sg.

We shall show that ρ(Y ) = 2. Assume the contrary. Then ρ(Y ) ≥ 3. If KY +Sg
is pseudo-effective, then there is a finite Galois cover ν : V → Y from a toric surface

V with ν−1Sg as the boundary divisor, by Theorem 3.1 and Remark 3.2, since

Sg 6= 0. In this case, Sg is connected and big, but the connected component

ϕ−1(P ) is not big for P ∈ Λ: This is a contradiction. Therefore, KY + Sg is not

pseudo-effective. However, even in this case, we have a contradiction, since Sg is

connected and big by Proposition 4.3 and Theorem 4.5. Hence, ρ(Y ) = 2.

Consequently, ρ(X) = 1, −KX is ample, Λ consists of one point P , and E =

ϕ−1(P ) is irreducible. In particular, f−1(P ) = {P}. By [23, Exam. 4.29], we see

that the index 1 cover of (X,P ) is a simple elliptic singularity and E ≃ P1. Thus,

we have shown all the assertions except (7) and (8). Here, (8) follows from [23,

Lem. 5.23]. The remaining assertion (7) is shown as follows: If E′ is a negative

curve on Y different from E, then ϕ(E′) is not a negative curve, since ρ(X) = 1,

and we have E ∩ E′ 6= ∅. On the other hand, Sg contains all the negative curves

on Y , and E is a connected component of Sg. Thus, such E′ does not exist. This

proves (7), and we are done. �

On the index 1 cover of (X,P ), we note the following:

Lemma 5.5. In the situation of Proposition 5.4, let X and X ◦ be connected open

neighborhoods of P in X such that

SingX = {P}, X ◦ ⊂ X ∩ f−1(X ), and rKX ∼ 0

for the local Cartier index r of KX at P (cf. [23, Def. 4.18(1)]). Let ξ : V → X be

an index 1 cover with respect to KX (cf. [23, Def. 4.18(2)]). Then:

(1) The morphism ξ is étale in codimension 1, and ξ−1(P ) consists of one point

Q at which V has a simple elliptic singularity.

(2) The action of the Galois group G of ξ on V lifts to the minimal resolution

W of V, and the quotient variety G\W is isomorphic to Y := ϕ−1X over

X . In particular, (ϕ|Y) ◦ η = ξ ◦ φ for the minimal resolution φ : W → V
and the quotient morphism η : W → G\W ≃ Y.

(3) By replacing X ◦ with an open neighborhood of P , one can find morphisms

fV : V◦ → V and fW : W◦ → W satisfying equalities

ξ ◦ fV = (f |X◦) ◦ ξ|V◦ , φ ◦ fW = fV ◦ φ|W◦ , η ◦ fW = (fY |Y◦) ◦ η|W◦ ,

where V◦ := ξ−1(X ◦), Y◦ := ϕ−1(X ◦), and W◦ := φ−1(V◦) = η−1(Y◦). In

particular, the cubic diagram in Figure 1 is commutative.
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W◦
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f |X◦
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Figure 1. A cubic diagram

(4) The elliptic curve C = φ−1(Q) = φ−1(ξ−1(P )) admits an endomorphism

fC such that (η|C) ◦ fC = (fY |E) ◦ η|C for the induced morphism η|C : C →
E = ϕ−1(P ).

Proof. We have (1) by Proposition 5.4(4). The minimal resolution of the singu-

larity (X,P ) is known to be obtained as the minimal resolution of singularities of

G\W. Hence, G\W → X gives the standard partial resolution of (X,P ) (cf. [23,

Exam. 4.29(4)]). Thus, G\W ≃ Y = ϕ−1X , and we have (2). By replacing X ◦

with an open neighborhood of P , we have a morphism fV : V◦ → V such that

(V-1) ξ ◦ fV = (f |X◦) ◦ ξ|V◦

by [23, Lem. 4.21(2)], since KX◦ = f∗KX (cf. Proposition 5.4(3)). On the other

hand, the restriction of fY to the open subset Y◦ = ϕ−1(X ◦) is regarded as a

morphism fY |Y◦ : Y◦ → Y = ϕ−1X such that

(V-2) (ϕ|Y) ◦ fY |Y◦ = f ◦ ϕ|Y◦

by Proposition 5.4(8). Since W is isomorphic to the normalization of V ×X Y and

since W◦ = φ−1V◦ = η−1Y◦ is isomorphic to the normalization of V◦ ×X◦ Y◦, the

morphism fV × fY |Y◦ : V◦ × Y◦ → V × Y defines a morphism fW : W◦ → W such

that

φ ◦ fW = fV ◦ φ|W◦ and η ◦ fW = (fY |Y◦) ◦ η|W◦ ,

by (V-1) and (V-2). This shows (3). For (4), it is enough to set fC to be fW |C . �

We shall prove Theorem 1.2.

Proof of Theorem 1.2. Now X has a non-quotient singular point. If X has an

irrational singularity, then X is a projective cone over an elliptic curve by [24,

Prop. 6.2]. Thus, we may assume that X has only rational singularities, and we can

apply Proposition 5.4. We proceed the arguments in the proof of Proposition 5.4.

By replacing f with a power fk, we may assume that f∗Y : N(Y ) → N(Y ) is a scalar

map by [24, Lem. 3.7], since ρ(Y ) = 2 and Y has a negative curve.
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Since −KX is ample, KY + E = ϕ∗KX is not nef (cf. Proposition 5.4(6)), and

there is an extremal ray R of NE(Y ) such that (KY + E)R < 0 by the cone the-

orem (cf. [24, Thm. 1.9]). Hence, NE(Y ) = R + R≥0 cl(E) as (KY + E)E = 0,

and the contraction morphism π : Y → T of the extremal ray R is a fibration to

a non-singular projective curve T , since E is a unique negative curve on X (cf.

Proposition 5.4(7)). Here, T ≃ P1 as X is rational (cf. Proposition 5.4(1)). Since

f∗Y is a scalar map preserving R, there is an endomorphism h : T → T such that

π ◦ fY = h ◦ π and deg h = δf (cf. [24, Lem. 3.16]). Let F be a general fiber of π.

Then 0 > (KY + E)F = −2 + EF . Thus, E is a section of π, and fY |E : E → E

corresponds to h : T → T by the isomorphism π|E : E → T .

Let η|C : C → E be the finite surjective morphism in Lemma 5.5(4), where

C = φ−1(ξ−1P ) is an elliptic curve. Then η|C is a cyclic cover, since the morphism

η : W → Y in Lemma 5.5(2) is so. Let τ : C → T be the composite (π|E) ◦ η|C .
Then, for the endomorphism fC : C → C in Lemma 5.5(4), we have

τ ◦ fC = (π|E) ◦ (fY |E) ◦ η|C = h ◦ (π|E) ◦ η|C = h ◦ τ
by π ◦ fY = h ◦ π. Let W be the normalization of Y ×T C, which induces a

commutative diagram

W
ϑ−−−−→ Y

̟

y
yπ

C
τ−−−−→ T.

We have an endomorphism fW : W →W such that ̟ ◦ fW = fC ◦̟ and ϑ ◦ fW =

fY ◦ ϑ (cf. [24, Lem. 4.1]). Then ̟ is a P1-bundle by [24, Cor. 4.8], since C is

an elliptic curve, fC is étale, ̟ is a P1-fibration, and ϑ∗E is an elliptic curve

being a negative section of ̟. We shall show that ϑ is étale in codimension 1:

The ramification divisor Rϑ is supported on a union of fibers of ̟, and we have

KW + ϑ∗E = ϑ∗(KY + E) +Rϑ. Then

Rϑ(ϑ
∗E) = (KW + ϑ∗E)ϑ∗E − (ϑ∗(KY + E))ϑ∗E = −(deg ϑ)(KY + E)E = 0.

Hence, Rϑ = 0. This means that ϑ is étale in codimension 1.

Let W → V
ν−→ X be the Stein factorization of ϕ ◦ ϑ. Then W → V is the

contraction morphism of ϑ∗E, and V is isomorphic to a projective cone over the

elliptic curve C ≃ ϑ∗E. The finite morphism ν : V → X is also a cyclic cover

and is étale in codimension 1 as ϑ is so. The endomorphism fW descends to an

endomorphism fV : V → V satisfying ν ◦ fV = f ◦ ν, since we have ϕ ◦ ϑ ◦ fW =

ϕ ◦ fY ◦ ϑ = f ◦ ϕ ◦ ϑ. Thus, we have finished the proof of Theorem 1.2. �

5.3. Proof of Theorem 1.1. Finally, we shall prove Theorem 1.1.

Proof of Theorem 1.1. If X satisfies (I) of Theorem 1.1, then it admits a non-

isomorphic surjective endomorphism by Lemmas 2.5 and 2.6, Corollary 2.4, and

Theorems 2.20 and 2.21. Hence, we are reduced to proving the following four

assertions for any normal projective surface X having non-isomorphic surjective

endomorphism f :

(a) If KX is pseudo-effective, then either (I-2) or (I-3) of Theorem 1.1 holds.
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(b) If KX is not pseudo-effective and ρ(X) ≥ 3, then either (I-6) or (II) of

Theorem 1.1 holds.

(c) If KX is not pseudo-effective, ρ(X) ≤ 2, and −KX is big, then one of (I-4),

(I-5), (I-6), and (II) of Theorem 1.1 holds.

(d) If KX is not pseudo-effective, ρ(X) = 2, and −KX is not big, then either

(I-1) or (I-4) of Theorem 1.1 holds.

Here, “(I-j) of Theorem 1.1 holds” for 1 ≤ j ≤ 6 means that the condition (I-j) is

satisfied for a finite Galois cover V → X étale in codimension 1. Note that if KX

is not pseudo-effective and ρ(X) = 1, then −KX is big; this case is treated in (c).

Assertions (a) and (d) are consequences of [24, Thm. A] and Theorem 4.7, respec-

tively. We shall show (b). If KX +Sf is pseudo-effective, then (I-6) of Theorem 1.1

holds by [24, Thm. A], since ρ(X) ≥ 3 and Sf 6= 0. Suppose that KX + Sf is not

pseudo-effective. Then (X,Sf ) is an L-surface by Proposition 4.3, since ρ(X) ≥ 3.

Hence, X is rational, and −KX is big by (1) and (3) of Theorem 4.5. Moreover,

X has only quotient singularities by Theorem 1.2. Thus, X satisfies (II) of Theo-

rem 1.1, and we have proved (b).

Finally, we shall prove (c). If X is irrational, then cases (2) and (3) of [24,

Thm. 4.16] occurs, since −KX is big. Thus, in this case, (I-4) or (I-5) of Theo-

rem 1.1 is satisfied for V = X. If X is rational and non-singular, then X is a toric

surface by [20, Thm. 3]; thus, it satisfies (I-6) of Theorem 1.1 for V = X. If X is

rational and singular and if there is no finite Galois cover V → X étale in codi-

mension 1 satisfying (I-5) of Theorem 1.1, then X has only quotient singularities

by Theorem 1.2, and hence, it satisfies (II) of Theorem 1.1. This proves (c). Thus,

the proof of Theorem 1.1 has been completed. �

References

[1] V. Alexeev and V. V. Nikulin, Del Pezzo and K3 surfaces, MSJ Memoirs vol. 15, Math. Soc.

Japan, 2006.

[2] E. Amerik, On endomorphisms of projective bundles, Manuscripta Math. 111 (2003), 17–28.

[3] M. F. Atiyah, Complex fibre bundles and ruled surfaces, Proc. London Math. Soc. 5 (1955),

407–434.

[4] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. 7 (1957),

414–452.
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