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An accurate theoretical template for the galaxy power spectrum is key for the success of ongoing and
future spectroscopic surveys. We examine to what extent the effective field theory (EFT) of large-scale
structure is able to provide such a template and correctly estimate cosmological parameters. To that end, we
initiate a blinded challenge to infer cosmological parameters from the redshift-space power spectrum of
high-resolution mock catalogs mimicking the BOSS galaxy sample but covering a 100 times larger
cumulative volume. This gigantic simulation volume allows us to separate systematic bias due to theoretical
modeling from the statistical error due to sample variance. The challenge is to measure three unknown input
parameters used in the simulation: the Hubble constant, the matter density fraction, and the clustering
amplitude. We present analyses done by two independent teams, who have fitted the mock simulation data
generated by yet another independent group. This allows us to avoid any confirmation bias by analyzers
and to pin down possible tuning of the specific EFT implementations. Both independent teams have
recovered the true values of the input parameters within subpercent statistical errors corresponding to the
total simulation volume.

DOI: 10.1103/PhysRevD.102.123541

I. INTRODUCTION

Modern cosmology is becoming more mature as accu-
mulating observational data become available. However,
we have a fundamental lack of understanding of the
physical nature of the dark components introduced to
explain the dominant source of gravity that gathers material
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to form rich structures in the late Universe (dark matter), as
well as the accelerating cosmic expansion (dark energy),
together filling the majority of the cosmological energy
budget. To gain further insight, a growing number of large-
scale observational programs are ongoing and planned
(e.g., [1–4]).
Of crucial importance from a theoretical point of view is

our ability to prepare an accurate model template with
which one can confront such observational data for
interpretation. Since a larger survey means a smaller
statistical error, the relative contribution from the system-
atic error arising from the inaccuracy of the template is
more important. Given the gigantic area coverage and depth
of ambitious future programs, we need to find an accurate
theoretical framework to predict the observed large-scale
structure to attain their full potential to infer the underlying
theory governing the Universe.
One of the most difficult aspects of the large-scale

structure prediction is the complicated relationship between
the matter density fluctuations dominated by invisible dark
matter and visible structures such as galaxies [5]. The so-
called galaxy bias cannot be predicted from first principles,
unless one can model all the baryonic effects relevant for
the formation and evolution of galaxies. While hydrody-
namical simulations might be one way to proceed, the very
large dynamical range, kpc to Gpc in length scale, is a big
obstacle. Typically, one uses empirical subgrid models and
calibrates them against the observed statistics of galaxies
(see, e.g., [6–13] for recent attempts).
Alternatively, one can formulate the statistical properties

of galaxies on large scales via a perturbative expansion in
which poorly known galaxy physics is parametrized by a
set of effective bias operators. The strength of these
operators is controlled by free coefficients, which should
be treated as nuisance parameters. The recently developed
effective field theory of large-scale structure (EFTofLSS)
provides a systematic way to derive all possible operators
and corresponding bias coefficients that are allowed by
symmetry [14–22] (see also [23] for a review). Since this
approach, in principle, does not assume any specific model
of galaxy formation, it provides us with a conservative
theoretical model for the galaxy density and velocity fields
on large scales. The generality of the effective field theory
approach comes at the price of having to marginalize over
many free coefficients, which can compromise cosmologi-
cal constraints. These constraints can become weaker
compared to other theoretical templates in which a specific
bias prescription is employed, such as halo model
approaches. The detailed balance between the robustness
and the tightness of the cosmological constraints has been
addressed in recent studies (e.g., [24–26]).
There are several nontrivial choices behind the applica-

tion of the EFT to the data. First, one should determine the
wave number up to which the EFT calculation up to a
chosen perturbative order is reliable. This data cut should

be carefully tested to avoid biased parameter estimates.
Then, one has to decide how many nuisance parameters to
keep in the fit (there are about ten at the one-loop order) and
what priors to use. Indeed, at the power-spectrum level
many EFT operators are degenerate among each other.
Thus, one has to accurately determine their principal
components to make the cosmological analysis efficient.
All these subtleties should be examined and validated in a
transparent manner to convince the community of the
robustness of the EFT approach.
To that end, in this paper, we conduct a first blind test of

EFTofLSS for clustering of galaxies in redshift space. Two
independent groups, which we refer to as “West Coast”
(D’Amico, Senatore, and Zhang) and “East Coast” (Ivanov,
Simonović, and Zaldarriaga), have analyzed the mock data
generated by yet another group (Nishimichi and Takada,
simply called “Japan team” hereafter). In this process, the
true cosmological parameters used to generate the simu-
lation mock data were known only to the Japan team. The
two analyzing teams participated in the challenge under the
condition that the results would be published regardless of
the outcome, and the pipelines could not be modified after
unblinding. We present these results in our paper in the
original form. To complement the result of the blinded
analysis and to get more insight on the origin of the cosmo-
logical information, we briefly discuss post-unblinding
analyses.
The layout of this paper is as follows. We first describe

the design of our mock challenge program in Sec. II. We
then specify the mock simulations in Sec. III. The theo-
retical template and the method to conduct parameter
inference are explained in Sec. IV. Then, the results of
the blinded analysis are summarized in Sec. V. We
conclude this study in Sec. VI.

II. DESIGN OF BLINDED COSMOLOGY
CHALLENGE

Throughout this paper, we consider a flat ΛCDM
cosmology. This is motivated by the recently claimed
tension in the values of the Hubble parameter, one from
local measurements such as the distance ladder and the
other from the cosmic microwave background (CMB)
assuming a flat ΛCDM model (see [27] and references
therein). In such a situation, a robust measurement from
other independent observable channels would be important,
and indeed, the galaxy clustering, when the full shape
information of its spectra is analyzed, has been shown to
serve as such a probe [28–31]. Also important might be a
similar but weaker tension in the amplitude of the density
fluctuations in the current Universe [32–34]. This is known
to be degenerate with the matter density parameter from the
late-time observables. We wish to demonstrate, through the
challenge, the current status of the use of galaxy clustering,
in particular, with an EFT approach to describe the non-
linear nature of the cosmological large-scale structure.
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A. Cosmological parameters

To assess the reliability of the galaxy-clustering analyses
within the flat ΛCDM model, three cosmological param-
eters, lnð1010AsÞ, Ωm, and H0, are randomly drawn from
independent normal distributions. These parameters are the
logarithm of the amplitude of the primordial power
spectrum at k0 ¼ 0.05 Mpc−1, the matter density para-
meter at present, and the current Hubble expansion rate in
km/s/Mpc, respectively. While the mean values of the
normal distributions are set to be the best-fit values deter-
mined by the Planck satellite [35], we consider the standard
deviation 4 times larger than the same experiment to test the
validity of the model in a broader parameter space.While all
of the information above is shared among all the collabo-
rators, the three random numbers drawn were kept only
within the Japan team until we finally unblinded them.
On the other hand, we fix the baryon fraction fb ¼

0.1571 and the spectral index ns ¼ 0.9649. These values
are shared with the two US teams. In typical current large-
scale structure survey analyses, these two parameters are
not very well determined due to the weak sensitivity of the
target galaxy observables unless one adds priors motivated
by CMB observations and/or big-bang nucleosynthesis,
while it would be possible to constrain them from futuristic
galaxy surveys. Therefore, letting the US analysis teams
know their exact values loosely corresponds to adding
CMB priors.1 Further, for simplicity and to avoid the
complication of dealing with massive neutrinos both in
theory and in simulations, we set the neutrino masses to be
exactly zero. Under the above settings, the linear matter-
density transfer function is computed using the public
Boltzmann solver CAMB [36]. The parameter file passed to
this code by the Japan team is provided to the US teams
after the values of ωb, ωc, H0, and As are erased.
The main goal of the challenge is to infer the three

cosmological parameters As, Ωm, and H0. It was agreed
among all the teams that, once these cosmological param-
eters are unblinded, the results reported by that time may
not be modified any more.

B. Target observables

We focus on the galaxy clustering in redshift space in the
initial challenge presented in this paper. More specifically,
we work in Fourier space and analyze the multipole
moments of the galaxy power spectrum. This includes
physical and observational effects such as the baryon
acoustic oscillations (BAOs; [37–41]), redshift-space dis-
tortions (RSD; [42,43]), and the Alcock-Paczynski (AP;
[44]) effect, where the AP effect is induced artificially by
distorting the simulation boxes (see the next section for

further details). In addition to these distinctive features, the
mock data should contain the cosmological information
through the overall shape of the power spectra, which might
be hindered by the presence of various nonlinear effects.
The aim of this challenge is to assess how robustly one may
extract the fundamental cosmological parameters within the
flat ΛCDM framework.
The Japan team constructs mock galaxy catalogs and

measures the multipole moments of the power spectra. To
discriminate the systematic error from the statistical error,
this experiment is done in huge simulation volumes much
larger than the current surveys. The galaxy catalogs are
constructed to roughly mimic the CMASS and the LOWZ
catalog from the 12th Data Release of Sloan Digital Sky
Survey Ref. [45] (hereafter, SDSS DR12). The details of
these simulations will follow in the next section. Since the
galaxy bias is formulated to be as general as possible in the
EFT, based only on symmetry considerations without
assuming any specific model with which galaxies are
defined, the details of the mock galaxies would not have
a significant impact on the blinded analysis as long as one
sticks to an EFT approach. However, other approaches,
such as the halo model, would be directly impacted by the
information on the exact procedure with which the mock
galaxies are distributed within the simulation volume.
Therefore, any further information on the mock galaxies
detailed in the next section was not provided to the US
teams before unblinding.
For completeness, the set of mock data, as well as

information on the simulations provided to the US teams, is
summarized at a dedicated website [46]. All the data and
the information were shared through this website.
Interested readers may download the same set of data
and participate in the blinded challenge by analyzing the
data using their own theoretical template, as the exact
cosmological-parameter values are not shown in this paper
nor on the website.

III. GENERATING MOCK REDSHIFT-SPACE
POWER SPECTRA OF BOSS-LIKE GALAXIES

The Japan team worked on the construction of mock
galaxy catalogs and measurement of the power spectra. The
settings for the numerical simulations, the prescription for
the mock galaxies, and the analysis methods to determine
their statistics are described in this section.

A. Specification of simulations

We follow the gravitational dynamics of ten random
realizations of the matter density field expressed by 30723

mass elements sampled in comoving periodic cubes with
side length L ¼ 3840 h−1Mpc. The total volume,
566 ðh−1GpcÞ3, is about 100 times that of the CMASS
and LOWZ samples from SDSS BOSS DR12, which
together have a volume coverage of 5.7 ðh−1 GpcÞ3 [47].

1It is not trivial how one can best arrange a challenge where
external prior information is added. To keep the analysis fully
blinded, the Japan team decided not to give any prior information
to the analysis teams for the challenge presented in this paper.
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The large volume of our simulations allows us to determine
the statistics of the mock galaxies very precisely, with little
sample-variance error. Therefore, we can conduct a fairly
stringent test of the systematic error due to an imperfect
modeling of the target statistics.
The initial conditions are generated with a code devel-

oped in [48] and then parallelized in [49] based on the
second-order Lagrangian perturbation theory (2LPT;
[50,51]). Following the result presented in [52], the starting
redshifts of the simulations are set at z ¼ 29 to roughly
optimize the total systematic error arising from the artificial
growing mode due to the grid preinitial condition [53–55]
and the truncation of the LPT at the second order, given the
mean interparticle distance of the simulations. We prepare
ten independent random realizations, each of which is then
evolved by a public tree-particle mesh code GADGET2 [56]
with 61443 grid points for fast Fourier transform (FFT) and
a tree softening length of 62.5 h−1 kpc. The other simu-
lation parameters to control the force accuracy as well as
the time-stepping criteria are the same as in [52]. We store
the particle snapshots at z ¼ 3, 2, 1, 0.61, 0.51, and 0.38.
We populate galaxies to the lowest three redshifts and
conventionally call the catalogs as CMASS2 (z ¼ 0.61),
CMASS1 (z ¼ 0.51), and LOWZ (z ¼ 0.38) in what
follows.

B. Mock galaxy identification

After obtaining the particle snapshots, we run the
ROCKSTAR halo finder [57], which is based on the six-
dimensional phase-space friends-of-friends algorithm. This
code identifies not only isolated “central” halos but also
“satellite” halos existing as substructures of more massive
halos without any distinction at first in the primary output
files. For simplicity, we treat each of them irrespectively of
whether it is a central or a satellite halo and populate a
galaxy only according to the virial mass assigned by
ROCKSTAR. We impose a soft cutoff to the virial mass to
select massive halos to populate galaxies randomly with the
probability

PðMvirÞ ¼
1

2

�
1þ erf

�
log10Mvir − log10Mmin

σlog10M

��
; ð1Þ

where erfðxÞ is the error function. We have two parameters,
log10Mmin and σlog10 M, which determine the typical mini-
mum mass and the profile of the soft mass cutoff,
respectively. We set log10Mmin ¼ 13.08, 12.97, and
12.95 for LOWZ, CMASS1, and CMASS2 (Mmin is given
in units of h−1 M⊙), respectively, while the value of σlog10 M
is fixed to 0.35 for all of the samples. These choices are
made such that the resultant clustering signal of the mock
galaxies, especially the amplitude of the power spectra at
small k, becomes roughly consistent with the observation
(see the next subsection for more details). We assume that

the populated mock galaxies are located at the center-of-
mass position of the core particles determined by
ROCKSTAR. Similarly, we assign the center-of-mass veloc-
ities of the same core particles to the mock galaxies, which
are used when we displace the positions of mock galaxies
to redshift space [25].
We show the abundance of (central) halos as well as the

mean number of galaxies per central halo as a function of
the virial mass in Fig. 1. Here, we define “central” halos
from the ROCKSTAR catalog as those satisfying the con-
dition that any other halo is not more massive than the halo
of interest to within a sphere of radius Rcen

vir , where R
cen
vir is

the virial radius of the central halo. Note that an isolated
halo is also identified as a central halo according to this
definition. On the other hand, the halos which reside around
a more massive neighbor to within the neighbor’s viral
radius are identified as “satellite” (sub)halos. The particular
definition does not really affect our mock galaxy catalog
due to our recipe [Eq. (1)] for populating galaxies. The
lower panel of Fig. 1 shows the average number of mock
galaxies in central halos, i.e., the halo occupation distri-
bution (HOD), as a function of central halo mass. Note that
unlike the standard HOD prescription, the HOD of our
mock catalog is not given a priori and, rather, is measured
from the mocks with the central/satellite split. Nevertheless,
the shape of HOD in our mock catalogs looks similar to
what can be found in the literature, e.g., [58,59]. There are
two regimes: halos around the soft cutoff near Mvir ¼
1013 h−1M⊙ host only one galaxy (i.e., a central galaxy),
while massive halos above 1014 h−1 M⊙ receive a

FIG. 1. Abundance of halos per unit logarithmic mass interval
(upper) and mean number of mock galaxies per halo (lower) as a
function of the virial mass of halos. The mean of the ten random
realizations is shown at three output redshifts of the simulations
as indicated by the figure legend.
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significant contribution from satellite galaxies, displaying a
power-law-like form in the HOD.

C. Measurement of the mock signal and error

Here, we describe the method to measure the power
spectra and estimate the data covariance from the mock
galaxy catalogs.
The measurement is done based on FFT of the density

field. We first assign the mock galaxies in redshift space to
n3g ¼ 20483 grid points using the cloud in cell (CIC)
interpolation scheme. We employ the distant observer
approximation in the mapping to the redshift space. We
follow Ref. [60] to correct for the aliasing effect [61], by the
so-called interlacing method. To do this, we prepare
another density grid but with mass assignment done after
shifting the galaxy positions by half the grid size along all
three Cartesian axes and then corrected for the phase shift
by multiplying an appropriate factor to the field in Fourier
space. By taking the average of the two density grids, the
original and the interlaced, we can get rid of the aliasing
effect due to the odd images, which would give the
dominant aliasing source to standard cosmological power
spectra with decaying amplitude toward higher wave
numbers. The effect of the CIC window function will
eventually be removed in Eq. (3).
We then reinterpret the wave numbers by taking account

of the AP effect. Namely, we rescale the fundamental
modes along each of the three axes as

k̃f;x ¼ k̃f;y ¼
DðtrueÞ

A ðzÞ
DðfidÞ

A ðzÞ
kf;

k̃f;z ¼
HðfidÞðzÞ
HðtrueÞðzÞ kf; ð2Þ

where kf ¼ 2π=L is the original fundamental mode in the
absence of the AP effect. In the above, we take the z
direction in the simulation box as the line-of-sight direc-
tion, and the upper scripts, (true) and (fid), indicate that the
comoving angular diameter distance DAðzÞ or the Hubble
expansion rate HðzÞ is calculated assuming the correct,
blinded cosmological parameters and fiducial cosmological
parameters, respectively. Here, we adopt a flat ΛCDM
cosmology with ΩðfidÞ

m ¼ 0.3 as the fiducial cosmology, and
this information is shared with the two US analysis teams.

Note that the ΩðfidÞ
m used to create the mock catalogs should

not be confused with the true cosmological parameter Ωm,
which was used in the simulations and which was kept from
the analyzing teams.
The Japan team then estimates the first three nonzero

multipole moments—monopole (l ¼ 0), quadrupole
(l ¼ 2), and hexadecapole (l ¼ 4)—by taking weighted
averages of the squared Fourier modes:

P̂lðkiÞ ¼
2lþ 1

Ni

X
k̃∈bini

Plðμk̃ÞP̂ðk̃Þ; ð3Þ

with

P̂ðk̃Þ ¼ Ṽjδk̃j2 − P̃shotðk̃Þ
W2

CICðk̃Þ
; ð4Þ

where the distorted volume Ṽ is given by

Ṽ ¼
�
DðfidÞ

A ðzÞ
DðtrueÞ

A ðzÞ

�2 HðtrueÞðzÞ
HðfidÞðzÞ L

3: ð5Þ

Analogously to Eq. (2), to account for the AP effect, the
summation runs over wave vectors k̃T ¼ ðk̃f;xix; k̃f;yiy;
k̃f;xizÞ specified by an integer vector ðix; iy; izÞ, Pl denotes
the lth-order Legendre polynomial, μk̃ is the cosine
between the wave vector k̃ and the z direction, and Ni
stands for the number of Fourier modes contained in the ith
wave-number bin. In the above, we have subtracted the shot
noise P̃shot from the measured power spectrum.2 We
evaluate the shot noise, taking into account the interlacing
technique for the aliasing correction and the CIC window
function. Denoting

κ̃a ¼
πk̃a

2k̃Ny;a
; ð6Þ

with k̃Ny;a ¼ k̃f;ang=2 being the direction-dependent
Nyquist frequency (a ¼ x, y, or z), the resultant expression
for the wave-vector–dependent shot-noise contribution is
given as

P̃shotðk̃Þ ¼
X

nx;ny;nz∶even
W2

CICðk̃þ 2k̃NynTÞ
Ṽ
Ngal

¼
� Y
a¼x;y;z

Caðk̃aÞ
�

Ṽ
Ngal

; ð7Þ

with WCIC being the CIC window function,

2Notice that this contribution is coming from the zero-lag
correlator inherent in point processes and is thus exactly 1=ng for
any tracers with a number density ng. However, on the modeling
side, the stochastic contribution in galaxy spectra uncorrelated
with large-scale density fluctuations is sometimes also referred to
as the shot noise. In this definition, it is well known that the shot
noise, i.e., the level of stochasticity, can deviate from the 1=ng
Poissonian noise. While we omit this in the analyses shown in the
main text, the possible impact of treating this as an additional free
parameter is discussed in the Appendix B 1.
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WCICðk̃Þ ¼
Y

a¼x;y;z

sinc2κ̃a; ð8Þ

and the final shot-noise correction factor Ca, given as the
infinite summation over even integers, can be computed
analytically as

Caðk̃aÞ ¼
1

12
ð1þ cos κ̃aÞ2ð2þ cos κ̃aÞ: ð9Þ

See Ref. [61] for a similar expression but without the
interlacing correction that erases the odd images.
The estimator, Eq. (3), is computed at 100 wave-number

bins between the first bin edge taken at zero to the final bin
edge at 1 hMpc−1, evenly spaced by 0.01 hMpc−1. The
representative wave number of each bin, ki in Eq. (3), is
computed as the average of the norm of the wave vectors
that actually enter the bin:

ki ¼
1

Ni

X
k̃∈bini

jk̃j: ð10Þ

The pairs of numbers, ðki; P̂lðkiÞÞ, are provided to the
analysis teams as the mock measurements, and the above
way to compute the representative number of each k-bin is
given to the analysis teams. The data files also contain
estimates of the covariance matrix, which is obtained
assuming Gaussianity [25]:

Covll
0

ij ¼ hðP̂lðkiÞ − hP̂lðkiÞiÞðP̂l0 ðkjÞ − hP̂l0 ðkjÞiÞi;

¼ δKij
ð2lþ 1Þð2l0 þ 1Þ

N2
i

×
X
k̃∈bin i

Plðμk̃ÞPl0 ðμk̃Þ½Pðk̃Þ þ Pshot�2; ð11Þ

where Pðk̃Þ is the expectation value of P̂ðk̃Þ. The expres-
sion reduces to the real-space formula of Ref. [62] when
l ¼ l0 ¼ 0. In reality, however, we have to make use of a
noisy estimate of the power spectrum P̂ðk̃Þ for each wave
vector k̃ instead of Pðk̃Þ, and this can impact the estimation
of the covariance matrix significantly. Therefore, instead of
computing Eq. (11), we first bin the Fourier modes in ten
evenly spaced jμkj bins and take the average of P̂ðk̃Þ within
each bin to suppress the noise. The binned estimates are
then used in Eq. (11), but the summation now runs over
bins instead of individual wave vectors to obtain our
estimate of the covariance matrix.
The Japan team considers two settings for the covariance

matrix. The first is to use the volume and the shot noise,
consistent with the mock simulations. In addition, they
provide another estimate scaled to the BOSS DR12
catalogs by substituting the number density from the
observation and then scaling the number of Fourier modes

according to the ratio of the surveyed and the simulated
volume. The set of estimates, P̂ðkiÞ and Covll

0
ij , with the

latter now has only diagonal entries with respect to the
subscripts, i and j, due to the Gaussian approximation, and
are tabulated for each of the ten random realizations and
provided on the website. The Japan team leaves the
decision to the US teams on how to exactly use these
estimates: which survey specification for the estimation of
the covariance matrix to adopt, to combine the ten
realization and analyze the averaged spectra just once or
to analyze each realization one by one, or to further

FIG. 2. First three multipole moments (monopole, quadrupole,
and hexadecapole) of the power spectrum in redshift space
measured from our mock galaxy catalogs at three redshifts (solid
lines). The 1σ uncertainty intervals, assuming the survey param-
eter of SDSS data release 12, are shown by the shaded regions.
The error bars are taken from Ref. [63] based on SDSS DR12. For
these data points, the measurements from the sample in the North
Galactic Cap (NGC) and the South Galactic Cap (SGC) are
shown separately by different symbols as indicated by the figure
legend. Note that the Alcock-Paczynski effect is artificially
induced assuming Ωm ¼ 0.3 in the redshift-distance conversion.
The analysis teams can only access exactly the data vector shown
in this figure. The analyses presented in this paper are based on
the monopole and the quadrupole moments from the catalog at
z ¼ 0.61.
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estimate the non-Gaussian error from the realization-to-
realization scatter.
We show in Fig. 2 the average multipole moments of the

power spectra at the three redshifts corresponding to
LOWZ, CMASS1, and CMASS2. The solid lines show
the mock measurements, where the shaded region around
each line denotes the 1σ error scaled to the SDSS BOSS
DR12 survey parameters. The three lines in each panel
depict the monopole, quadrupole, and hexadecapole from
top to bottom. Also shown by the symbols with error bars
are the actual measurements from the BOSS data from
Ref. [63]. The measurements from the North and South
Galactic Caps are, respectively, plotted by the upward and
the downward triangles.
Overall, the mock data follow the observed spectra. The

monopole moment especially exhibits an excellent agree-
ment because the model parameters used to distribute the
mock galaxies are chosen to match this moment. There is,
however, a small mismatch in the quadrupole moment: the
observed data show a stronger damping behavior for the
higher wave numbers. It is out of the scope of the current
investigation to see if this can be alleviated by further
tuning the model parameters without spoiling the success in
the monopole. This is nontrivial since the cosmological
parameters adopted in the mock simulations could depart
from the true unknown parameters governing our Universe,
or the recipe for populating mock galaxies might not be
flexible enough to meet the reality.

IV. THEORETICAL TEMPLATE

In this section we describe the implementation of the
theoretical model by the two teams participating in the
cosmological analysis challenge. The employed method-
ologies are almost identical to the ones used in the analysis
of the actual BOSS data by the same teams [28–30].
Both teams participating in the PT challenge use

essentially the same theoretical template. However, there
are differences in the implementation of IR resummation,
the choice of nuisance parameters, and their priors. In
addition, the two teams use absolutely independent pipe-
lines based on different software. This section describes in
detail the pipelines used by the two teams and focuses on
methodological differences.

A. Common basis for the EFT formulation

On general grounds, it is believed that any physical
system has a unique and correct description at long
wavelengths where the microscopical details of the physi-
cal system under consideration can be encoded in just a few
coefficients of the terms in the equations of motion. In the
context of the long-distance universe, this description is
believed to be the EFTofLSS [15,16]. The originality of the
EFTofLSS with respect to other preexisting perturbative

methods that were applied in the context of LSS is twofold.
First is the presence of suitable terms in the equations of
motion that encode the effect of short-distance nonlinear-
ities and galaxies at long distances and that cannot be
predicted without detailed knowledge of galaxy physics
and therefore are generically fit to observations. Second,
the equations of motion in the EFTofLSS have nonlinear
terms that are proportional to some parameters. Due to the
many phenomena that control the evolution of our
Universe, there are several of these parameters, such as
the size of the density perturbation or the ratio of a given
wavelength with respect to the size of the displacements
induced by short-distance modes [18]. For all of these
parameters but one, an iterative solution is performed. For
the parameter encoding the effect of long-wavelength
displacements, a nonlinear solution is performed, which
is called IR resummation [18,64–67]. Different incarna-
tions of the EFTofLSS make this expansion more or less
manifest. For example, the Lagrangian-space EFTofLSS
[68] automatically solves the effect of long displacements
nonlinearly, so it is identical to the Eulerian EFTofLSS that
we use here after it has been IR resummed [18].
In the EFTofLSS, the description of the clustering of

galaxies in redshift space is performed in the following
way. First, the dark matter and baryonic fields are described
in terms of fluids with a nontrivial stress tensor. Galaxies
are biased tracers in the sense that, if δg is the galaxy
overdensity, we have [19]

δgðx; tÞ ¼
X
n

Z
dt0Knðt; t0ÞÕnðxfl; t0Þ

¼
X
n;m

bn;mðtÞOn;mðx; tÞ ð12Þ

where Õn are all possible fields—such as, for example, the
darkmatter density—that, by general relativity, can affect the
formation of galaxies. Here, Knðt; t0Þ are some kernels that
relate how a field at a certain time affects the galaxies at later
times, and xfl is the location at time t0 of the fluid element that
is at x at time t. The last step of the above equation can be
performed using the perturbative expression for the matter
and baryonic fields. In fact, in perturbation theory the time-
and space-dependent parts factorize in a form schematically
given by δðk⃗; tÞ ∼P

n fnðtÞδðnÞðk⃗Þ, where δðnÞ is order n in
the expansion parameters. This allows us to define the biases
b as bn;mðtÞ ∼

R
dt0Knðt; t0Þfmðt0Þ. This provides the first

complete parametrization of the bias expansion, though
many earlier attempts were made and substantial but partial
successes were obtained.
Next, we describe the observed density field in redshift

space. This is a combination of the density field in configu-
ration space and density times powers of the velocity field of
galaxies, such as ρðx⃗; tÞvðx⃗; tÞi; ρðx⃗; tÞviðx⃗; tÞviðx⃗; tÞ;….
Again, these short-distance-dependent terms are described
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as above as biased tracers of the density and baryonic
fields [20].
Because of what we just discussed, the range over which

different implementations of the EFTofLSS can differ is
extremely limited: one may choose a different basis for the
EFT parameters; they may add an incomplete, and therefore
different, set of higher-order counterterms to partially
include the effect of some higher-order calculation that
was not performed; or they may have different implemen-
tations or approximations for the IR resummation. We list
these differences in detail next.

B. Group-dependent implementation

Although both teams use the same theoretical model,
there are several important methodological differences.
Moreover, the two groups have made very different choices
in the model implementation and numerical algorithms.
This section describes in detail the pipelines used by the
two teams.

1. East Coast team

The East Coast team used only the monopole and the
quadrupole in the analysis. The East Coast team analyzed
the challenge data with and without the hexadecapole
moment and found identical constraints.3 Thus, the East
Coast team refrained from using the hexadecapole moment
in the baseline analysis.
The theoretical model used by the East Coast team for

these two multipoles can be written schematically as

PlðkÞ ¼ Ptree
l ðkÞ þ Ploop

l ðkÞ þ Pctr
l ðkÞ þ P∇4

zδ
l ðkÞ: ð13Þ

The tree-level contribution is given by the Kaiser formula
[43]. The loop corrections are calculated using the standard
one-loop power spectra for dark matter and biased tracers
(see, e.g., [23,69,70] and references therein). The bias
model consists of the following bias operators [17,19,71],

δgðkÞ ¼ b1δðkÞ þ
b2
2
δ2ðkÞ þ bG2

G2ðkÞ; ð14Þ

where the momentum-space representation of the G2

operator is given by

G2ðkÞ ¼
Z

d3p
ð2πÞ3

�ðp · ðk − pÞÞ2
p2jk − pj2 − 1

�
δðpÞδðk − pÞ: ð15Þ

The one-loop power spectrum has one extra bias operator
multiplied by an additional parameter bΓ3

. However, this
contribution is almost fully degenerate with the counter-
terms and the G2 operator on the scales of interest. Given
this strong degeneracy, the East Coast team set bΓ3

¼ 0 in
the baseline analysis. Running the Markov chain
Monte Carlo (MCMC) chains with and without bΓ3

, it
was checked that this choice does not affect constraints on
cosmological parameters.
The standard one-loop counterterms for the monopole

and the quadrupole are [20]

Pctr
0 ðkÞ¼−2c20k2P11ðkÞ; Pctr

2 ðkÞ¼−
4f
3
c22k

2P11ðkÞ; ð16Þ

where f ¼ d lnDþ=d ln a is the logarithmic growth rate,
Dþ denotes the linear growth factor, and P11ðkÞ is the linear
power spectrum. The purpose of these counterterms is to fix
the UV dependence of the loops and to partly take into
account the effects of the fingers of God [42]. The East
Coast team also added an extra k4 term shared between the
multipoles,

P∇4
zδðk; μÞ ¼ −cðμkfÞ4ðb1 þ fμÞ2P11ðkÞ: ð17Þ

This new counterterm takes into account the next-to-
leading order of the fingers of God. Note that on general
grounds, one also expects the presence of the stochastic
contribution of the form [20,72]

PRSD;stoch ¼ −cϵk2μ2: ð18Þ

This contribution is very degenerate with the counterterm
(17) on the scales of interest for the analysis, and it was not
included in the model by the East Coast team.
The East Coast team implemented IR resummation and

the Alcock-Paczynski effect as explained in detail in
Refs. [73,74]. Importantly, the East Coast team used the
IR-resummation algorithm based on the wiggly smooth
decomposition directly in Fourier space [64,67,75], which
allowed for a significant boost of computational speed. This
scheme is efficient and numerically stable. Moreover, it is
based on solid systematic parametric expansion that guar-
antees that the error is under control at every order of IR
resummation. It was explicitly checked that the residuals
introduced by our procedure are much smaller than the two-
loop contributions which are not included in the model, in
full agreement with theoretical expectations [67,75]. The
labels that indicate IR resummation and the AP effect were
omitted in all equations in this section to avoid clutter.
However, the reader should keep in mind that they are
always included in the model.

3On the scales of interest, the hexadecapole signal is domi-
nated by leakage contributions from the monopole and quadru-
pole. These contributions appear due to discreteness effects, i.e.,
because the monopole and quadrupole are not exactly orthogonal
to the hexadecapole on a finite grid. Even with the gigantic
volume of the challenge simulation and the wide binning, the
hexadecapole moment is dominated by the systematic leakage
from lower multipole moments.
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The total number of nuisance parameters used in the
blinded analysis of the East Coast team is six: three
counterterms (c20, c22, c) and three bias parameters (b1,
b2, bG2

). Since the shot-noise contribution has been
subtracted from the measured spectra, the corresponding
parameter is not fitted, in contrast to Ref. [74]. As far as the
cosmological parameters are concerned, the basis that
was used consists of the dimensionless Hubble constant
h (H0 ¼ h · 100 km=s=Mpc), the physical matter density
ωm, and the normalization A1=2 defined with respect to the
best-fit Planck value for the base ΛCDM cosmology,

A1=2 ≡
�

As

As;Planck

�
1=2

;

where As;Planck ¼ 2.0989 × 10−9: ð19Þ

All varied cosmological and nuisance parameters were
assigned flat priors without boundaries, i.e., ð−∞;∞Þ.
The evaluation of perturbation theory integrals was

performed using the FFTLog method of [76] implemented
as a module in the CLASS Boltzmann solver [77,78]. Using
the IR resummation based on wiggly smooth decomposi-
tion, a single evaluation of a theoretical model is of the
order Oð1Þ sec for high precision settings. This allows for
a new evaluation of the nonlinear power spectra at every
step of the MCMC chain, which is what is done in the East
Coast team analysis. The MCMC analysis was performed
using the MontePython v3.0 [79,80] sampler interfaced with
the modified version of the CLASS code. The nuisance
parameters were sampled in the “fast mode” [81] at a
negligible computational cost.
Since the k-binning of the challenge spectra is very wide

(Δk ¼ 0.01 hMpc−1) compared to the fundamental mode
of the box, the theoretical predictions have to be properly
averaged over each bin. The boundaries of the bins were
estimated using the simulation volume, which was known
to both teams. The East Coast team checked that the
estimated boundaries allow one to accurately reproduce the
provided weighted means of the k-bins and found that
averaging the theory over the bin versus evaluating it in the
mean can induce roughly Oð0.5Þσ shifts in cosmological
parameters.

2. West Coast team

The implementation of the West Coast team is the result
of a long journey where each of the ingredients of the
EFTofLSS necessary to apply it to data was subsequently
developed one by one, tested on simulations, and shown to
be successful. Though not all those results are directly used
in the analysis, the West Coast team would have never
applied the model to the data without those intermediate
successes. We therefore find it nice to add, in each instance
where the EFTofLSS is applied to data, the following

footnote where we acknowledge at least a fraction of those
important developments.4

The model for the West Coast team and the analysis
techniques are the same as the ones used in [28,30], to
which we refer for details. The one-loop redshift-space
galaxy power spectrum reads

Pgðk;μÞ¼Z1ðμÞ2P11ðkÞ

þ2

Z
d3q
ð2πÞ3Z2ðq;k−q;μÞ2P11ðjk−qjÞP11ðqÞ

þ6Z1ðμÞP11ðkÞ
Z

d3q
ð2πÞ3Z3ðq;−q;k;μÞP11ðqÞ

þ2Z1ðμÞP11ðkÞ
�
cct

k2

k2M
þcr;1μ2

k2

k2M
þcr;2μ4

k2

k2M

�

þ 1

n̄g

�
cϵ;1þcϵ;2

k2

k2M
þcϵ;3fμ2

k2

k2M

�
: ð20Þ

Here, k−1M controls the bias derivative expansion, and we set
it to be ≃k−1NL, which is the scale controlling the expansion
of the dark matter derivative expansion. We set
kg ¼ 0.7 hMpc−1, and n̄g is the mean galaxy density.
In the next-to-last line of Eq. (20), the term in cct

represents a linear combination of a higher derivative bias
[19] that appears in Eq. (12) and the speed of sound of dark
matter [15,16]: δðk⃗; tÞ ⊃ k2δlinðk⃗; tÞ. The terms in cr;1 and
cr;2 represent the redshift-space counterterms [20]:

δredshiftðk⃗; tÞ ⊃ k2μ2δðk; tÞ, k2μ4δðk; tÞ. In the last line of

4The initial formulation of the EFTofLSS was performed in
Eulerian space in [15,16] and then extended to Lagrangian space
in [68]. The dark matter power spectrum was computed at one-,
two-, and three-loop orders in [16,18,82–90]. Some additional
theoretical developments of the EFTofLSS that accompanied
these calculations were a careful understanding of renormaliza-
tion [16,91,92] (including rather subtle aspects such as lattice
running [16] and a better understanding of the velocity field
[82,93]), of the several ways for extracting the value of the
counterterms from simulations [16,94], and of the nonlocality in
time of the EFTofLSS [19,82,84]. These theoretical explorations
also include an instructive study in 1þ 1 dimensions [94]. In
order to correctly describe the BAO peak, an IR resummation of
the long displacement fields had to be performed. This led to the
so-called IR-resummed EFTofLSS [18,64–67]. A method to
account for baryonic effects was presented in [21]. The dark
matter bispectrum was computed at one loop in [95,96], the one-
loop trispectrum in [97], and the displacement field in [98]. The
lensing power spectrum was computed at two loops in [99].
Biased tracers, such as halos and galaxies, were studied in the
context of the EFTofLSS in [19,71,72,100–102] (see also [14]),
and the halo and matter power spectra and bispectra (including all
cross-correlations) in [19,100]. Redshift-space distortions were
developed in [20,22,72]. Clustering dark energy was included in
the formalism in [89,103–105], primordial non-Gaussianities in
[22,100,106–109], and neutrinos in [110,111]. Faster evaluation
schemes for evaluation for some of the loop integrals were
developed in [76].

BLINDED CHALLENGE FOR PRECISION COSMOLOGY WITH … PHYS. REV. D 102, 123541 (2020)

123541-9



Eq. (20), we have the stochastic counterterms: cϵ;1 and cϵ;2
originate from Taylor expansion of Eq. (12) [19], while cϵ;3
originates from the redshift-space expressions [20].
The redshift-space galaxy density kernels Z1, Z2, and Z3

are given in Appendix A. These kernels depend on the bias
coefficients that we define as explained below Eq. (12). By
choosing only the linearly independent ones, this gives rise
to the so-called base of descendants. While up to cubic
order this base is equivalent to more standard bases, already
at quartic perturbative order new terms appear.
The IR resummation is performed in a numerically

efficient way using the original method for configuration
and redshift space developed in [18,65,66], where all the
errors are parametrically controlled by the perturbative
order of the calculation (i.e., no uncontrolled approxima-
tions are present).5

We define the following combination of parameters:
c2 ¼ ðb2 þ b4Þ=

ffiffiffi
2

p
, c4 ¼ ðb2 − b4Þ=

ffiffiffi
2

p
, cϵ;mono ¼ cϵ;2þ

fcϵ;3=3, and cϵ;quad ¼ 2fcϵ;3=3. As we analyze only the
monopole and the quadrupole, we set cr;2 ¼ 0 since the two
redshift-space counterterms are degenerate in this case, but
we allow a larger prior on cr;1 to absorb the contribution of
cr;2 in the quadrupole. Additionally, since the shot noise is
known and has been subtracted from the data, we set
cϵ;1 ¼ 0. This leaves us with the set (b1, c2, b3, c4, cct, cr;1,
cϵ;mono, cϵ;quad) of eight parameters. The PT challenge data
are precise enough to determine all EFT parameters with no
priors. However, we impose the following priors motivated
by the fact that all EFT parameters are expected to be
Oð1Þ6:

b1 ∈ ½0; 4�flat; c2 ∈ ½−4; 4�flat; b3 ∈ 10gauss;

c4 ∈ 2gauss; cct ∈ 4gauss; cr;1 ∈ 8gauss;

cϵ;mono ∈ 2gauss; cϵ;quad ∈ 4gauss: ð21Þ

As is evident from Eqs. (20) and (A1), some EFT
parameters appear linearly in the model power spectrum
and therefore appear quadratically in the likelihood. If we

are not interested in the actual value of these parameters, as
is our case, we can marginalize over these parameters
analytically, obtaining a marginalized likelihood that is a
function of only three parameters: b1, c2, and c4.
Given that the k-bins (Δk ¼ 0.01 h=Mpc) contain many

fundamental modes, the West Coast team averages the
predictions of the model over each bin. As a check, the
team verifies that the provided effective k of the bin is
correctly reproduced.
In terms of the cosmological parameters, the West Coast

team parametrizes their analysis in terms of the dimension-
less Hubble constant h (H0 ¼ h · 100 km=s=Mpc), the
present-day matter density fraction Ωm, and the normali-
zation of the power spectrum As. The evaluation of the
perturbation theory integrals is performed either by direct
numerical integration or by the FFTLog method of [76],
obtaining the same result.

V. RESULTS OF BLINDED ANALYSIS

In this section we display the results obtained by the two
teams. The input values of the cosmological parameters
were unblinded after each team submitted its results for
consensus data cuts. We present these results in the original
form prepared by either team independently. Both teams
have chosen to analyze the mean power spectrum (at
z ¼ 0.61) over ten realizations, with the covariance esti-
mated from the inverse sum of covariances for ten single
boxes,

C̄ ¼
�X

i
C−1
i

�
−1
; P̄ ¼ C̄ �

X
i

C−1
i Pi; ð22Þ

where Pi, Ci are the power spectrum and covariance of the
ith box and P̄, C̄ are the final mean and covariance that
were analyzed.
This procedure ensures that the analysis is approximately

equivalent to fitting the spectrum froma single simulation box
of 566 ðh−1GpcÞ3 volume. We stress that the obtained
statistical errors on cosmological parameters correspond to
the total volumeof ten simulation boxes, i.e.,566 ðh−1 GpcÞ3.

A. East Coast team

Although the East Coast team submitted its baseline
results for the average over ten challenge boxes at z ¼ 0.61,
they also analyzed the data for other redshifts and found
consistent results across all challenge spectra. Prior to
unblinding, the East Coast team submitted results for eight
different evenly spaced values of kmax in the range
ð0.08 − 0.2Þ hMpc−1.
The marginalized posteriors for the three cosmological

parameters are shown in Fig. 3 for several choices of kmax.
Between kmax ¼ 0.08 hMpc−1 and kmax ¼ 0.14 hMpc−1

the different contours are compatible within 1σ. When
pushing to higher values of kmax, the shifts in the central

5Especially within the observational community, a nonlinear
treatment of the BAO based on the decomposition of the wiggle
and smooth parts of the power spectrum has been popular for a
long time (see for example [112]). However, this team does not
find this decomposition to be under parametric control (i.e., there
is no small parameter controlling its correctness). It is possible to
go from the original IR resummation to the simplified ones based
on the decomposition by performing a series of approximations
(see the Appendix of [66]). Of course, this does not mean that the
errors which are introduced are large or significant, as can be
a posteriori checked in numerical simulations.

6Notice that the consistency of the EFTofLSS is based on a
power-counting argument that assumes that the subsequent terms
of the perturbative expansion are much smaller than the ones that
are kept. In order for this to be the case, it is essential that the
physical nuisance parameters are kept, Oð1Þ, once the relevant
physical scales have been factorized.
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values of the posterior distributions become significant.
Note that for kmax > 0.14 hMpc−1 the contours of h and
ωm remain consistent even though the other parameter
exhibits clear shifts. The East Coast team quoted its final
results for a conservative choice of kmax ¼ 0.12 hMpc−1

because this is the scale up to which the team believed the
theoretical modeling is sufficiently accurate given subper-
cent statistical error bars and the size of neglected nonlinear
corrections (see Fig. 4, in which we display an estimate of
the two-loop correction from [113]). The 1D marginalized
limits for the cosmological parameters and the linear bias
b1 are given in Table I. After the true parameters were
unblinded, the values obtained by the East Coast team were
replaced by relative differences. For convenience, the
values of σ8, Ωm, and lnð1010AsÞ derived from the East
Coast team MCMC chains are also quoted. As we have
seen after unblinding, the true values of ωm and h reside
within 2σ posterior regions even at kmax ¼ 0.2 hMpc−1,
while the clustering amplitude measurement is consistent
up to kmax ¼ 0.14 hMpc−1. Importantly, the team also
inferred a correct value of the linear bias7 coefficient b1.
Figure 4 shows the comparison of the best-fit model at

kmax ¼ 0.12 hMpc−1 to the data and the residuals. The
quality of the fit is quite good, χ2=dof ¼ 12=ð24 − 9Þ. It is

consistent with the hypothesis that the data follow the χ2

distribution with 15 degrees of freedom. The lower panel of
Fig. 4 displays a breakdown of different contributions to the
best-fit model. The linear theory contribution dominates on
all scales, which is consistent with the applicability of
perturbation theory. Towards kmax ¼ 0.12 hMpc−1 the
loop corrections (including the k2 counterterms) become
progressively important. Note that the one-loop corrections
are detectable already on very large scales, ∼0.02 hMpc−1.
The k4 counterterm is important only for the quadrupole
around kmax ¼ 0.12 hMpc−1, where it dominates over the
other loop corrections.

B. West Coast team

As specified before, the West Coast team analyzed the
mean over the ten boxes in the high redshift bin at z ¼ 0.61,
using the covariance on the mean. Originally, for the
purpose of parameter estimation, the team presented the
results up to kmax ¼ 0.12 hMpc−1 since this is the kmax at
which the team predicted the estimates to still be unbiased.
The marginalized posteriors for the cosmological param-
eters are shown in Fig. 5, and the best fits and means are
listed in Table II. When the true results are revealed, it is
found that As and H0 lie within the 1σ region of the
estimates of the West Coast team, and Ωm within the 1.5σ
region. Note that b1 is also correctly reproduced within the
1σ interval. Additionally, one can see that the pre-unblind-
ing results at kmax ¼ 0.14 hMpc−1, which, however, was
not the kmax at which the team anticipated to be most
accurate, are even closer to the true values.

FIG. 3. Marginalized posteriors for the three varied cosmological parameters as a function of kmax (quoted in hMpc−1 in the figure
legend) obtained by the East Coast team. Dashed lines mark the input parameters, which were revealed once the team submitted its final
result.

7The true value of the linear bias was estimated as follows. The
Japan team measured the real-space matter-matter autospectra
along with the galaxy-matter cross spectrum. Then, we took the
ratio b1 ¼ Pgm=Pmm evaluated in the very first k-bin averaged
over the ten realizations as an estimate of the bias parameter.
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In Fig. 6 the team shows that the data are well fitted by
the theoretical model with the best-fit parameters, with
−2 logL=dof ¼ 16=ð24 − 6Þ, corresponding to a very
good p-value.8 In the lower panel, different contributions
to the best-fit power spectra are shown to check the
self-consistency of the perturbative expansion. It is apparent
that the one-loop term is safely less than 10%of the linear one
at all k’s. In addition to the one-loop term, an estimate of the
two-loop contribution, i.e., P2

1−loop=Plin, is shown: clearly, at
least for the quadrupole, this estimate is of the order of the
error on the data at the highest k. This is an additional
indication that, for roughly kmax ≳ 0.12 − 0.14 hMpc−1, the
one-loop model will not be an accurate description of the
data, and parameter estimation will suffer from theory
systematics.
After unblinding, the West Coast team submitted addi-

tional results at kmax ¼ 0.14; 0.16; 0.18; 0.20 hMpc−1

because it was subsequently decided that it was interesting
to explore the kmax dependence of the theory-systematic
error. In fact, though this was already analyzed by the team
in both their original papers [28,30], the challenge simu-
lation is different and its volume is larger. At the higher

FIG. 4. Upper panel: comparison of the data for the monopole and the quadrupole (with error bars, albeit they are barely visible) with
the best-fit model (left panel) obtained by the East Coast team. The residuals for the monopole and the quadrupole for the best-fit model
with χ2=dof ¼ 12=ð24 − 9Þ are shown in the right panel. Note that the quadrupole data points are slightly shifted for better visibility.
Lower panel: different contributions to the monopole (left panel) and quadrupole (right panel) power spectra. The data errors and the
two-loop estimate are also displayed. We plot the absolute values; some terms are negative.

TABLE I. Baseline results obtained by the East Coast team for
kmax ¼ 0.12 hMpc−1 at z ¼ 0.61. Only the cosmological param-
eters and b1 are shown. Note that Ωm, lnð1010AsÞ, and σ8 in the
lower disjoint table show the results for the derived parameters.

kmax ¼ 0.12 hMpc−1 Best fit Mean �1σ

ΔA1=2=A1=2 × 102 −0.15 −0.16� 1.0
Δh=h × 102 −0.55 −0.59� 0.46
Δωm=ωm × 102 0.2 0.15� 1.4
Δb1=b1 × 102 0.20 0.22� 1.2
ΔΩm=Ωm × 102 1.3 1.2� 0.9
Δ lnð1010AsÞ= lnð1010AsÞ × 102 −0.098 −0.11� 0.69
Δσ8=σ8 × 102 −0.094 −0.022� 0.928Notice that the likelihood of this team is not Gaussian.
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kmax’s, the team performs the (analytical) marginalization
over the additional cϵ;mono parameter, with a Gaussian prior
with σcϵ;mono

¼ 2. The effect of adding this parameter is
completely negligible at low kmax: in fact, the team chose to
safely set it to zero for the original chains. Indeed, one can
check that the results are unchanged at low kmax when
adding this parameter. However, because of the small error
bars of the simulation data, at higher kmax this parameter
has to be added to the model.
The trend as a function of kmax is apparent from Fig. 5.

Note that Ωm and H0 are well recovered up to
kmax ¼ 0.18 hMpc−1, approximately within the 1σ region;
the estimate of clustering amplitude As starts to deviate
significantly from the true value after kmax ≳ 0.14 hMpc−1.

C. Comparison of the two analyses

So far we have presented the analyses done by two
teams. We now compare the two and discuss how different

model assumptions lead to different cosmological-param-
eter constraints.
First, since the two teams employ different sets of

cosmological parameters as the varied parameters, a direct
comparison between Figs. 3 and 5 is not very clear. Here,
instead, we focus on the parameter space ðΩm; H0; AsÞ to
find the constraints. We first show in Fig. 7 the one-
dimensional marginalized error on these parameters as a
function of the maximum wave number kmax used in the
analysis. The 1σ credible intervals by the East (West) Coast
team are shown by the upward (downward) triangles with
error bars. Also shown by the shaded areas are the same
intervals but scaled for the SDSS BOSS DR12 according to
the ratio of the simulated and the observed volume.9

Overall, the ground truth values of the three cosmologi-
cal parameters stay within or slightly off from the 1σ
interval up to kmax ¼ 0.14 hMpc−1. The inferred primor-
dial scalar amplitude As, in particular, is always within the
interval up to this kmax from both teams. On the one hand,
As starts to deviate from the ground truth in a systematic
way with statistical significance above this kmax. This is
consistent with the expectation that two-loop corrections
become important at these scales. On the other hand, H0

and Ωm stay roughly within 1σ from the true value all the
way up to kmax ¼ 0.2 hMpc−1. However, if one focuses
on the shaded regions corresponding to the statistical
error from the actual BOSS survey, the ground truth values

FIG. 5. Marginalized posteriors for the three varied cosmological parameters as a function of kmax (quoted in hMpc−1 in the figure
legend) obtained by the West Coast team. Dashed lines mark the input parameters which were revealed once the team submitted its final
result, similarly to Fig. 3.

TABLE II. Similar to Table I, but with the results obtained by
the West Coast team for kmax ¼ 0.12 hMpc−1 at z ¼ 0.61. Only
cosmological parameters and b1 are shown.

Parameters Best fit Mean �σ

ΔΩm=Ωm × 102 1.3 1.2þ0.8
−0.8

Δh=h × 102 −0.7 −0.6þ0.6
−0.6

Δ lnð1010AsÞ= lnð1010AsÞ × 102 0.1 0.1þ0.7
−0.7

Δb1=b1 × 102 0.8 0.7þ1.0
−1.1

9We adopt the total volume of SDSS BOSS DR12,
5.7ðh−1 GpcÞ3, instead of that of CMASS2.
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are always well within the 1σ interval, which justifies
the kmax choice of the analyses from the same teams in
Refs. [28–30].
While the size of the error bars shrinks towards higher

kmax, the gain is small after kmax ≳ 0.14 hMpc−1. This could
be causedby the combinationof twoeffects. First, the relative
contribution of the shot noise in the data covariance becomes

important. Second, the EFT parameters controlling the
nonlinear corrections become important in such a way that
the additional information coming from small-scale modes
mainly determines these parameters rather than the cosmo-
logical parameters. If one looks into the trend in the error bars
more closely, the results from the two teams are clearly
different, especiallywhen kmax ≲ 0.1 hMpc−1, up to a factor
∼2 smaller by theWest Coast team. This difference is driven
by the prior treatment. The East Coast team had no priors on
the chosen set of nuisance parameters, whereas the West
Coast team always kept the nuisance parameters within
physically motivated bounds. Thus, the observed difference
of the results between the two teams implies that on scales
larger than 0.1 hMpc−1, the data are not good enough to
break degeneracies between the cosmological and nuisance
parameters. These degeneracies are broken at larger wave
numbers, where the results of the two teams agree regardless
of the nuisance parameters’ priors.
Let us briefly discuss some cosmological implications of

our blinded analysis. The cosmological information probed
by redshift galaxy surveys can be crudely divided into four
different categories:

FIG. 6. Upper panel: comparison of the data for the monopole
(black) and the quadrupole (blue) with the best-fit model obtained
by the West Coast team. Middle panel: residuals for the monopole
and the quadrupole for the best-fit model with the partially
marginalized likelihood giving −2 logL=dof ¼ 16=ð24 − 6Þ for
kmax ¼ 0.12 hMpc−1. Lower panel: different contributions to the
monopole and quadrupole power spectra. We only plot the
absolute values; some terms are negative.

FIG. 7. One-dimensional marginalized posterior distributions
for the three main cosmological parameters as well as the linear
bias parameter as a function of the maximum wave number kmax
considered in the analysis. The 68% credible intervals derived by
the East and West Coast teams are shown, respectively, by the
blue and red error bars, with the mean marked by the upward and
downward triangles. Also plotted by the shaded regions are those
scaled to the volume of SDSS DR12. The error bars are slightly
shifted horizontally to avoid a heavy overlap.
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(i) Shape information. The shape of the galaxy power
spectrum is controlled by the physical matter density
ωm. This parameter is measured from the data regard-
less of the choice of rulers such asH0. Note that ωm is
extracted from the features of thepower spectrum, such
as the form of the BAO peaks, the baryonic suppres-
sion, the turnover, and the overall slope.

(ii) Distance information, mainly encoded through the
volume-average distance10 DVðzÞ. This parameter

FIG. 8. Two-dimensional marginal posterior distributions for the three main cosmological parameters and the linear bias parameter.
The 68% and 95% credible intervals derived by the East andWest Coast teams are shown, respectively, by the cyan and orange contours.
The corresponding one-dimensional marginal distributions are shown in the diagonal panels by the solid and dashed lines. The
maximum wave numbers included in this analysis are kmax ¼ 0.08 (upper left), 0.12 (upper right), 0.16 (lower left), and 0.2 hMpc−1

(lower right). Three degeneracy directions for some parameter combinations are also displayed in the contour panels by the thick dashed
lines (see text for more details).

10It is defined as DVðzÞ ¼ ðzð1þ zÞ2D2
AðzÞ=HðzÞÞ1=3, where

DAðzÞ ¼ 1
1þz

R
z
0

dz0
Hðz0Þ and H2ðzÞ ¼ H2

0ðΩmð1þ zÞ3 þ 1 − ΩmÞ in
flat ΛCDM.
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essentially controls the freedom to shift the power
spectrum along the k axis. In the flat ΛCDM
framework this distance depends only on two
cosmological parameters, ωm and H0. Since ωm is
measured from the shape, the constraint on DV
translates directly into a constraint on H0. Note that
Ωm in this picture can be seen as a parameter derived
from a combination of the shape and distance
parameters.

(iii) Redshift-space distortions. Observing galaxies in
redshift space allows one to measure unbiased
rms velocity fluctuations fσ8ðzÞ ¼ fðzÞDþðzÞσ8.
In ΛCDM Dþ and f depend only on Ωm, which
is constrained from the shape and the distance. Thus,
the RSD measurements directly constrain As.

(iv) Alcock-Paczynski geometric distance information.
The AP effect allows one to measure the combina-
tion HðzÞDAðzÞ. However, in ΛCDM this combi-
nation is a slow function of cosmological parameters
at small redshifts. Thus, it does not contribute
significantly to the overall constraints on Ωm; see
Ref. [29] for more details.

We can see in Fig. 8 that, indeed, our results are fully in
line with these theoretical expectations. First, let us focus
on the two-dimensional posterior in the ðΩm–H0Þ plane.
We observe that the change in the degeneracy direction
rotates by increasing the maximum wave number. When
kmax ¼ 0.08 hMpc−1, Ωm and H0 are negatively corre-
lated. On the other hand, the correlation becomes positive
for kmax ¼ 0.16 and 0.2 hMpc−1. We can interpret this as
the outcome of the change in the relative importance of the
BAO feature. Although the first BAO peak is already
included at kmax ¼ 0.08 hMpc−1, the dominant constraint
comes from the overall shape information, e.g., the matter-
radiation equality scale [θeq ¼ 1=ðkeqDVÞ ∝ Ω−0.83

m h−1,
where keq denotes the equality wave number] at this
maximum wave number. Indeed, the contours from the
two teams are roughly oriented along this direction,
depicted by the red dashed line. At kmax ¼ 0.2 hMpc−1,
as we can clearly see the BAO feature up to the third peak
(see Fig. 2), the BAO scale (the blue dashed line in Fig. 8:
θBAO ¼ rs=DV with the sound horizon scale rs) plays a
more significant role. The measurement of the relative
location of these two characteristic scales allows us to
determine the physical density ωm ¼ Ωmh2, and together
with the distance measurement through the cosmology
dependence of the redshift-distance conversion (i.e., a
measurement ofDV), we can break the degeneracy between
Ωm and H0.
Once DVðzÞ and ωm are fixed, the other parameters—

such as the distance parameters, HðzÞ, DAðzÞ (with h kept
in the units as hMpc−1 or h−1 Mpc) or the growth
parameter, fðzÞ—are merely dependent parameters fully
determined by Ωm, given that we focus on the flat ΛCDM
cosmology. Had we fitted the data with a more general

expansion model, e.g., dynamical dark energy or modified
gravity models, the posterior distribution of these param-
eters would have been different. The parameters extracted

FIG. 9. One-dimensional marginalized posterior distributions
of derived parameters for the flat ΛCDM model as a function of
the maximum wave number included in the analysis, kmax. The
fractional error is shown with the uncertainty in H0 that is kept in
the unit for the distance parameters (i.e., DA is expressed in
h−1 Mpc and H is in hMpc−1).
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from our MCMC chains, together with some other useful
parameters, are displayed in Fig. 9.
Apart from the shape-related parameters, the determi-

nation of the amplitude parameter is of interest. We can see
in Fig. 8 that the posterior of the amplitude parameter, As, is
strongly correlated with the linear bias parameter b1. To
understand this more clearly, we show the constraints on
the parameters relevant for the measurement of RSD (the
one-dimensional and the two-dimensional marginalized
posteriors in Figs. 9 and 10, respectively). In the two-
dimensional contour plot, we can see that the amplitude
parameter scaled to the redshift of the survey volume,
σ8ðzÞ ¼ ½DþðzÞ=Dþðz ¼ 0Þ�σ8, is strongly degenerate with
the linear bias parameter b1, just as we have seen for As and
b1. In fact, they are expected to be fully degenerate in the
absence of RSD information in linear theory. We can also
see in Fig. 7 that b1 starts to depend weakly on kmax above
∼0.14 hMpc−1 with statistical significance, and a similar
departure from the ground truth value happens at the same
place but to the opposite direction in σ8ðzÞ, as shown in
Fig. 9. The other famous degeneracy directions, fσ8 or f=b,
which are the direct observables from linear RSD, do not
appear in our contours in Fig. 10. This is again due to the
fact that the flat ΛCDM assumption makes f a dependent
variable fully determined by Ωm. What we see here is that
the constraint on Ωm through the shape and distance
measurement discussed above, combined with the

measurement of fσ8 from RSD, allows us to constrain
σ8 (and thus As) directly.

VI. CONCLUSION AND OUTLOOK

In this paper we have presented results of the blinded
cosmology challenge initiated to test theoretical models for
redshift-space galaxy clustering. The task was to assess
whether the theoretical model, here EFTofLSS, can recover
the blinded cosmological parameters in N-body simulation
from the mock data of redshift-space power-spectrum
multipoles for BOSS-like galaxies. The sufficiently large
volume, dynamical range, and high resolution of the
challenge simulation allow one to pin down any potential
inaccuracy of theoretical modeling, compared to the
statistical errors for the BOSS-like survey.
The simulations were run by a team (“Japan team”) that

kept the true parameters a secret. The mock data were
analyzed by two other independent teams (“East Coast
team” and “West Coast team”) who volunteered to par-
ticipate in the challenge. The rule of the challenge was that
the true parameters can be unblinded only when the
analyzing teams submitted their final results to the simu-
lation team. All three teams agreed that the submitted
results would be presented in this paper, without any
change, after the unblinding.
Both analyzing teams used the same theoretical model

based on the effective field theory of large-scale structure.
However, there exist some nontrivial differences, whose
impact on the final cosmological inference should be tested
quantitatively with care. The corresponding pipelines were
the ones applied to the real BOSS data in Refs. [28–30]. We
have discussed in detail methodological and technical
differences between these two pipelines. Despite these
differences, both teams successfully recovered the true
cosmological parameters within expected statistical error
bars. This suggests that perturbation theory, once consis-
tently implemented, can be used as a standard tool for
unbiased estimation of cosmological parameters from
galaxy surveys.
The enormously large total simulation volume used in

the challenge helped to assess systematic error due to the
incomplete theoretical modeling by suppressing the stat-
istical error to a level much lower than the current surveys.
The biased cosmological inference beyond the reported
maximum wave number used for the challenge,
kmax ¼ 0.12 hMpc−1, consistently determined by both
teams, indicates the typical systematic error one can make
from actual surveys with much smaller observed volume
(see, e.g., Fig. 7 up to kmax ¼ 0.2 hMpc−1). For instance,
the analyses of SDSS BOSS galaxies by Refs. [28–30]
adopt kmax around 0.2 hMpc−1 (0.18 to 0.25 depending on
the paper and the redshift bin of the galaxy sample). While
the detailed choice of varied cosmological parameters, as
well as the ways to combine them with CMB constraints,
are different from what is presented here, one can make a

FIG. 10. Two-dimensional marginalized posterior distributions
for amplitude-related parameters relevant for the RSD measure-
ment from the analyses at kmax ¼ 0.12 hMpc−1. The expected
degeneracy directions—fσ8, b1σ8, or f=b1 is constant—expected
from linear RSD measurements are shown by the dashed lines.
Note that fðzÞ and σ8ðzÞ are derived parameters fully fixed once
Ωm and As are given within the flat ΛCDM model.
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reasonable guess on the potential systematic biases on the
inferred cosmological parameters of these papers out of our
results.
Out of the three cosmological parameters that we

considered here, the scalar amplitude parameter As, is most
severely biased beyond kmax ¼ 0.12 hMpc−1, reaching
∼4%11 at kmax ¼ 0.2 hMpc−1, while the other two param-
eters, Ωm and H0, are fairly unbiased, even when the EFT
template starts to fail. This indicates that the latter two are
mostly constrained through the shape of the spectrum
(mostly the distinctive BAO feature). The situation should
be the same in actual observational data analyses such as
the one listed above. Although the precise value of the
detected parameter bias on As can depend on the detail in
the halo-galaxy connection mainly through the uncertainty
in the strength of the redshift-space distortions, it is
assuring to observe that our worst-case value of 4% is
still below the statistical errors from Refs. [28–30], which
are 12% to 19% (68% C.L.). Future experiments with even
larger survey volume and higher galaxy number density
will allow us to lower these uncertainties, and in that case,
we have to be more careful on the parameter bias due to the
model inaccuracy, either by lowering kmax or by improving
the model itself. We investigate the parameter constraints
for a hypothetical survey with the volume of the Dark
Energy Spectroscopic Instrument (DESI, Ref. [4]) in
Appendix C.
We are currently exploring a number of various post-

blinded research directions. The first one includes a
thorough investigation of the information content of red-
shift galaxy surveys. Second, it would be interesting to see
how much the kmax value where one-loop perturbation
theory breaks down depends on the properties of the galaxy
population, i.e., assembly bias or satellite fraction. Third, it
would also be interesting to see how well perturbation
theory performs for other observables, e.g., the galaxy-
galaxy weak lensing or the redshift-space bispectrum.
These research avenues are left for future work.
We have presented the results obtained by analyzing

teams in such a way that the true parameters are still blinded
to the readers. This is done in case some other researchers
would like to test their theory models on the challenge
spectra. All challenge data are available online at [46]. We
encourage all groups working on galaxy clustering analysis
to participate in the challenge.
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APPENDIX A: GALAXY KERNELS

The explicit expressions for the galaxy kernels appearing
in the one-loop power spectrum are given here (for a
derivation, see [72]):

Z1ðq1Þ ¼ K1ðq1Þ þ fμ21G1ðq1Þ ¼ b1 þ fμ21;

Z2ðq1; q2; μÞ ¼ K2ðq1; q2Þ þ fμ212G2ðq1; q2Þ

þ 1

2
fμq

�
μ2
q2

G1ðq2ÞZ1ðq1Þ þ perm:

�
;

Z3ðq1; q2; q3; μÞ ¼ K3ðq1; q2; q3Þ þ fμ2123G3ðq1; q2; q3Þ

þ 1

3
fμq

�
μ3
q3

G1ðq3ÞZ2ðq1; q2; μ123Þ

þ μ23
q23

G2ðq2; q3ÞZ1ðq1Þ þ cyc:

�
; ðA1Þ

where μ ¼ q · ẑ=q, q ¼ q1 þ � � � þ qn, and μi1…in ¼
qi1…in · ẑ=qi1…in , qi1…im ¼ qi1 þ � � � þ qim , with ẑ being
the unit vector in the direction of the line of sight, and
n is the order of the kernel Zn. Note that Ki and Gi are the
galaxy density and velocity kernels, respectively. We
choose to work in the basis of descendants (this is the
first complete set of bias coefficients for LSS, established in
[19,100] and with some typos corrected in [101]; see
[19,100] for connection to former bases of bias coefficients,
as in for example [14]). Notice that while the new terms
introduced in [19] happen to be degenerate with the
standard bias terms at one-loop order, this will not be

11We estimate this theory-systematic error as the distance from
the truth of the 1σ region of the posterior, as done in [28].
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the case once one goes to higher orders. For the one-loop
power spectrum, all kernels can be described with four bias
parameters bi.
The first- and second-order galaxy density kernels are

K1 ¼ b1;

K2ðq1; q2Þ ¼ b1
q1 · q2
q21

þ b2

�
F2ðq1; q2Þ −

q1 · q2
q21

�

þ b4 þ perm: ðA2Þ

The galaxy velocity kernels Gn are simply the standard
perturbation theory ones since the galaxy velocity
field follows the dark matter velocity field, up to higher-
derivative terms which are degenerate with other
counterterms that appear in the renormalization of the
redshift-space expression (see e.g., [69] for the expressions
of Fn and Gn).
The third-order galaxy density kernel has a much more

involved expression. However, for the one-loop calculation,
degeneracies appear in the one-loop diagram obtained from
hδð3Þδð1Þi, when UV divergences are removed and the
integral over the angular coordinates is performed, leading
to the following simple expression:

K3ðk;qÞ¼
b1

504k3q3

�
−38k5qþ48k3q3−18kq5

þ9ðk2−q2Þ3 log
�
k−q
kþq

��

þ b3
756k3q5

�
2kqðk2þq2Þð3k4−14k2q2þ3q4Þ

þ3ðk2−q2Þ4 log
�
k−q
kþq

��
: ðA3Þ

APPENDIX B: POST-UNBLINDING ANALYSES

While both analysis teams worked on a specific bias
parametrization in the main text, it is worth exploring
different options for a better understanding and to make a
better connection to some of the recent works on obser-
vational data. This Appendix presents two such
possibilities.

1. Residual shot noise

It is known that dark matter halos or associated galaxies
are not a Poisson sample of the underlying hypothetical
continuous distribution (e.g., [114,115]). As explained in
Sec. III C, the standard shot-noise contribution is already

subtracted in the power-spectra data files provided by the
Japan team. The subtracted shot-noise contribution, strictly
speaking, is not really an estimate of the additional
fluctuations associated with the connection between the
underlying smooth field and the discrete point distribution
but simply the “zero-lag” correlator inherent in a point
process. Therefore, the assumption of the zero shot-noise-
like term adopted in the blinded analyses presented in the
main text is not guaranteed to be valid. Here we study
the impact of adding a nuisance parameter to model the
residual shot term, which is relevant for the monopole
moment.
The green contours in Fig. 11 show the result from the

East Coast team at four different kmax as indicated in the
figure legend. Figure 12 shows the same analysis done by
the West Coast team. Both results are compared with the
open dotted contours from the blinded analysis.
Introducing one more free parameter indeed results in
slightly looser constraints with tilted degeneracy directions.
An interesting observation is that the biases that the East
Coast team displays on H0 and As at kmax ¼ 0.16 and
0.18 hMpc−1 are reduced. Similarly, the West Coast team
has a bias just on As, which is also reduced. Although the
introduction of the non-Poissonian shot-noise term ceases
to mitigate the parameter bias at kmax ¼ 0.2 hMpc−1,
probably due to the absence of terms higher than one loop
in the theoretical template, this parameter would allow for a
more robust analysis in an actual analysis of observational
data. This is exactly what was done by both teams in their
analyses of the BOSS data.

2. Floating bΓ3

The East Coast team did not vary bΓ3
in their analysis

because they found that it does not affect the parameter
constraints. This is explicitly illustrated in this Appendix.
Note that bΓ3

has very little impact on the power-spectrum
constraints because this bias parameter is strongly degen-
erate with bG2

. To break this degeneracy, the East Coast
team used the Gaussian prior centered at the prediction of
the coevolution model,

bΓ3
∼N

�
23

42
ðb1 − 1Þ; 1

�
: ðB1Þ

The results of the analysis with this prior are shown in
Fig. 11. One clearly sees that varying bΓ3

or fixing it to a
constant value has no noticeable impact on the cosmologi-
cal parameters or the linear bias b1.
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FIG. 11. Posterior distributions from the post-unblinding analyses where one or two additional bias parameters are floated. The results
are from the pipeline by the East Coast team.
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APPENDIX C: SCALING TO REALISTIC
SURVEYS

We have focused on the statistical inference from mock
spectra measured from an unrealistically large total volume
in the main text. To gain further insights into more realistic
observations, we redo the analysis after unblinding with a
much smaller volume. We consider a hypothetical survey
with the volume of 25.5ðh−1 GpcÞ3 and scale the error bars
from the mock simulations according to the volume ratio.
This is close to the expected survey volume of the DESI
survey. The results of this Appendix should be taken with

care since the effective redshift of the DESI survey is higher
than the one we use here, which is similar to the one of the
BOSS survey instead. As a consequence, the effect of the
nonlinear corrections, and so the systematic error measured
here, is larger than what we expect for the actual DESI
survey.
We show the results using the same analysis pipeline as

the one used by the West Coast team in the main text. Due
to the larger error bars in the mock spectra, we can push to
smaller scales without bias in the inferred cosmological
parameters. Figure 13 shows the 1σ and 2σ credible regions

FIG. 12. Similar to Fig. 11, but from the pipeline by the West Coast team for the case of a varied residual shot-noise term.
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for the three varied cosmological parameters as well as the
linear bias parameter from this analysis. We show the results
at different values of kmax up to 0.22hMpc−1 as indicated by
the figure legend in two panels for ease of visibility (lower
kmax in the left and higher kmax in the right panel).
Overall, we can see that the inferred parameters are

unbiased compared to the statistical error level expected
from a DESI-like survey for all the kmax values considered
here. With respect to the results of the BOSS analysis

performed in [28], the error bars at kmax ¼ 0.2 h−1Mpc
shrink from 3.2% to 2% on Ωm, from 3.2% to 2.1% on H0,
and from 13% to 6.7% on As. However, from the runs
described in the main text, there is a systematic error on As

of ∼4% at kmax ¼ 0.2 h−1Mpc, which corresponds to
about 2=3 of the statistical error here. These results are
particularly encouraging in view of the fact that DESI will
survey a higher redshift than the one of the simulations,
where nonlinear corrections will be less important.
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