Title
Kauffman Bracket Skein Module of the Connected Sum of Handlebodies and Non-injectivity

Author(s)
KARUOK, Hiroaki

Citation
(2021): 1-7

Issue Date
2021-01

URL
http://hdl.handle.net/2433/261834

Type
Preprint

Textversion
author

Kyoto University
RIMS-1936

Kauffman Bracket Skein Module of the Connected Sum of Handlebodies and Non-injectivity

By

Hiroaki KARUO

January 2021

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES
KYOTO UNIVERSITY, Kyoto, Japan
KAUFFMAN BRACKET SKEIN MODULE OF THE CONNECTED SUM OF HANDLEBODIES AND NON-INJECTIVITY

HIROAKI KARUO

Abstract. For the handlebody H_g of genus g, Przytycki studied the (Kauffman bracket) skein module $S_q(H_n \# H_m)$ of the connected sum $H_n \# H_m$ at q. One of his results is that, in the case when $1 - q^k$ is invertible for any $k \neq 0$, a homomorphism $\varphi: \mathcal{S}_q(H_n \sqcup H_m) \to \mathcal{S}_q(H_n \# H_m)$ is an isomorphism, which is induced by a natural way. In this paper, in the case when $n = m = 1$, the ground ring is \mathbb{C}, and $q \in \mathbb{C}$ is a $4k$-th root of unity ($k \geq 2$), we show that φ is not injective.

1. Introduction

1.1. Skein module of the connected sum of two handlebodies. Let \mathcal{R} be a commutative ring with an identity and a distinguished invertible element q, and M be an oriented 3-manifold. The (Kauffman bracket) skein module $\mathcal{S}_q(M)$ of M at q, introduced by Przytycki [Pr91] and Turaev [Tu91] independently, is the \mathcal{R}-module spanned by all isotopy classes of framed unoriented links in M subject to the following two relations (1) and (2), where, in each relation, the framed links are identical except where shown.

1. $\mathcal{S} = q \mathcal{S} + q^{-1} \mathcal{S}$

2. $\mathcal{S} = (-q^2 - q^{-2}) \mathcal{S}$

The skein modules have been studied for various kinds of 3-manifolds M, for example, the case when M is the connected sum of two 3-manifolds, see e.g. [Pr00], [BP20], [Zh04], [M11], [Pr99]. In this paper, we consider this case.

Let H_g denote the handlebody of genus g. For two handlebodies H_n and H_m, the connected sum $H_n \# H_m$ is homeomorphic to the 3-manifold obtained from H_g by adding a 2-handle along the curve ∂D, where D is a properly embedded disk in H_g such that $H_g \setminus N(D)$ is homeomorphic to $H_n \sqcup H_m$, and $N(D)$ is a small open neighborhood of D in H_g. By regarding isotopy classes of framed oriented links in $H_n \sqcup H_m$ as those in H_g, we have a natural \mathcal{R}-module homomorphism

$\varphi: \mathcal{S}_q(H_n) \otimes \mathcal{S}_q(H_m) \to \mathcal{S}_q(H_n \# H_m)$.

In the case when $1 - q^k$ is invertible in \mathcal{R} for any $k \in \mathbb{Z} \setminus \{0\}$, Przytycki [Pr00] showed that φ is an isomorphism.

In the paper, we will consider the case when $\mathcal{R} = \mathbb{C}$ and q is a specified invertible element of $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. Let $\text{ord}(q)$ be the order of q, i.e. $q^{\text{ord}(q)} = 1$ and $q^k \neq 1$ for any $0 < k < \text{ord}(q)$. Then, we have the following theorem.

Theorem 1.1. Let H_1 be the handlebody of genus 1 and $H_1 \# H_1$ be the connected sum of two H_1’s. Suppose $\text{ord}(q^4) \in \mathbb{Z}_{\geq 2}$. Then, the natural \mathbb{C}-module homomorphism

$\varphi: \mathcal{S}_q(H_1) \otimes \mathcal{S}_q(H_1) \to \mathcal{S}_q(H_1 \# H_1)$

is not injective.
The theorem is proved in Section 3. Note that the case of \(\text{ord}(q^4) = 2\) has been proven in [CT20].

1.2. **Organization of the paper.** In Section 2, we review skein modules and the skein module of the connected sum of two handlebodies, especially \(H_1\#H_1\). In Section 3, we prove Theorem 1.1 by using the highest degree term with respect to a certain degree.

1.3. **Acknowledgments.** The author would like to thank Thang T. Q. Le for helpful comments and sharing the result of [CT20]. The author is supported by JSPS KAKENHI Grant Number JP20J10108.

2. Preliminaries

Throughout the paper, let \(\mathbb{Z}\) be the set of integers, \(\mathbb{N}\) be the set of non-negative integers, \(\mathbb{C}\) be the set of complex numbers. Let \(\Sigma_{g,b}\) denote the connected oriented compact surface with genus \(g\) and \(b\) boundary components.

2.1. Skein modules.

Let \(M\) be an oriented 3-manifold. A link in \(M\) is a closed unoriented 1-dimensional submanifold of \(M\). A link \(L\) is framed if \(L\) is equipped with a framing, i.e. continuous choice of a vector transverse to \(L\) at each point of \(L\). Let \(\mathcal{L}_{fr}\) be the set of all isotopy classes of framed links (including the empty set \(\emptyset\)) in \(M\), where two framed links are isotopic if they are isotopic in the class of framed links.

Let \(q\) be a specified element in \(\mathbb{C}^* = \mathbb{C} \setminus \{0\}\). The (Kauffman bracket) skein module \(\mathcal{S}_q(M)\) of \(M\) at \(q\) is the \(\mathbb{C}\)-module spanned by \(\mathcal{L}_{fr}\) subject to the skein relation (1) and the trivial loop relation (2), where, in each relation, the framed links are identical except where shown.

For an oriented surface \(\Sigma\), in the case of \(M = \Sigma \times [0,1]\), we will consider vertically framed links in \(M\) in general position as diagrams on \(\Sigma\) with respect to the natural projection \(\Sigma \times [0,1] \to \Sigma \times \{0\} = \Sigma\), where a framing of a framed link \(L\) is vertical if the vector at each point of \(L\) is parallel to \([0,1]\)-factor and points to the direction of 1.

It is known that, for the diagrams of two isotopic framed links, one can be obtained from the other by a finite sequence of isotopy of \(\Sigma\) and (framed) Reidemeister moves I, II, III depicted in Figure 1, see, for example, [Oh02].

![Figure 1](image)

For an oriented surface \(\Sigma\), if \(M = \Sigma \times [0,1]\), then \(\mathcal{S}_q(M)\) has an algebraic structure by stacking, i.e. for \(\alpha_1, \alpha_2 \in \mathcal{L}_{fr}\), \(\alpha_1 \alpha_2\) is defined by stacking: by rescaling \(\alpha_1\) and \(\alpha_2\) with respect to \([0,1]\)-factor, \(\alpha_1\) is in \(\Sigma \times [\frac{1}{2}, 1]\) and \(\alpha_2\) is in \(\Sigma \times [0, \frac{1}{2}]\). In the following, we will write \(\mathcal{S}_q(\Sigma)\) instead of the skein module \(\mathcal{S}_q(M)\) with the above algebraic structure.

By using the relations (1) and (2), the following equalities hold, see [Ka87].

\[
-q^3 \quad \begin{array}{c}
\includegraphics{image1}
\end{array} = \begin{array}{c}
\includegraphics{image2}
\end{array} = -q^{-3} \quad \begin{array}{c}
\includegraphics{image3}
\end{array}
\]
2.2. Connected sum of handlebodies and its skein algebra. Let \(H_g \) (\(g \in \mathbb{N} \)) be the handlebody of genus \(g \) and let \(H_1 \# H_2 \) denote the connected sum of two \(H_1 \)'s. Let \(D \) be a properly embedded closed disk in \(H_2 \) such that each component of \(H_2 \setminus N(D) \) is homeomorphic to \(H_1 \), where \(N(D) \) is a small open neighborhood of \(D \) in \(H_2 \). We put \(\gamma = \partial D \). Let \((H_m)_\gamma \) be the 3-manifold obtained by adding a 2-handle to \(H_m \) along \(\gamma \). Then, note that \(H_1 \# H_1 = (H_2)_\gamma \). Hence, there is a natural inclusion \(i: H_2 \hookrightarrow (H_2)_\gamma = H_1 \# H_1 \). The natural inclusion \(i: H_2 \hookrightarrow H_1 \# H_1 \) induces a \(\mathbb{C} \)-module homomorphism \(i_*: \mathcal{S}_q(H_2) \to \mathcal{S}_q(H_1 \# H_1) \).

In the following, we assume \(H_g = \Sigma_{0,g+1} \times [0,1] \). Let \(x_1, x_2, y \) be the framed links (not isotopy classes) in \(H_2 \) depicted in Figure 2, where \(x_1, x_2, y \) are depicted on \(\Sigma_{0,3} \) as diagrams with respect to the natural projection \(H_2 = \Sigma_{0,3} \times [0,1] \to \Sigma_{0,3} \). It is known that \(\mathcal{S}_q(H_2) = \mathbb{C}[x_1, x_2, y] \) as \(\mathbb{C} \)-modules, see \([Pr91] \).

From \(H_g = \Sigma_{0,g+1} \times [0,1] \), recall that \(\mathcal{S}_q(H_g) = \mathcal{S}_q(\Sigma_{0,g+1}) \) has an algebraic structure by stacking. For two framed links \(L_1, L_2 \subset H_2 \), one can consider the product \(L_1 L_2 \in \mathcal{S}_q(\Sigma_{0,3}) \). In the proofs of lemmas, we will use this notation.

\[\begin{array}{ccc}
\textbf{Figure 2} & \\
\begin{array}{ccc}
\circ & \circ & \circ \\
\circ & \circ & \circ \\
\end{array} & \\
\end{array} \]

Let \(d \) be a properly embedded closed interval in \(\Sigma_{0,3} \) such that each component \(\Sigma_{0,3} \setminus N(d) \) is homeomorphic to \(\Sigma_{0,2} \), where \(N(d) \) is a small open tubular neighborhood of \(d \) in \(\Sigma_{0,3} \). In the following, we assume that the separating disk \(D \subset H_2 = \Sigma_{0,3} \times [0,1] \) is equal to \(d \times [0,1] \).

Let \(z_k \) (\(k \in \mathbb{Z}_{\geq 1} \)) be a framed link (not isotopy class) in \(H_2 \) such that \(z_k \) intersects transversely with \(D \subset H_2 \) \(2k \) times. Then, \(i_*(z_k) = i_*(q^k u(z_k)) \) in \(\mathcal{S}_q(H_1 \# H_1) \) obtained from a handle sliding relation \(i(z_k) = i(sl_\gamma(z_k)) \) in \(H_1 \# H_1 \) by (positive) handle sliding on the top arc of \(z_k \) along \(\gamma = \partial D \) depicted in Figure 3, where the shaded region is a small neighborhood of \(d \) in \(\Sigma_{0,3} \).

Let \(y^k \) be the framed link (not isotopy class) in \(H_2 \) depicted in Figure 4. In the following, let \(u(y^k) \) be denoted by \(u_k \), see Figure 4. Then, \(i_*(y^k) = i_*(q^k u_k) \) in \(\mathcal{S}_q(H_1 \# H_1) \).

\[\begin{array}{ccc}
\begin{array}{ccc}
\circ & \circ & \circ \\
\circ & \circ & \circ \\
\end{array} & \\
\begin{array}{ccc}
\circ & \circ & \circ \\
\circ & \circ & \circ \\
\end{array} & \\
\end{array} \]

\[\begin{array}{ccc}
\textbf{Figure 3} & \\
\begin{array}{ccc}
\begin{array}{ccc}
\circ & \circ & \circ \\
\circ & \circ & \circ \\
\end{array} & \\
\begin{array}{ccc}
\circ & \circ & \circ \\
\circ & \circ & \circ \\
\end{array} & \\
\end{array} & \\
\begin{array}{ccc}
\begin{array}{ccc}
\circ & \circ & \circ \\
\circ & \circ & \circ \\
\end{array} & \\
\begin{array}{ccc}
\circ & \circ & \circ \\
\circ & \circ & \circ \\
\end{array} & \\
\end{array} & \\
\end{array} \]

Let \(\mathcal{L}_{fr}^{gen} \) be a set of framed links (not isotopy classes) in \(H_2 \) generating \(\mathcal{S}_q(H_2) \) such that each \(L \in \mathcal{L}_{fr}^{gen} \) intersects with \(D \) transversely. Then, it is known that \(\mathcal{S}_q(H_1 \# H_1) = \mathcal{S}_q(H_2)/K \), where \(K \) is the \(\mathbb{C} \)-submodule of \(\mathcal{S}_q(H_2) \) generated by \(L - sl_\gamma(L) \) for all \(L \in \mathcal{L}_{fr}^{gen} \), and \(sl_\gamma(L) \) is obtained from \(L \in \mathcal{L}_{fr}^{gen} \) by handle sliding \(L \) along \(\gamma = \partial D \), see Lemma 4.1 in \([Pr00] \) for more details.

Let \(b(y^k) \) be the framed link (not isotopy class) in \(H_2 \) depicted in Figure 4.
Lemma 2.1. For $k \in \mathbb{Z}_{\geq 2}$, in $\mathcal{S}_q(H_2)$,

$$u_k = q^4 y u_{k-1} - q^{-4}(1 - q^4)x_1 x_2 y_k^{-1} - q^{-2}(1 - q^4)(x_1^2 + x_2^2)y_k^{-2} + (q^4 - q^{-4})b(y_k^{-2}).$$

Proof. By resolving the bottom two crossings, we have

$$u_k = q (\text{diagram 1}) - q^{-4}x_1 x_2 y_k^{-1} = q^2 (\text{diagram 2}) - q^{-4}(1 - q^4)x_1 x_2 y_k^{-1}$$

in $\mathcal{S}_q(H_2)$, where the first equality follows from (3).

To show the claim, it is enough to show

$$= q^{-2}\{q^4 y u_{k-1} - q^{-2}(1 - q^4)(x_1^2 + x_2^2)y_k^{-2} + (q^4 - q^{-4})b(y_k^{-2})\}$$

in $\mathcal{S}_q(H_2)$. Actually, we have

$$= q\{q y u_{k-1} + q^{-1}\} + q^{-1}\{q x_2^2 y_k^{-2} - q^{-4}\}$$

$$= q^2 y u_{k-1} + \{q (\text{diagram 3}) - q^{-4}x_1 y_k^{-2} + x_2^2 y_k^{-2} - q^{-5}\}$$

$$= q^2 y u_{k-1} + \{q^2 y u_{k-1} - q^{-2}(1 - q^4)(x_1^2 + x_2^2)y_k^{-2} + (q^4 - q^{-4})b(y_k^{-2})\}$$

in $\mathcal{S}_q(H_2)$, where the first equality follows by applying (1) to the upper left crossing, and the second equality follows by applying (1) to the upper right crossing in the first term and by applying (1) to the bottom crossing in the second term then applying (3), and the third equality follows by applying (1) to the bottom crossing in the second term and the top crossing in the fourth term, and the fourth equality follows by applying (1) to the bottom crossing in the second term. \qed
Proposition 2.2. For $k \in \mathbb{Z}_{\geq 2}$, in $\mathcal{S}_q(H_2)$,
\[u_k = q^{4k-2}y^k - q^{-4}(1-q^{4k})x_1x_2y^{k-1} - q^{-2}(1-q^{4(k-1)})(x_1^2 + x_2^2)y^{k-2} + (q^4 - q^{-4}) \sum_{i=0}^{k-2} (q^4 y)^i b(y^{k-i-2}). \]

Proof. In the case of $k = 2$, by using only the skein relation (1) and the trivial loop relation (2), we have
\[u_2 = q^4 y u_1 - q^{-4}(1-q^4)x_1x_2y - q^{-2}(1-q^4)(x_1^2 + x_2^2) + (q^4 - q^{-4})(-q^2 - q^{-2}) \]
in $\mathcal{S}_q(H_2)$. Since $b(y^0) = b(0) = -q^2 - q^{-2}$ in $\mathcal{S}_q(H_2)$, the claim holds for $k = 2$.

Assume that the claim holds for $k = j \geq 2$. From Lemma 2.1,

\[u_{j+1} = q^4 y u_j - q^{-4}(1-q^4)x_1x_2y^j - q^{-2}(1-q^4)(x_1^2 + x_2^2)y^{j-1} + (q^4 - q^{-4})b(y^{j-1}) \]

\[= q^4 y q^{4j-2}y^j - q^{-4}(1-q^4)x_1x_2y^j - q^{-2}(1-q^4)(x_1^2 + x_2^2)y^{j-2} + (q^4 - q^{-4}) \sum_{i=0}^{j-2} (q^4 y)^i b(y^{j-i-2}) \]

\[- q^{-4}(1-q^4)x_1x_2y^j - q^{-2}(1-q^4)(x_1^2 + x_2^2)y^{j-1} + (q^4 - q^{-4})b(y^{j-1}) \]

\[= q^4 q^{4j-2}y^j - q^{-4}(1-q^4)x_1x_2y^j - q^{-2}(1-q^4)(x_1^2 + x_2^2)y^{j-1} + (q^4 - q^{-4}) \sum_{i=0}^{j-1} (q^4 y)^i b(y^{j-i-1}) \]
in $\mathcal{S}_q(H_2)$. Hence, the claim holds for $k = j + 1$ holds. \hfill \Box

Since $i_*(y^k) = i_*(q^6 u_k)$ in $\mathcal{S}_q(H_1 \# H_1)$, from Proposition 2.2,
\begin{equation}
(4) \quad i_*(1-q^{4k+4}y^k) = i_*(-q^2(1-q^4)i_*(x_1x_2y^{k-1}) - q^4(1-q^4(k-1))(x_1^2 + x_2^2)y^{k-2} + q^6(q^4 - q^{-4}) \sum_{i=0}^{k-2} (q^4 y)^i b(y^{k-i-2}))
\end{equation}
in $\mathcal{S}_q(H_1 \# H_1)$ for any $k \in \mathbb{Z}_{\geq 2}$.

Remark 2.3. By concrete calculation, we have
\begin{equation}
(5) \quad u_1 = q^2 y - q^{-4}(1-q^4)x_1x_2
\end{equation}
in $\mathcal{S}_q(H_2)$: a formula similar to (5) is written in [BP20] in terms of Temperley–Lieb module. In particular, since $i_*(y) = i_*(q^6 u_1)$ in $\mathcal{S}_q(H_1 \# H_1)$, we have
\begin{equation}
(6) \quad i_*(1-q^8y) = i_*(q^2(1-q^4)x_1x_2)
\end{equation}
in $\mathcal{S}_q(H_1 \# H_1)$.

3. Non-injectivity

In this section, we will prove Theorem 1.1, i.e. if $q \in \mathbb{C}^*$ is a 4k-th root of unity ($k \in \mathbb{Z}_{\geq 2}$), then $\varphi: \mathcal{S}_q(H_1) \otimes \mathcal{S}_q(H_1) \to \mathcal{S}_q(H_1 \# H_1)$ is not injective.

3.1. Main result. Note that $\mathcal{S}_q(H_1)$ has a basis $\{x^n|n \in \mathbb{N}\}$ as a \mathbb{C}-module, where x is the framed link (not isotopy class) depicted in Figure 5, where the diagram is depicted on $\Sigma_{0,2}$. Then, there is a natural homomorphism
\[\varphi: \mathcal{S}_q(H_1) \otimes \mathcal{S}_q(H_1) \to \mathcal{S}_q(H_1 \# H_1) \]
obtained by extending the correspondence $x^n \otimes x^m \mapsto i_*(x_1^n x_2^m)$ ($n, m \in \mathbb{N}$) linearly, where x_1 and x_2 are the framed links in H_2 depicted in Figure 2, and $x_1^n x_2^m \in \mathcal{S}_q(\Sigma_{0,3})$ is defined in subsection 2.1, and i_* is the \mathbb{C}-module homomorphism $\mathcal{S}_q(\Sigma_{0,3}) \to \mathcal{S}_q(H_1 \# H_1)$ induced from the inclusion
isomorphism, see Corollary 6.2 in [Pr00] for more details.

Proof of Theorem 1.1. We have a \mathbb{C}-module homomorphism $\psi : \mathcal{S}(H_1) \otimes \mathcal{S}(H_1) \to \mathbb{C}[x_1, x_2]$ by extending the correspondence $x^n \otimes x^m \mapsto x^n x^m$ linearly. In particular, ψ is an isomorphism. We consider $\phi \circ \psi^{-1} : \mathbb{C}[x_1, x_2] \to \mathcal{S}(H_1 \# H_1)$. By regarding $\mathbb{C}[x_1, x_2]$ as a \mathbb{C}-submodule of $\mathbb{C}[x_1, x_2, y] = \mathcal{S}(H_2)$, $\phi \circ \psi^{-1}$ maps $z \in \mathbb{C}[x_1, x_2]$ to $i_*(z) \in \mathcal{S}(H_1 \# H_1)$. To show the claim, it is enough to show that there is a non-trivial element $z \in \mathbb{C}[x_1, x_2]$ such that $i_*(z) = 0$ in $\mathcal{S}(H_1 \# H_1)$.

In the case of $\text{ord}(q^4) = 2$, from (6),

$$i_*(-q^2(1-q^4)x_1 x_2) = -q^2(1-q^4)i_*(x_1 x_2) = 0$$

in $\mathcal{S}(H_1 \# H_1)$. Since $-q^2(1-q^4) \in \mathbb{C}^*$, $i_*(x_1 x_2) = 0$ in $\mathcal{S}(H_1 \# H_1)$.

In the following of the proof, we suppose $\text{ord}(q^4) = N \geq 3$.

Define the degree of $x_1^n x_2^m$ by $\deg(x_1^n x_2^m) = n_1 + n_2$. Then, it induces an \mathbb{N}-filtration on $\mathbb{C}[x_1, x_2]$.

The equations (4) with $k = 1, \ldots, N - 2$ show that, for $k \geq N - 2$, one has

$$i_*(y^k) \sim i_*(\text{lower degree terms})$$

in $\mathcal{S}(H_1 \# H_1)$, where $a \sim b$ means $a = \lambda b$ ($0 \neq \lambda \in \mathbb{C}$).

The equation (4) with $k = N - 1$ shows, in $\mathcal{S}(H_1 \# H_1)$,

$$i_*(((x_1 x_2)^{N-1}) \sim i_*(\text{lower degree terms})$$

We put the lower degree terms by $p(x_1, x_2)$. Then, there is $0 \neq \lambda \in \mathbb{C}$ such that

$$(7) \quad i_*((x_1 x_2)^{N-1} - \lambda p(x_1, x_2)) = 0$$

in $\mathcal{S}(H_1 \# H_1)$. However, the left-hand side of (7) is not zero in $\mathbb{C}[x_1, x_2]$ since $\deg((x_1 x_2)^{N-1}) = 2N - 2$ and $\deg(p(x_1, x_2)) < 2N - 2$.

\square

Remark 3.1. Note that $\mathcal{S}(H_1 \# H_1)$ is a \mathbb{C}-vector space, which has no torsion elements. Whereas, since if $L \in K$ then $x_i L \in K$ ($i = 1, 2$), i.e. $x_i K \subset K$ ($i = 1, 2$), $\mathcal{S}(H_1 \# H_1) = \mathcal{S}(H_2)/K$ has a $\mathbb{C}[x_1, x_2]$-module structure. In particular, Theorem 1.1 implies that the empty set \emptyset is a torsion element in $\mathcal{S}(H_1 \# H_1)$ as a $\mathbb{C}[x_1, x_2]$-module, which is killed by a degree $2N - 2$ polynomial in $\mathbb{C}[x_1, x_2]$.

References

KAUFFMAN BRACKET SKEIN MODULE OF THE CONNECTED SUM OF HANDLEBODIES AND NON-INJECTIVITY

Research Institute for Mathematical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan

E-mail address: karu@kurims.kyoto-u.ac.jp