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Abstract

In the present paper, we prove that the moduli of hyperbolic curves
of genus 0 over Qp may be completely determined by their tempered
fundamental groups.
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Introduction

Let p be a prime number. For any perfect field F , we shall write F for the
algebraic closure [determined up to isomorphisms] of F . We shall write Qp for
the field of p-adic numbers; Cp for the p-adic completion of Qp.

One of the central subjects/results in anabelian geometry is the Grothendieck
Conjecture [cf. [7], Theorem A; [12], Theorem 0.4]. The Grothendieck Conjecture-
type results assert that “anabelian” varieties over “sufficiently arithmetic” fields
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mental group; Grothendieck Conjecture.
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[for instance, hyperbolic curves over number fields, p-adic local fields, or finite
fields] may be reconstructed from their étale fundamental groups. On the other
hand, we note that the group structure of the étale fundamental groups of hy-
perbolic curves over algebraically closed fields of characteristic 0 [i.e., fields far
from “sufficiently arithmetic”] may be completely determined by the genus and
the number of cusps of the hyperbolic curves. In particular, the moduli of hy-
perbolic curves over algebraically closed fields of characteristic 0 may not be
determined by their étale fundamental groups.

Next, let us recall the tempered fundamental groups of smooth algebraic va-
rieties [i.e., smooth, separated, of finite type, and geometrically integral schemes]
over non-archimedean complete valuation fields introduced by André, which may
be regarded as a p-adic analogue of the usual topological fundamental groups
of complex manifolds [cf. [1], [2]]. Let Z be a smooth algebraic variety over a

non-archimedean complete valuation field; Z̃ → Z a pro-universal étale covering
[determined up to isomorphisms]. Then the tempered fundamental group Πtp

Z

of Z [relative to a suitable choice of basepoint] may be defined as

Πtp
Z

def
= lim←−

Z′→Z

Aut((Z ′an)top/Zan),

where Z ′ → Z ranges over the finite étale Galois subcoverings of the fixed pro-
universal étale covering Z̃ → Z; (−)an denotes the Berkovich analytification of
(−); (−)top denotes the topological universal covering of (−). Here, each group
Aut((Z ′an)top/Zan) may be regarded as a topological group endowed with the
discrete topology, and Πtp

Z may be regarded as a topological group endowed with
the subspace topology of the product topology on

∏
Z′→Z Aut((Z ′an)top/Zan).

Note that the calculation of topological fundamental groups of the Berkovich
spaces associated to smooth algebraic varieties is already difficult in general.
Thus, the determination of the topological group structure of the tempered
fundamental group Πtp

Z may be highly nontrivial problem. Moreover, one may
expect that, in general, the topological group structure of the tempered funda-
mental group Πtp

Z tends to become so complicated and depends heavily on the
geometric structure of Z, even if the base fields are algebraically closed fields
of characteristic 0. So, it is natural to pose the following anabelian geometric
question:

Question 1: What geometric information does the tempered fun-
damental group carry?

In the remainder, for a smooth algebraic variety S over Qp, we shall write

Πtp
S for the tempered fundamental group of S ×Qp

Cp, relative to a suitable

choice of basepoint. With regard to Question 1, the following theorems have
been obtained by Mochizuki and Lepage so far:

Theorem 0.1 ([9], Corollary 3.11). Let X, Y be hyperbolic curves over Qp;

α : Πtp
X

∼→ Πtp
Y
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an isomorphism of topological groups. Write GX , GY for the semi-graphs of an-
abelioids associated to the special fibers of the stable models of X, Y , respectively.
Then α induces an isomorphism of semi-graphs of anabelioids

GX
∼→ GY

in a fashion that is functorial with respect to α. In particular, the following
hold:

• The isomorphism α maps the cuspidal inertia subgroups of Πtp
X to the

cuspidal inertia subgroups of Πtp
Y [cf. Notations and Conventions, Funda-

mental groups].

• Write ΓX , ΓY for the underlying semi-graphs of GX , GY [i.e., dual semi-
graphs associated to the special fibers of the stable models of X, Y ], re-
spectively. Then α induces an isomorphism of semi-graphs

αΓ : ΓX
∼→ ΓY

in a fashion that is functorial with respect to α.

Theorem 0.2 ([4], Theorem 4.13; [5], Theorem 0.2). In the notation of Theorem
0.1, suppose that X and Y are hyperbolic Mumford curves over Qp. Then the
following hold:

(i) The isomorphism αΓ [cf. Theorem 0.1] is an isomorphism of metric semi-
graphs.

(ii) There exists a canonical homeomorphism between the underlying topolog-
ical spaces of the Berkovich spaces (X ×Qp

Cp)an and (Y ×Qp
Cp)an.

Theorem 0.3 ([5], Theorem 0.3). Let E1, E2 be once-punctured Tate ellip-
tic curves over Qp. Write q1, q2 for the q-parameter of E1, E2, respectively.
Suppose that there exists an isomorphism of topological groups

Πtp
E1

∼→ Πtp
E2
.

Then there exists an element σ ∈ Gal(Qp/Qp) such that q2 = σ(q1).

In particular, the above theorems imply that the tempered fundamental
groups of hyperbolic curves carry sufficiently rich scheme-theoretic [or, geomet-
ric] information even if the base fields are algebraically closed fields of charac-
teristic 0.

In the present paper, inspired by the above theorems, we consider Ques-
tion 1 for hyperbolic curves of genus 0 over Qp and prove that their tempered
fundamental groups completely determine their moduli:
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Theorem A. Let n be an integer such that n ≥ 3. Suppose that there exists an
isomorphism of topological groups

α : Πtp
P1
Qp

\{x1,x2,...,xn}
∼→ Πtp

P1
Qp

\{x′
1,x

′
2,...,x

′
n}
.

Note that α induces a bijection

αcusp : {x1, x2, . . . , xn}
∼→ {x′1, x′2, . . . , x′n}

[cf. Theorem 0.1; Notations and Conventions, Fundamental groups]. Then there
exists an isomorphism of schemes

P1
Qp
\{x1, x2, . . . , xn}

∼→ P1
Qp
\{x′1, x′2, . . . , x′n}

such that the bijection {x1, x2, . . . , xn}
∼→ {x′1, x′2, . . . , x′n} induced by the iso-

morphism P1
Qp
\{x1, x2, . . . , xn}

∼→ P1
Qp
\{x′1, x′2, . . . , x′n} coincides with the bi-

jection αcusp.

We will apply Theorems 0.1, 0.3, together with some complicated calcula-
tions concerning certain Belyi maps [cf. Lemma 1.1, (i), (ii)], to prove Theorem
A. Note that Theorem A is related with the partial reconstruction result of
hyperbolic curves obtained in an author’s previous work [cf. [17], Theorem C]
whose proof is a direct application of Theorem 0.1 [cf. [9], Corollary 3.11], to-
gether with the theory of resolution of nonsingularities [cf. [5], [15]]. On the
other hand, in light of Theorems 0.3; A, it is natural to pose the following
question:

Question 2: Let E1, E2 be hyperbolic curves of genus 1 over Qp.
Suppose that there exists an isomorphism of topological groups

Πtp
E1

∼→ Πtp
E2
.

Then does there exist an isomorphism of schemes E1
∼→ E2?

However, at the time of writing of the present paper, the author does not know
whether Question 2 is affirmative or not [even if we assume that E1 and E2 are
once-punctured]. Furthermore, interestingly, one may regard Theorem A as an
analogous result in characteristic 0 of the corresponding result for hyperbolic
curves of genus 0 over Fp proved by Tamagawa [cf. [13], Theorem 0.2]. So, it
would also be interesting to investigate the extent to which the analogous results
in characteristic 0 of the various results for hyperbolic/stable curves over Fp [cf.
for instance, [11], [14], [16], [18]] hold.

The present paper is organized as follows. In §1, we observe that the
open subgroups of Πtp

P1
Qp

\{0,1,∞} associated to certain Belyi maps are preserved

[up to composition with an inner automorphism] via any automorphism of
Πtp

P1
Qp

\{0,1,∞}. In §2, we execute some elementary computations concerning the

Belyi maps that appear in §1. In §3, we apply the results obtained in the previ-
ous sections, together with Lepage’s reconstruction result for the once-punctured
Tate elliptic curves over Qp, to prove Theorem A.
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Notations and Conventions

Numbers: The notation Q will be used to denote the field of rational numbers.
If p is a prime number, then the notation Qp will be used to denote the p-adic
completion of Q. The notation Qp will be used to denote an algebraic closure of

Qp. For each positive integer r, we fix a primitive pr-th root of unity ζpr ∈ Qp.
The notation Cp will be used to denote the p-adic completion of Qp. It is
well-known that Cp is an algebraically closed field.

Valuations: We shall write vp for the additive valuation on Qp normalized by
vp(p) = 1.

Topological groups: Let G be a topological group. Then we shall write
Aut(G) for the group of continuous automorphisms of G.

Curves: Let k be an algebraically closed field; X a 1-dimensional, connected,
smooth, separated, of finite type scheme over k. Then we shall write X(k) for
the set of k-valued points of X; X for the smooth compactification of X over
k. We shall refer to an element ∈ X \ X as a cusp of X. Let (g, n) be a pair
of nonnegative integers. Then we shall say that X is of type (g, n) if X has
genus g, and the cardinality of the set of cusps of X is n. Suppose that X is
of type (g, n). Then we shall say that X is a hyperbolic curve if 2g − 2 + n > 0
[so if g = 0, then n ≥ 3]. We shall write P1

Qp
for the projective line over Qp.

We shall use t for the standard coordinate of P1
Qp

. We shall identify Qp with

P1
Qp

(Qp) \ {∞}.

Fundamental groups: Let X be a hyperbolic curve over Qp. Then we

shall write Πtp
X for the tempered fundamental group of X ×Qp

Cp, relative to

a suitable choice of basepoint [cf. [1], [2]]. Note that the projection morphism
X ×Qp

Cp → X induces a bijection between the respective sets of cusps. Let x

be a cusp of X [so x determines a cusp xCp
of X×Qp

Cp]. Then we shall refer to

the stabilizer subgroup of Πtp
X associated to some pro-cusp of the pro-universal

tempered covering of X ×Qp
Cp that lies over xCp as a cuspidal inertia subgroup

of Πtp
X associated to x. Note that it follows immediately from the various defi-

nitions involved that the cuspidal inertia subgroups of Πtp
X associated to x are

conjugate. Note also that, if we write IX for the set of the conjugacy classes of
cuspidal inertia subgroups of Πtp

X , then the natural map X \X → IX is bijec-
tive. [Indeed, the surjectivity follows immediately from the various definitions
involved, and the injectivity follows immediately from the well-known structure
of [the abelianizations of] the étale fundamental groups of hyperbolic curves
over algebraically closed fields of characteristic 0, together with [2], Proposition
4.4.1.] We shall identify X \X with IX via this natural bijection.
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1 Numerical characterizations of certain Belyi
maps

In the present section, we observe that the open subgroups associated to
certain Belyi maps [which will be of use in the proof of our main theorem
in §3] are preserved [up to composition with an inner automorphism] via any
automorphism of the geometric tempered fundamental group of projective line
minus three points [cf. Lemma 1.3].

Let p be a prime number.

Lemma 1.1. The following hold:

(i) Let r be a positive integer. Write

ϕpr : P1
Qp
\
{
0, ζipr (0 ≤ i ≤ pr − 1),∞

}
−→ P1

Qp
\{0, 1,∞}

for the Belyi map determined by the assignment

t 7→ tp
r

.

Then the connected finite étale covering ϕpr may be uniquely characterized
[up to isomorphisms of connected finite étale coverings] as the connected
finite étale covering

g : X −→ P1
Qp
\{0, 1,∞}

satisfying the following conditions:

• deg(g) = pr.

• g is unramified over 1.

• g is totally ramified over 0 and ∞.

(ii) Let (m,n) be a pair of positive integers. Write

ψm,n : P1
Qp
\
{
0, 1,

m

m+ n
, . . . ,∞

}
−→ P1

Qp
\{0, 1,∞}

for the Belyi map determined by the assignment

t 7→ (m+ n)m+n

mmnn
tm(1− t)n.

Then the connected finite étale covering ψm,n may be uniquely character-
ized [up to isomorphisms of connected finite étale coverings] as the con-
nected finite étale covering

g : X −→ P1
Qp
\{0, 1,∞}

satisfying the following conditions:
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• deg(g) = m+ n.

• The genus of X is 0.

• Write g : X → P1
Qp

for the finite morphism induced by g [cf. Nota-

tions and Conventions, Curves]. Then g−1(0) consists of two closed
points of X, and g−1(1) consists of m+ n− 1 closed points of X.

• The ramification index of g at a closed point over 0 coincides with
m, and the ramification index of g at another closed point over 0
coincides with n.

• g is totally ramified over ∞.

Proof. Assertion (i) follows immediately from the well-known calculation of the
étale fundamental group of the multiplicative group Gm. Next, we verify asser-

tion (ii). Write g−1(0)
def
= {a, b}. Then it follows immediately from the various

definitions involved that we may assume without loss of generality that the ram-
ification index of g at a coincides with m, and the ramification index of g at b
coincides with n. Note that since the genus of X is 0, there exists a(n) [unique]
isomorphism

X
∼→ P1

Qp

over Qp that map a, b, the unique point ∈ g−1(∞) to 0, 1, ∞, respectively. In
particular, we may also assume without loss of generality that

• X is an open subscheme of P1
Qp
\{0, 1,∞};

• X = P1
Qp

;

• a = 0, b = 1, and g(∞) =∞.

Next, since g is totally ramified over ∞, it holds that g is defined by a polyno-
mial h(t) ∈ Qp[t]. Observe that 0, 1 are roots of h(t) with multiplicity m, n,
respectively. Thus, since deg(h(t)) = deg(g) = m + n, there exists an element
c ∈ Qp such that

h(t) = c · tm(1− t)n.

Then it holds that

h′(t) = c · tm−1(1− t)n−1(m− (m+ n)t).

On the other hand, since g−1(1) consists of m + n − 1 closed points, and 0 <
m

m+n < 1, it holds that g ramifies over 1. Thus, we conclude that h( m
m+n ) = 1,

hence that c = (m+n)m+n

mmnn . This completes the proof of Lemma 1.1.

Remark 1.1.1. In the remainder of the present paper, for each positive integer
m, we shall write ψm for ψm,1.
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Remark 1.1.2. Note that ψm,n is a connected finite étale covering that appears
in the proof of the well-known Belyi’s theorem [cf. [3], [8]].

Definition 1.2. We shall write

Πtp
ϕpr
⊆ Πtp

P1
Qp

\{0,1,∞}, Πtp
ψm,n

⊆ Πtp
P1
Qp

\{0,1,∞}

for the open subgroups [determined up to Πtp
P1
Qp

\{0,1,∞}-conjugate] of finite index

determined by the connected finite étale coverings ϕpr , ψm,n, respectively [cf.
Lemma 1.1, (i), (ii)].

Lemma 1.3. Let α ∈ Aut(Πtp
P1
Qp

\{0,1,∞}) be an automorphism of topological

groups. Recall that α induces a bijection on the set of the conjugacy classes of
cuspidal inertia subgroups of Πtp

P1
Qp

\{0,1,∞} [cf. [9], Corollary 3.11] that deter-

mines a bijection αcusp : {0, 1,∞} ∼→ {0, 1,∞}. Suppose that

αcusp is the identity automorphism.

Then there exists an inner automorphism ι of Πtp
P1
Qp

\{0,1,∞} such that the com-

posite α ◦ ι ∈ Aut(Πtp
P1
Qp

\{0,1,∞}) induces an automorphism of Πtp
ϕpr

(respec-

tively, Πtp
ψm,n

) via the inclusion Πtp
ϕpr
⊆ Πtp

P1
Qp

\{0,1,∞} (respectively, Πtp
ψm,n

⊆

Πtp
P1
Qp

\{0,1,∞}) [cf. Definition 1.2] that maps the cuspidal inertia subgroups of

Πtp
ϕpr

(respectively, Πtp
ψm,n

) associated to ∗ to the cuspidal inertia subgroups of

Πtp
ϕpr

(respectively, Πtp
ψm,n

) associated to ∗, where ∗ ∈ {0, 1,∞}.

Proof. Note that since Πtp
ϕpr
⊆ Πtp

P1
Qp

\{0,1,∞} (respectively, Π
tp
ψm,n

⊆ Πtp
P1
Qp

\{0,1,∞})

is an open subgroup of finite index, it holds that α(Πtp
ϕpr

) ⊆ Πtp
P1
Qp

\{0,1,∞} (respec-

tively, α(Πtp
ψm,n

) ⊆ Πtp
P1
Qp

\{0,1,∞}) is also an open subgroup of finite index. Thus,

the inclusion α(Πtp
ϕpr

) ⊆ Πtp
P1
Qp

\{0,1,∞} (respectively, α(Πtp
ψm,n

) ⊆ Πtp
P1
Qp

\{0,1,∞})

determines a connected finite étale covering

g1 : X1 −→ P1
Qp
\{0, 1,∞} (respectively, g2 : X2 −→ P1

Qp
\{0, 1,∞}).

Next, observe that the numerical information that appears in the conditions in
Lemma 1.1, (i) (respectively, Lemma 1.1, (ii)) may be reconstructed from the
set of cuspidal inertia subgroups of Πtp

P1
Qp

\{0,1,∞} [cf. Notations and Conventions,

Fundamental groups]. In particular, since αcusp is the identity automorphism, it
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follows immediately from [9], Corollary 3.11, that g1 (respectively, g2) satisfies
the conditions in Lemma 1.1, (i) (respectively, Lemma 1.1, (ii)). Therefore,
by replacing α by the composite of α with a suitable inner automorphism of
Πtp

P1
Qp

\{0,1,∞}, we may assume without loss of generality that

α(Πtp
ϕpr

) = Πtp
ϕpr

(respectively, α(Πtp
ψm,n

) = Πtp
ψm,n

)

[cf. Lemma 1.1, (i) (respectively, Lemma 1.1, (ii))]. Write αpr (respectively,
αm,n) for the automorphism of Πtp

ϕpr
(respectively, Πtp

ψm,n
) induced by α via the

inclusion Πtp
ϕpr
⊆ Πtp

P1
Qp

\{0,1,∞} (respectively, Πtp
ψm,n

⊆ Πtp
P1
Qp

\{0,1,∞}). Recall that

αcusp is the identity automorphism. Thus, by replacing α by the composite
of α with a suitable inner automorphism of Πtp

P1
Qp

\{0,1,∞} again, if necessary,

we conclude from the conditions in Lemma 1.1, (i) (respectively, Lemma 1.1,
(ii)) that αpr (respectively, αm,n) maps the cuspidal inertia subgroups of Πtp

ϕpr

(respectively, Πtp
ψm,n

) associated to ∗ to the cuspidal inertia subgroups of Πtp
ϕpr

(respectively, Πtp
ψm,n

) associated to ∗, where ∗ ∈ {0, 1,∞}. This completes the
proof of Lemma 1.3.

2 Elementary lemmas

Let p be a prime number. In the present section, we discuss elementary cal-
culations concerning the Belyi maps that appear in §1 and the p-adic valuation
vp on Qp, which will be of use in the proof of our main theorem in the next
section.

Lemma 2.1. In the notation of Lemma 1.1, (i), let x, y ∈ Qp be such that
vp(y) = 0. Then it holds that

max
xr∈ϕ−1

pr
(x), yr∈ϕ−1

pr
(y)
vp(xr − yr) ≤ max

{
1

p− 1
, vp(x− y)− r

}
.

Proof. Fix elements xr ∈ ϕ−1
pr (x), yr ∈ ϕ−1

pr (y). Note that it follows immediately

from the definition of ϕpr that, for each element y′r ∈ ϕ−1
pr (y), there exists a

nonnegative integer j such that y′r = ζjpr · yr. Next, observe that

x− y =
∏

0≤j≤pr−1

(xr − ζjpr · yr).

Suppose that there exists an integer i such that

0 ≤ i ≤ pr − 1, vp(xr − ζipr · yr) > vp(1− ζp) =
1

p− 1
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[cf. [10], Chapter I, Lemma 10.1]. Then it follows immediately from our assump-
tion that vp(y) = 0 [so vp(yr) = 0] that, for each j = 0, . . . , i−1, i+1, . . . , pr−1,
it holds that

vp(xr − ζjpr · yr) = vp(xr − ζipr · yr + ζipr · yr(1− ζ
j−i
pr )) = vp(1− ζj−ipr ).

On the other hand, observe [cf., e.g., the second display in the proof of [10],
Chapter I, Lemma 10.1] that∑

0≤j≤pr−1
j ̸=i

vp(1− ζj−ipr ) = vp(p
r) = r.

Thus, since

vp(x− y) =
∑

0≤j≤pr−1

vp(xr − ζjpr · yr),

we conclude that
vp(xr − ζipr · yr) = vp(x− y)− r.

This completes the proof of Lemma 2.1.

Lemma 2.2. Let x ∈ Qp \ {0, 1} be such that vp(x) > −p; r a positive integer.
Then, in the notation of Lemma 1.1, (ii) [cf. Remark 1.1.1], there exists a(n)
[unique] element x1 ∈ ψ−1

pr (x) such that

• vp(1− x1) = rpr + vp(x) (> 0), and

• for each y ∈ ψ−1
pr (x) \ {x1}, it holds that vp(y) =

rpr+vp(x)
pr (> 0).

Proof. For each y ∈ ψ−1
pr (x), it holds that

(pr + 1)p
r+1(yp

r

− yp
r+1)− (pr)p

r

x = 0.

Thus, by using the Newton polygon [cf. [10], Chapter II, Proposition 6.3], we
obtain the desired conclusion. This completes the proof of Lemma 2.2.

Lemma 2.3. In the notation of Lemma 2.2, suppose that

r = 2, vp(x) = 0, vp(1− x) ≤ 1.

Let
s ∈ ψ−1

p2 (x) (⊆ P1
Qp
\{0, 1,∞}(Qp) = Qp \ {0, 1})

be such that vp(s) = 2. Write Cs ⊆ Qp, Cx ⊆ Qp for the subsets of the Galois-

conjugates of s ∈ Qp, x ∈ Qp, respectively. Suppose, moreover, that

max
wx∈Cx\{x}

vp(x− wx) ≤ 1.

Then it holds that
max

w∈Cs\{s}
vp(s− w) < 4.
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Proof. First, it follows immediately from the definition of ψp2 that

(p2 + 1)p
2+1

(p2)p2
(sp

2

− sp
2+1) = x.

Next, let w ∈ Cs \ {s} be an element. Then since w is a Galois-conjugate of s,
there exists a Galois-conjugate wx of x such that

(p2 + 1)p
2+1

(p2)p2
(wp

2

− wp
2+1) = wx.

Thus, by taking the difference of the above equalities, we obtain an equality

(p2 + 1)p
2+1

(p2)p2
(s− w)

(( ∑
0≤l≤p2−1

slwp
2−1−l

)
−
( ∑

0≤l≤p2
slwp

2−l
))

= x− wx.

On the other hand, since vp(s) = vp(w) = 2, it holds that

vp

(( ∑
0≤l≤p2−1

slwp
2−1−l

)
−
( ∑

0≤l≤p2
slwp

2−l
))
≥ 2p2 − 2.

Thus, in the case where x ̸= wx, it follows immediately from our assumption
that vp(x − wx) ≤ 1 that vp(s − w) ≤ 3 < 4. In particular, we may assume
without loss of generality that

x = wx.

Then since s− w ̸= 0, it holds that( ∑
0≤l≤p2−1

sl(s+ (w − s))p
2−1−l =

) ∑
0≤l≤p2−1

slwp
2−1−l

=
∑

0≤l≤p2
slwp

2−l
(

=
∑

0≤l≤p2
sl(s+ (w − s))p

2−l
)
.

Observe that∑
0≤l≤p2−1

sl(s+ (w − s))p
2−1−l =

∑
0≤h≤p2−1

ch · sp
2−1−h(w − s)h;

∑
0≤l≤p2

sl(s+ (w − s))p
2−l =

∑
0≤h≤p2

dh · sp
2−h(w − s)h,

where

ch
def
=

∑
0≤l≤p2−1−h

(
p2 − 1− l

h

)
, dh

def
=

∑
0≤l≤p2−h

(
p2 − l
h

)
.
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Here, we note that

c0 = p2, c1 =
p2(p2 − 1)

2
, vp(c1) ≥ 1, d0 = p2 + 1.

Next, suppose that vp(s − w) ≥ 4. Then since vp(s) = 2, it holds that, for
each h ≥ 1,

vp(ch · sp
2−1−h(w − s)h) ≥ 2p2 + 1, vp(dh · sp

2−h(w − s)h) ≥ 2p2 + 1.

Thus, in summary, we conclude from the above discussion that

vp(p
2 · sp

2−1 − (p2 + 1) · sp
2

) ≥ 2p2 + 1,

hence that

vp

(
p2

p2 + 1
− s

)
≥ 3.

Write

s′
def
= s− p2

p2 + 1
, a0

def
= (p2)p

2

(1− x), ap2+1
def
= −(p2 + 1)p

2+1.

For each l = 1, . . . , p2, write

al = (p2)p
2−l · (p2 + 1)l ·

((
p2

l

)
− p2 ·

(
p2

l − 1

))
.

Then it follows immediately from the equality in the first display of the present
proof that

∑
0≤l≤p2+1

al · (s′)l = (p2 + 1)p
2+1

(
s′ +

p2

p2 + 1

)p2(
1

p2 + 1
− s′

)
− (p2)p

2

x = 0.

On the other hand, since 0 ≤ vp(1− x) ≤ 1, and a1 = 0, it follows immediately
from the various definitions involved that

2p2 ≤ vp(a0) ≤ 2p2 + 1, vp(ap2+1) = 0, vp(a1) =∞,

vp(al) = 2p2 − 2l + vp

((
p2

l

))
(l = 2, . . . , p2).

Moreover, for each l = 2, . . . , p2, it holds that

1− l

p2
≤ vp

((
p2

l

))
,

hence that

−vp(a0)
p2

l + vp(a0) ≤ −
2p2 + 1

p2
l + 2p2 + 1 ≤ 2p2 − 2l + vp

((
p2

l

))
= vp(al).

12



Then, by using the Newton polygon, we observe that(
vp

(
s− p2

p2 + 1

)
=

)
vp(s

′) =
vp(a0)

p2

(
≤ 2p2 + 1

p2
< 3

)
.

This contradicts the inequality vp(
p2

p2+1 − s) ≥ 3. Thus, we conclude that

vp(s− w) < 4. This completes the proof of Lemma 2.3.

3 Reconstruction of moduli of hyperbolic curves
of genus 0 from their geometric tempered fun-
damental groups

Let p be a prime number. In the present section, we apply the results
obtained in the previous sections, together with Lepage’s reconstruction result
for the Tate elliptic curves, to prove that the tempered fundamental groups of
hyperbolic curves of genus 0 over Qp completely determine their moduli.

First, we begin by recalling Lepage’s result:

Theorem 3.1 ([5], Theorem 4.1). Let q1, q2 ∈ Qp be such that vp(q1) > 0, and
vp(q2) > 0. Write

Eq1
def
= Gan

m /q
Z
1 , Eq2

def
= Gan

m /q
Z
2

[i.e., Tate elliptic curves]. Suppose that there exists an isomorphism of topolog-
ical groups

Πtp
Eq1

\{1}
∼→ Πtp

Eq2
\{1}.

Then there exists an element σ ∈ Gal(Qp/Qp) such that q2 = σ(q1).

Remark 3.1.1. In the notation of Theorem 3.1, write j1, j2 for the j-invariants
of the Tate elliptic curves Eq1 , Eq2 , respectively. Then it follows immediately
from [6], Theorem 2.1.1, that

j2 = σ(j1).

Next, we apply Lemmas 1.3, 2.2; Theorem 3.1, to prove that the moduli of
hyperbolic curves of type (0, 4) over Qp may be completely determined by their
tempered fundamental groups.

Proposition 3.2. Let x, x′ ∈ Qp \ {0, 1} be elements. Suppose that there exists
an isomorphism of topological groups

α : Πtp
P1
Qp

\{0,1,∞,x}
∼→ Πtp

P1
Qp

\{0,1,∞,x′}.

13



Note that α induces a bijection

αcusp : {0, 1,∞, x} ∼→ {0, 1,∞, x′}

[cf. [9], Corollary 3.11]. Suppose that

αcusp(0) = 0, αcusp(1) = 1, αcusp(∞) =∞.

Then there exists an element σ ∈ Gal(Qp/Qp) such that x′ = σ(x). In particu-
lar, there exists an isomorphism of schemes

P1
Qp
\{0, 1,∞, x} ∼→ P1

Qp
\{0, 1,∞, x′}

such that the bijection {0, 1,∞, x} ∼→ {0, 1,∞, x′} induced by the isomorphism
P1
Qp
\{0, 1,∞, x} ∼→ P1

Qp
\{0, 1,∞, x′} coincides with the bijection αcusp.

Proof. First, we verify the following assertion:

Claim 3.2.A: We may assume without loss of generality that vp(1−
x) > 0.

Indeed, suppose that Proposition 3.2 in the case where vp(1 − x) > 0 holds.
First, by using suitable geometric automorphisms of P1

Qp
\{0, 1,∞} over Qp, we

may assume without loss of generality that vp(x) = 0. Next, write

ψp,x : P1
Qp
\
{
0, 1,

p

p+ 1
, . . . ,∞

}
∪ ψ−1

p (x) −→ P1
Qp
\{0, 1,∞, x},

ψp,x′ : P1
Qp
\
{
0, 1,

p

p+ 1
, . . . ,∞

}
∪ ψ−1

p (x′) −→ P1
Qp
\{0, 1,∞, x′}

for the connected finite étale coverings induced by ψp [cf. Lemma 1.1, (ii);
Remark 1.1.1];

Πtp
ψp,x
⊆ Πtp

P1
Qp

\{0,1,∞,x}, Πtp
ψp,x′ ⊆ Πtp

P1
Qp

\{0,1,∞,x′}

for the open subgroups [determined up to Πtp
P1
Qp

\{0,1,∞,x}-conjugate, Π
tp
P1
Qp

\{0,1,∞,x′}-

conjugate, respectively] determined by ψp,x, ψp,x′ , respectively. Then since
αcusp(0) = 0, αcusp(1) = 1, and αcusp(∞) = ∞, it follows immediately from
Lemma 1.3 that there exists an inner automorphism ι of Πtp

P1
Qp

\{0,1,∞,x′} satis-

fying the following conditions:

• The composite ι ◦ α induces an isomorphism of topological groups

β : Πtp
ψp,x

∼→ Πtp
ψp,x′

via the inclusions Πtp
ψp,x
⊆ Πtp

P1
Qp

\{0,1,∞,x} and Πtp
ψp,x′ ⊆ Πtp

P1
Qp

\{0,1,∞,x′}.

14



• Write

βcusp :

{
0, 1,

p

p+ 1
, . . . ,∞

}
∪ ψ−1

p (x)
∼→

{
0, 1,

p

p+ 1
, . . . ,∞

}
∪ ψ−1

p (x′)

for the bijection induced by β [cf. [9], Corollary 3.11]. Then it holds that

βcusp(0) = 0, βcusp(1) = 1, βcusp(∞) =∞.

Let x1 ∈ ψ−1
p (x) be such that vp(1 − x1) > 0 [cf. Lemma 2.2]. Write x′1

def
=

βcusp(x1). Note that the kernels of the natural surjections

Πtp
ψp,x

↠ Πtp
P1
Qp

\{0,1,∞,x1}
, Πtp

ψp,x′ ↠ Πtp
P1
Qp

\{0,1,∞,x′
1}

[induced by the natural open immersions of hyperbolic curves over Qp] are

topologically generated by cuspidal inertia subgroups of Πtp
ψp,x

, Πtp
ψp,x′ associated

to the cusps ̸∈ {0, 1,∞, x1}, the cusps ̸∈ {0, 1,∞, x′1}, respectively. Then β :
Πtp
ψp,x

∼→ Πtp
ψp,x′ induces an isomorphism of topological groups

α1 : Πtp
P1
Qp

\{0,1,∞,x1}
∼→ Πtp

P1
Qp

\{0,1,∞,x′
1}

via the above surjections. Moreover, for each ∗ ∈ {0, 1,∞}, it holds that α1

maps the cuspidal inertia subgroups of Πtp
P1
Qp

\{0,1,∞,x1}
associated to ∗ to the

cuspidal inertia subgroups of Πtp
P1
Qp

\{0,1,∞,x′
1}

associated to ∗. Then since vp(1−

x1) > 0, it follows from our assumption [that Proposition 3.2 in the case where
vp(1 − x) > 0 holds] that there exists an element σ ∈ Gal(Qp/Qp) such that
x′1 = σ(x1). Thus, since ψp is defined over Qp, it holds that x′ = σ(x). This
completes the proof of Claim 3.2.A.

Next, we verify the following assertion:

Claim 3.2.B: Suppose that vp(1− x) > 0. Then it holds that

x′ = σ(x), or (x′)−1 = σ(x).

Indeed, it follows immediately from [9], Corollary 3.11, that vp(1 − x′) > 0.
Write

E −→ P1
Qp
\{0, 1,∞, x}, E′ −→ P1

Qp
\{0, 1,∞, x′}

for the finite étale Galois coverings of degree 2 that ramify over every cusp of
P1
Qp
\{0, 1,∞, x}, P1

Qp
\{0, 1,∞, x′}, respectively;

Πtp
E ⊆ Πtp

P1
Qp

\{0,1,∞,x}, Πtp
E′ ⊆ Πtp

P1
Qp

\{0,1,∞,x′}

for the normal open subgroups of index 2 determined by the above finite étale
Galois coverings of degree 2. Observe that the normal open subgroup Πtp

E ⊆
Πtp

P1
Qp

\{0,1,∞,x} coincides with the kernel of the unique surjection

q : Πtp
P1
Qp

\{0,1,∞,x} ↠ Z/2Z
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such that the image of every cuspidal inertia subgroup of Πtp
P1
Qp

\{0,1,∞,x} is non-

trivial. The normal open subgroup Πtp
E′ ⊆ Πtp

P1
Qp

\{0,1,∞,x′} admits a similar char-

acterization. Thus, since αmaps the cuspidal inertia subgroups of Πtp
P1
Qp

\{0,1,∞,x}

to the cuspidal inertia subgroups of Πtp
P1
Qp

\{0,1,∞,x′}, the isomorphism α induces

an isomorphism of topological groups

Πtp
E

∼→ Πtp
E′

via the inclusions Πtp
E ⊆ Πtp

P1
Qp

\{0,1,∞,x} and Πtp
E′ ⊆ Πtp

P1
Qp

\{0,1,∞,x′}. On the other

hand, since vp(1 − x) > 0, and vp(1 − x′) > 0, the hyperbolic curves E, E′ [of
type (1, 4)] may be regarded as open subschemes of once-punctured Tate elliptic
curves E1, E

′
1 over Qp, where the cusps of E1, E

′
1 are the origins and corre-

spond to the cusps of E, E′ that lie over ∞ via the finite étale Galois coverings
E → P1

Qp
\{0, 1,∞, x}, E′ → P1

Qp
\{0, 1,∞, x′}, respectively. In particular, since

αcusp(∞) =∞, the isomorphism Πtp
E

∼→ Πtp
E′ induces an isomorphism

Πtp
E1

∼→ Πtp
E′

1
.

Write j(E1), j(E
′
1) for the j-invariants of E1, E

′
1, respectively. Then it follows

immediately from Theorem 3.1, together with Remark 3.1.1, that there exists
an element σ ∈ Gal(Qp/Qp) such that

j(E′
1) = σ(j(E1)).

Therefore, it holds that

σ(x) ∈
{
x′,

1

1− x′
,
x′ − 1

x′
,
1

x′
,

x′

x′ − 1
, 1− x′

}
.

Moreover, since vp(1− x) > 0, and vp(1− x′) > 0, we conclude that

x′ = σ(x), or (x′)−1 = σ(x).

This completes the proof of Claim 3.2.B.
To complete the proof of Proposition 3.2, by applying Claims 3.2.A, 3.2.B,

we may assume without loss of generality that

vp(1− x) > 0, (x′)−1 = σ(x).

Write

Xx
def
= P1

Qp
\
{
0, 1,

1

2
,∞, 1 +

√
1− x
2

,
1−
√
1− x
2

}
;

Xx′
def
= P1

Qp
\
{
0, 1,

1

2
,∞, 1 +

√
1− x′
2

,
1−
√
1− x′
2

}
;
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ψ1,x : Xx −→ P1
Qp
\{0, 1,∞, x}, ψ1,x′ : Xx′ −→ P1

Qp
\{0, 1,∞, x′}

for the finite étale Galois coverings of degree 2 defined by the assignment t 7→
4t(1− t). Then α induces an isomorphism of topological groups

γ : Πtp
Xx

∼→ Πtp
Xx′

[cf. Lemma 1.3]. By replacing α by a suitable composite of α with an inner
automorphism of Πtp

P1
Qp

\{0,1,∞,x′}, we may assume without loss of generality that

γ maps the cuspidal inertia subgroups of Πtp
Xx

associated to 1 to the cuspidal

inertia subgroups of Πtp
Xx′ associated to 1. Write

Yx
def
= P1

Qp
\
{
0, 1,∞, 1 +

√
1− x, 1−

√
1− x

}
;

Yx′
def
= P1

Qp
\
{
0, 1,∞, 1 +

√
1− x′, 1−

√
1− x′

}
.

Then γ induces, via the respective quotients of Πtp
Xx

, Πtp
Xx′ by the normal closed

subgroups topologically generated by the cuspidal inertia subgroups associated
to 1, an isomorphism of topological groups

δ : Πtp
Yx

∼→ Πtp
Yx′ .

Write

δcusp :
{
0, 1,∞, 1 +

√
1− x, 1−

√
1− x

} ∼→
{
0, 1,∞, 1 +

√
1− x′, 1−

√
1− x′

}
for the bijection induced by δ [cf. [9], Corollary 3.11];

x1
def
= 1 +

√
1− x; x′1

def
= δcusp(x1).

Observe that

δcusp(0) = 0, δcusp(1) = 1, δcusp(∞) =∞, x′1 ∈
{
1+
√
1− x′, 1−

√
1− x′

}
.

Then since vp(1− x1) = vp(
√
1− x) = vp(1−x)

2 > 0, it follows from Claim 3.2.B

that there exists an element σ1 ∈ Gal(Qp/Qp) such that

x′1 = σ1(x1), or (x′1)
−1 = σ1(x1).

Note that ψ1,x and ψ1,x′ are defined over Qp. Therefore, if x′1 = σ1(x1), then
x′ = σ1(x). In particular, it suffices to consider the case where

(x′)−1 = σ(x), (x′1)
−1 = σ1(x1).

In this case, it holds that

P ((x′1)
−1) = σ1(P (x1)) = σ1(x) = σ1σ

−1((x′)−1),

where P (t)
def
= t(2− t) ∈ Qp[t]. Moreover, it holds that

(2− x′1)(2− (x′1)
−1) = P (x′1)P ((x

′
1)

−1) = x′σ1σ
−1((x′)−1).

This implies that one of the following assertions holds:
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(a) x′1 and (x′1)
−1 are Galois-conjugate.

(b) x′1 is contained in the Galois closure of Qp(x′) over Qp.

Note that since x′1 ∈
{
1 +
√
1− x′, 1−

√
1− x′

}
, it holds that

vp(1− x′1) =
vp(1− x′)

2
.

Note also that the p-adic valuation on the Galois closure of Qp(x′) over Qp is
discrete. Then, by applying the above discussion repeatedly, we may assume
without loss of generality that assertion (b) does not hold. In particular, asser-
tion (a) holds. Thus, since (x′1)

−1 = σ1(x1), we conclude that x1 and x′1 are
Galois-conjugate, hence that x and x′ are Galois-conjugate. This completes the
proof of Proposition 3.2.

Remark 3.2.1. At the time of writing of the present paper, the author does not
know

whether the given isomorphism α arises from some isomorphism of
schemes P1

Qp
\{0, 1,∞, x} ∼→ P1

Qp
\{0, 1,∞, x′} or not.

Finally, we apply Lemmas 2.1, 2.3; Proposition 3.2, to prove our main theo-
rem [i.e., the tempered fundamental groups of hyperbolic curves of genus 0 over
Qp completely determine their moduli]:

Theorem 3.3. Let n be an integer such that n ≥ 3. Suppose that there exists
an isomorphism of topological groups

α : Πtp
P1
Qp

\{x1,x2,...,xn}
∼→ Πtp

P1
Qp

\{x′
1,x

′
2,...,x

′
n}
.

Note that α induces a bijection

αcusp : {x1, x2, . . . , xn}
∼→ {x′1, x′2, . . . , x′n}

[cf. [9], Corollary 3.11]. Then there exists an isomorphism of schemes

P1
Qp
\{x1, x2, . . . , xn}

∼→ P1
Qp
\{x′1, x′2, . . . , x′n}

such that the bijection {x1, x2, . . . , xn}
∼→ {x′1, x′2, . . . , x′n} induced by the iso-

morphism P1
Qp
\{x1, x2, . . . , xn}

∼→ P1
Qp
\{x′1, x′2, . . . , x′n} coincides with the bi-

jection αcusp.

Proof. First, if n = 3, then the desired assertion follows immediately from the
well-known structure of the automorphism group of P1

Qp
. Thus, we may assume

without loss of generality that
n ≥ 4.

Moreover, by replacing α by the composite of α with the outer isomorphisms
arising from suitable geometric automorphisms of P1

Qp
, together with the various

definitions involved, we may also assume without loss of generality that

18



• x1 = x′1 = 0; x2 = x′2 = 1; x3 = x′3 =∞;

• αcusp(xi) = x′i, for each i = 1, . . . , n.

Then our goal is to prove that

(∗n) there exists an element σ ∈ Gal(Qp/Qp) such that x′i = σ(xi), for each
i = 4, . . . , n.

Next, we verify the following assertion:

Claim 3.3.A: We may assume without loss of generality that

vp(xi) = 0

for each i = 4, . . . , n.

Indeed, let r be a positive integer such that, for each i = 4, . . . ,m, it holds that
vp(yi) > −p, where yi denotes a pr-th root of xi. Write

Y
def
= P1

Qp
\
{
0, ζjpryi (i = 2, 4, . . . , n, j = 0, . . . , pr − 1),∞

}
;

Y ′ def
= P1

Qp
\
{
0, ζjpry

′
i (i = 2, 4, . . . , n, j = 0, . . . , pr − 1),∞

}
;

ϕpr,x : Y −→ P1
Qp
\{0, 1,∞, x}, ϕpr,x′ : Y ′ −→ P1

Qp
\{0, 1,∞, x′}

for the finite étale Galois coverings of degree pr determined by the assignment

t 7→ tp
r

[cf. Lemma 1.1, (i)], where y2
def
= 1; y′2

def
= 1; y′i denotes a p

r-th root of
x′i. Then α induces an isomorphism of topological groups

ϵ : Πtp
Y

∼→ Πtp
Y ′

[cf. Lemma 1.3]. By replacing α by the composite of α with a suitable inner
automorphism of Πtp

P1
Qp

\{0,1,∞,x′}, we may assume without loss of generality that

ϵ maps the cuspidal inertia subgroups of Πtp
Y associated to y2 = 1 to the cuspidal

inertia subgroups of Πtp
Y ′ associated to y′2 = 1. Moreover, by replacing y′i by a

suitable pr-th root of x′i, if necessary, we may assume without loss of generality
that ϵ maps the cuspidal inertia subgroups associated to yi to the cuspidal in-
ertia subgroups associated to y′i for each i = 4, . . . , n. Then ϵ induces, via the
quotients of Πtp

Y , Πtp
Y ′ by the normal closed subgroups topologically generated by

cuspidal inertia subgroups associated to the cusps ̸∈ {0, 1,∞, yi (i = 4, . . . , n)},
the cusps ̸∈ {0, 1,∞, y′i (i = 4, . . . , n)}, respectively, an isomorphism of topolog-
ical groups

Πtp
P1
Qp

\{0,1,∞,y4,...,yn}
∼→ Πtp

P1
Qp

\{0,1,∞,y′4,...,y
′
n}
.

Since ϕpr,x and ϕpr,x′ are defined over Qp, by replacing yi, y
′
i by xi, x

′
i, respec-

tively, we may assume without loss of generality that vp(xi) > −p.
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Next, we consider the connected finite étale covering

ψp : P1
Qp
\
{
0, 1,

p

p+ 1
, . . . ,∞

}
−→ P1

Qp
\{0, 1,∞}

[cf. Lemma 1.1, (ii)]. For each i = 4, . . . , n, let zi ∈ ψ−1
p (xi) be such that

vp(1 − zi) > 0 [cf. Lemma 2.2]. Recall that ψp is also defined over Qp. Thus,
in light of Lemmas 1.3, 2.2, it follows from a similar argument to the above
argument that, by replacing zi by xi, we may assume without loss of generality
that vp(xi) = 0 for each i = 4, . . . , n. This completes the proof of Claim 3.3.A.

Write

Ci ⊆ Qp
for the set of the Galois-conjugates of xi. Next, we verify the following assertion:

Claim 3.3.B: We may assume without loss of generality that

vp(xi) = 0, vp(1− xi) ≤ 1, max
w∈Ci\{xi}

vp(xi − w) ≤ 1,

for each i = 4, . . . , n.

Indeed, by applying Claim 3.3.A, we may assume without loss of generality that
vp(xi) = 0 for each i = 4, . . . ,m. Then, in light of Lemma 2.1, one may apply a
similar argument to the argument applied in the proof of Claim 3.3.A, together
with the use of the connected finite étale covering

ϕpr : P1
Qp
\
{
0, ζipr (0 ≤ i ≤ pr − 1),∞

}
−→ P1

Qp
\{0, 1,∞}

[cf. Lemma 1.1, (i)] for sufficiently large r, to obtain the desired conclusion.
This completes the proof of Claim 3.3.B.

In the remainder, we prove (∗n) by induction on n. We already observed
that (∗4) holds [cf. Proposition 3.2]. Let m be a positive integer such that
m ≥ 4. Suppose that (∗n) in the case where n ≤ m holds. Then our goal is to
prove that (∗m+1) holds.

Next, we verify the following assertion:

Claim 3.3.C: Suppose that

• vp(x4) ≥ vp(xm+1);

• maxw∈Ci\{xi} vp(xi − w) < 2, for each i = 4, . . . ,m;

• vp(1− xm+1) ≥ 2.

Then (∗m+1) holds.

First, we note that since αcusp(xm+1) = x′m+1, the isomorphism α induces an
isomorphism of topological groups

Πtp
P1
Qp

\{0,1,∞,x4,...,xm}
∼→ Πtp

P1
Qp

\{0,1,∞,x4,...,x′
m}.
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Then, by applying the induction hypothesis, we may assume without loss of
generality that

xi = x′i,

for each i = 4, . . . ,m. Next, write

f : Πtp
P1
Qp

\{0,1,∞,x4,...,xm+1}
∼→ Πtp

P1
Qp

\{0,1,∞,x4,...,
x4

xm+1
}

f ′ : Πtp
P1
Qp

\{0,1,∞,x4,...,x′
m+1}

∼→ Πtp

P1
Qp

\{0,1,∞,x4,...,
x4

x′
m+1

}

for the isomorphisms of topological groups [determined up to Πtp

P1
Qp

\{0,1,∞,x4,...,
x4

xm+1
}-

conjugate, Πtp

P1
Qp

\{0,1,∞,x4,...,
x4

x′
m+1

}-conjugate, respectively] induced by the iso-

morphism of schemes defined by the assignment t 7→ x4

t . Then we obtain an
isomorphism of topological groups

η
def
= f ′ ◦ α ◦ f−1 : Πtp

P1
Qp

\{0,1,∞,x4,...,
x4

xm+1
}

∼→ Πtp

P1
Qp

\{0,1,∞,x4,...,
x4

x′
m+1

}.

Next, write

ηcusp :

{
0, 1,∞, x4, . . . ,

x4
xm+1

}
∼→

{
0, 1,∞, x4, . . . ,

x4
x′m+1

}
for the bijection induced by η. Recall that αcusp(xi) = x′i, for each i = 1, . . . , n.
Then it follows immediately from the definition of ηcusp that

ηcusp(0) = 0, ηcusp(1) = 1, ηcusp(∞) =∞, ηcusp(x4) = x4,

ηcusp

(
x4
xj

)
=
x4
x′j
,

for each j = 5, . . . ,m+1. In particular, η induces an isomorphism of topological
groups

Πtp

P1
Qp

\{0,1,∞,
x4
x5
,...,

x4
xm+1

}
∼→ Πtp

P1
Qp

\{0,1,∞,
x4
x′
5
,...,

x4
x′
m+1

}.

Thus, by applying the induction hypothesis, we obtain an element τ ∈ Gal(Qp/Qp)
such that

x4
x′j

= τ

(
x4
xj

)
,

for each j = 5, . . . ,m+ 1. Next, observe that

• vp(xm+1) = vp(x
′
m+1) [cf. [4], Theorem 4.6];

• vp(1− xm+1) = vp(1− x′m+1) [cf. [4], Theorem 4.6];

• vp(x4 − x4

x′
m+1

) = vp(x4 − τ(x4) + τ(x4)− τ( x4

xm+1
));
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• vp(x4 − x4

xm+1
) = vp(τ(x4)− τ( x4

xm+1
)).

Note that the first, second, and forth equalities imply that

vp

(
x4 −

x4
x′m+1

)
= vp

(
τ(x4)− τ

(
x4

xm+1

))
.

Thus, it follows immediately from the third equality that

vp(x4 − τ(x4)) ≥ vp
(
x4 −

x4
x′m+1

)
.

On the other hand, since

vp(x4) ≥ vp(xm+1) = vp(x
′
m+1), vp(1− x′m+1) = vp(1− xm+1) ≥ 2,

it holds that

vp

(
x4 −

x4
x′m+1

)
≥ 2.

Then we obtain an inequality

vp(x4 − τ(x4)) ≥ 2.

Thus, by applying our assumption that maxw∈C4\{x4} vp(x4 − w) < 2, we con-
clude that

x4 = τ(x4).

Therefore, by combining with the equality x4

x′
j
= τ(x4

xj
), we also conclude that

x′j = τ(xj),

for each j = 5, . . . ,m+ 1. This completes the proof of Claim 3.3.C.
Next, we verify the following assertion:

Claim 3.3.D: Suppose that, for each i = 4, . . . ,m+ 1, it holds that

• vp(xi) = 0,

• vp(1− xi) ≤ 1, and

• maxw∈Ci\{xi} vp(xi − w) ≤ 1.

For each i = 4, . . . ,m, let si ∈ ψ−1
p2 (xi) be such that vp(si) = 2 [cf.

Lemma 2.2]. Let sm+1 ∈ ψ−1
p2 (xm+1) be such that vp(1− sm+1) > 0

[cf. Lemma 2.2]. For each i = 4, . . . ,m+1, write ui
def
= 1− p2

(p2+1)si
;

Cui
for the set of the Galois-conjugates of ui. Then it holds that

vp(u4) ≥ 0 = vp(um+1), vp(1− um+1) = 2,

max
ci∈Cui

\{ui}
vp(ui − ci) < 2,

for each i = 4, . . . ,m.
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The assertions in the first display follow immediately from the facts that vp(s4) =
2, and vp(sm+1) = 0. Next, we verify the assertion in the second display. For
each i = 4, . . . ,m, write Csi for the set of the Galois-conjugates of si. Let
wi ∈ Csi \ {si} be an element. Then since vp(si) = vp(wi) = 2, it suffices to
prove that

vp(si − wi) < 4.

However, this inequality follows from Lemma 2.3. This completes the proof of
Claim 3.3.D.

Finally, we complete the proof of the assertion (∗m+1). By applying Claim
3.3.B, we may assume without loss of generality that

vp(xi) = 0, vp(1− xi) ≤ 1, max
w∈Ci\{xi}

vp(xi − w) ≤ 1,

for each i = 4, . . . ,m+ 1. Write

T
def
= {x4, . . . , xm+1}; T ′ def

= {x′4, . . . , x′m+1};

ψp2,x : P1
Qp
\
{
0, 1,

p2

p2 + 1
, . . . ,∞

}
∪ ψ−1

p2 (T ) −→ P1
Qp
\{x1, x2, . . . , xn},

ψp2,x′ : P1
Qp
\
{
0, 1,

p2

p2 + 1
, . . . ,∞

}
∪ ψ−1

p2 (T ′) −→ P1
Qp
\{x′1, x′2, . . . , x′n}

for the connected finite étale coverings induced by ψp2 [cf. Lemma 1.1, (ii);
Remark 1.1.1];

Πtp
ψp2,x

⊆ Πtp
P1
Qp

\{x1,x2,...,xn}
, Πtp

ψp2,x′
⊆ Πtp

P1
Qp

\{x′
1,x

′
2,...,x

′
n}

for the open subgroups of finite index [determined up to Πtp
P1
Qp

\{x1,x2,...,xn}
-

conjugate, Πtp
P1
Qp

\{x′
1,x

′
2,...,x

′
n}
-conjugate, respectively] determined by ψp2,x, ψp2,x′ ,

respectively. Here, we note that p2

p2+1 is a unique cusp ∗ such that ψp2 ramifies

at ∗, and ∗ lies over 1 via ψp2 [cf. Lemma 1.1, (ii)]. Then since αcusp(0) = 0,
αcusp(1) = 1, αcusp(∞) = ∞, and αcusp(xi) = x′i, for each i = 4, . . . , n, it fol-
lows immediately from Lemma 1.3 that there exists an inner automorphism ι of
Πtp

P1
Qp

\{x′
1,x

′
2,...,x

′
n}

satisfying the following conditions:

• The composite morphism ι ◦ α induces an isomorphism of topological
groups

θ : Πtp
ψp2,x

∼→ Πtp
ψp2,x′

via the inclusions Πtp
ψp2,x

⊆ Πtp
P1
Qp

\{x1,x2,...,xn}
and Πtp

ψp2,x′
⊆ Πtp

P1
Qp

\{x′
1,x

′
2,...,x

′
n}
.

• Write

θcusp :

{
0, 1,

p2

p2 + 1
, . . . ,∞

}
∪ψ−1

p2 (T )
∼→

{
0, 1,

p2

p2 + 1
, . . . ,∞

}
∪ψ−1

p2 (T ′)
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for the bijection induced by θ [cf. [9], Corollary 3.11]. Then it holds that

θcusp(0) = 0, θcusp(1) = 1, θcusp(∞) =∞, θcusp

(
p2

p2 + 1

)
=

p2

p2 + 1
.

For each i = 4, . . . ,m + 1, write s′i
def
= θcusp(si) [cf. Claim 3.3.D]. Then the

isomorphism θ induces an isomorphism of topological groups

ξ : Πtp

P1
Qp

\{0,1,∞, p2

p2+1
,s4,...,sm+1}

∼→ Πtp

P1
Qp

\{0,1,∞, p2

p2+1
,s′4,...,s

′
m+1}

.

Write

ω : P1
Qp
\
{
∞, 1

p2 + 1
, 0, . . . , 1

}
∼→ P1

Qp
\
{
0, 1,

p2

p2 + 1
, . . . ,∞

}
for the inverse of the isomorphism determined by the assignment t 7→ 1− p2

(p2+1)t .

For each i = 4, . . . ,m + 1, write u′i
def
= 1 − p2

(p2+1)s′i
. Then ξ and ω induce, in a

similar way to the construction of η, an isomorphism of topological groups

Πtp
P1
Qp

\{0,1,∞,u4,...,um+1}
∼→ Πtp

P1
Qp

\{0,1,∞,u′
4,...,u

′
m+1}

.

Note that, if we write

h : {0, 1,∞, u4, . . . , um+1}
∼→ {0, 1,∞, u′4, . . . , u′m+1}

for the bijection induced by the above isomorphism, then it holds that

h(0) = 0, h(1) = 1, h(∞) =∞, h(ui) = u′i,

for each i = 4, . . . ,m + 1. On the other hand, observe that the composite
morphism ψp2 ◦ω is defined over Qp. Then, by replacing ui by xi, together with
Claim 3.3.D, we may assume without loss of generality that

vp(x4) ≥ vp(xm+1), max
w∈Ci\{xi}

vp(xi−w) < 2 (4 ≤ i ≤ m), vp(1−xm+1) ≥ 2.

Thus, we conclude from Claim 3.3.C that (∗m+1) holds. This completes the
proof of Theorem 3.3.
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