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As a solution towards the numerical sign problem, we propose a novel hybrid Monte Carlo
algorithm, in which molecular dynamics is performed on a continuum set of integration surfaces
foliated by the antiholomorphic gradient flow (“the worldvolume of an integration surface”).
This is an extension of the tempered Lefschetz thimble method (TLTM) and solves the sign
and multimodal problems simultaneously, as the original TLTM does. Furthermore, in this new
algorithm, one no longer needs to compute the Jacobian of the gradient flow in generating a
configuration, and only needs to evaluate its phase upon measurement. To demonstrate that this
algorithm works correctly, we apply the algorithm to a chiral random matrix model, for which
the complex Langevin method is known not to work.
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1. Introduction

The sign problem is one of the major obstacles to numerical computation in various areas of physics,
including finite density QCD [1], quantum Monte Carlo simulations of statistical systems [2], and
the numerical simulations of real-time quantum field theories.

There have been proposed many Monte Carlo algorithms towards solving the sign problem, such
as those based on the complex Langevin equation [3–9] (see, e.g., Ref. [10] for a review) and those on
Lefschetz thimbles [11–21], each of which has its own advantages and disadvantages. The advantage
of using the complex Langevin equation is its cheap computational cost, but such algorithms are
known to suffer from a notorious problem called the “wrong convergence problem” (giving incorrect
results with small statistical errors) for physically important ranges of parameters [6,7,9]. On the
other hand, although computationally expensive, the algorithms based on Lefschetz thimbles are
basically free from the wrong convergence. However, this is the case when and only when a single
Lefschetz thimble is relevant for the estimation of observables, because otherwise there can appear
another problem of multimodality due to infinitely high potential barriers between different thimbles.

The tempered Lefschetz thimble method (TLTM) [17] is a Lefschetz thimble method that avoids
the sign and multimodal problems simultaneously, by introducing a discrete set of integration sur-
faces (replicas of integration surface) and exchanging configurations between replicas. The TLTM
has proved effective and versatile when applied to various models, including the (0+1)-dimensional
massive Thirring model [17] and the 2D Hubbard model away from half filling [20,21].1 The dis-
advantage of the original TLTM is its computational cost, the cost coming from the computation of
the Jacobian and from the additional cost due to the introduction of replicas.

1 See Refs. [22,23] for another Lefschetz thimble approach to the sign problem in the Hubbard model.
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In this paper, as an extension of the TLTM, we propose a novel hybrid Monte Carlo (HMC)
algorithm, where molecular dynamics is performed on a continuum set of replicas, not on each
replica as was done in Ref. [21] (see also Refs. [14,24]). This algorithm no longer requires the
computation of the Jacobian in generating a configuration, which is expensive for large systems. To
overview this new algorithm, we first review the basics of the sign problem, and then introduce our
algorithm.

Let us consider a system of an N -dimensional dynamical variable x ∈ R
N with an action S(x).

Our aim is to evaluate the expectation value of an operator O(x),

〈O(x)〉 ≡ 1

Z

∫
RN

dx e−S(x)O(x), Z ≡
∫

RN
dx e−S(x), (1)

where dx ≡ dx1 · · · dxN . When the action takes complex values, the Boltzmann weight e−S(x)/Z
can no longer be interpreted as a probability distribution, which invalidates a direct application
of the Markov-chain Monte Carlo (MCMC) method. The simplest workaround is the so-called
reweighting method, where a positive weight is constructed from the real part of the action,
e−Re S(x)/

∫
RN dx e−Re S(x), and 〈O(x)〉 is estimated by a ratio of reweighted averages,

〈O(x)〉 = 〈e−i Im S(x)O(x)〉rewt

〈e−i Im S(x)〉rewt
, (2)

where

〈f (x)〉rewt ≡
∫

RN dx e−Re S(x)f (x)∫
RN dx e−Re S(x)

. (3)

For large degrees of freedom (DOF), however, the phase factor e−i Im S(x) in reweighted averages
makes the integrals highly oscillatory, so that Eq. (2) becomes a ratio of exponentially small quan-
tities of e−O(N ) even when the ratio should give a quantity of O(1). Since the reweighting is a
mathematically equivalent rewriting, it should not give any problems if one can obtain the values of
the reweighted averages precisely both in the numerator and the denominator. However, in the Monte
Carlo calculations, they are evaluated separately as sample averages, which should be accompanied
by statistical errors of O(1/

√
Nconf ), where Nconf is the size of the sample. Thus, for the naive

reweighting method, the expectation value is estimated in the form

〈O(x)〉 ≈ e−O(N ) ± O(1/
√

Nconf )

e−O(N ) ± O(1/
√

Nconf )
, (4)

which means that we need an exponentially large sample size, Nconf = eO(N ), in order to make the
statistical errors relatively small compared to the exponentially small mean values. This enormous
computational time makes the MCMC computations impractical. This is the sign problem.

Lefschetz thimble methods are a class of algorithms towards solving the sign problem. In these
methods, we complexify the integration variables, x ∈ R

N → z ∈ C
N , with the assumption that

e−S(z) and e−S(z)O(z) are entire functions over C
N . Then, from Cauchy’s theorem, the integrals do

not change under continuous deformations of the integration surface from R
N to � ⊂ C

N , as long
as the boundary at infinity (|x| → ∞) is kept fixed under the deformations:

〈O(x)〉 =
∫
�

dz e−S(z)O(z)∫
�

dz e−S(z)
, (5)
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where dz ≡ dz1 · · · dzN . We expect that the sign problem is reduced if we can find an integration
surface � on which e−i Im S(z) is almost constant.

Such surfaces are obtained from the following antiholomorphic gradient flow zt(x) at large flow
times:

dzi
t

dt
= [∂iS(zt)]∗, zi

t=0 = xi. (6)

In fact, this flow defines a map from the original integration surface�0 ≡ R
N to a real N -dimensional

submanifold �t ≡ {zt(x) | x ∈ R
N } in C

N = R
2N :

zt : �0 � x → zt(x) ∈ �t , (7)

and the flowed surface �t approaches in the limit t → ∞ a union of Lefschetz thimbles, on each
of which Im S(z) is constant.2 We thus expect that the sign problem is substantially remedied on �t

for sufficiently large t. The expectation value is then expressed in the form3

〈O(x)〉 = 〈e−i Im S(z)+iϕ(z)O(z)〉�t

〈e−i Im S(z)+iϕ(z)〉�t

(8)

with

〈f (z)〉�t ≡
∫
�t

|dzt| e−Re S(zt)f (zt)∫
�t

|dzt| e−Re S(zt)
. (9)

Here, |dzt| is the invariant volume element of�t , and can be expressed with the Jacobian of the flow,
Jt(x) ≡ ∂zt(x)/∂x, as

dzt = det Jt dx, |dzt| = | det Jt| dx. (10)

The phase factor eiϕ(z) in Eq. (8) is then given by

eiϕ(z) ≡ dzt

|dzt| = det Jt

| det Jt| . (11)

2 Since (d/dt) S(zt) = |S(zt)|2 ≥ 0, Im S(zt) is constant along the flow, and Re S(zt) increases except at
critical points zσ [at which ∂iS(zσ ) = 0]. For each critical point zσ , the Lefschetz thimble Jσ is defined as
Jσ ≡ {z ∈ C

N | limt→−∞ zt(z) = zσ }, on which Im S(z) is constant [= Im S(zσ )].
3 The original reweighting (2) and (3) corresponds to the t = 0 case. When only a single Lefschetz thimble

is relevant, one can argue that the exponentially small part in the estimation (4) increases as e−e−λt O(N ), where λ
is the minimum singular value of H (z) = (∂i∂jS(z)) at the critical point. We thus expect that the sign problem
is removed for the flow time t � O(ln N ).
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The Jacobian Jt(x) can be computed by solving the second flow equation:4

dJt

dt
= [H (zt)Jt]∗, Jt=0 = 1, (12)

where H (z) ≡ (∂i∂jS(z)).
When�t approaches more than one Lefschetz thimble, �t gets decomposed into separate regions

as t increases, each region being surrounded by infinitely high potential barriers. This causes a
multimodal problem in MCMC calculations.5 The tempered Lefschetz thimble method (TLTM) was
proposed in Ref. [17] to solve this multimodality by implementing the parallel tempering algorithm
[25–27] with the flow time t used as the tempering parameter. Namely, we prepare a finite set of flow
times, {tα}, and introduce copies (replicas) of the corresponding configuration spaces, {�tα }.6 The set
{tα} is chosen so as to include large enough flow times to resolve the sign problem, as well as small
enough flow times to resolve the multimodality.7 Then, in addition to Monte Carlo updates on each
�t , we swap configurations between adjacent replicas, which enables easy communications between
configurations around different modes, and thus accelerates the relaxation to global equilibrium.
Thus, the TLTM is an algorithm that solves the sign and multimodal problems simultaneously, and
has proved effective for various models [17,20,21], as mentioned before. However, in this original
TLTM, we need to increase the number of replicas as we increase DOF in order to keep sufficient
acceptance rates in the swapping process. Furthermore, we have to compute the Jacobian Jt(x) every
time in the swapping process, which is expensive because the second flow equation (12) involves a
matrix multiplication, whose cost is of O(N 3).

In this paper, we propose a novel hybrid Monte Carlo (HMC) algorithm, where molecular dynamics
is performed on a continuum set of integration surfaces,

⋃
t �t . This algorithm solves the multi-

modal problem without preparing replicas. Furthermore, the Jacobian of the gradient flow no longer
needs to be computed in generating a configuration, and only its phase needs to be evaluated upon
measurement.

This algorithm is based on the observation that, since integrals on �t do not depend on t due to
Cauchy’s theorem, the values do not change even when we average them over t in a range [T0, T1]
with an arbitrary weight e−W (t):

〈O(x)〉 =
∫ T1

T0
dt e−W (t)

∫
�t

dzt e−S(zt)O(zt)∫ T1
T0

dt e−W (t)
∫
�t

dzt e−S(zt)
. (13)

We denote the new integration region by R (see Fig. 1):

R ≡
T1⋃

t=T0

�t = {
zt(x) ∈ C

N
∣∣ t ∈ [T0, T1], x ∈ R

N}, (14)

4 This can be shown as (d/dt)(Jt(x))ia = (∂/∂t)(∂zi
t(x)/∂xa) = ∂[∂zi

t(x)/∂t]/∂xa = ∂[∂iS(zt(x))]∗/∂xa =
[∂i∂jS(zt(x)) (∂zj

t(x)/∂xa))]∗ = [Hij(zt(x)) (Jt(x))ja]∗.
5 In the following discussions, we assume that there is no multimodal problem on the original integration

surface�t=0 = R
N . If this is not the case, we implement an extra algorithm to resolve the multimodality (such

as tempering with respect to the overall coefficient of the action) or make a shift of the starting integration
surface from R

N .
6 Note that �t is not necessarily homeomorphic to �0 = R

N because we remove zeros of e−S(z) from �t

(see Ref. [21]).
7 See Refs. [28,29] for a geometrical optimization of the values tα based on the distance between

configurations introduced in Ref. [30].
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Fig. 1. The worldvolume R (shaded region) embedded in C
N = R

2N .

which we regard as the worldvolume of an integration surface moving in the “target space”
C

N = R
2N . We abbreviate the TLTM based on Eq. (13) as the WV-TLTM.

Although the weight function e−W (t) can be chosen arbitrarily, a good choice in practice is one that
gives an almost uniform distribution with respect to t (see Sect. 3.4 for details).

The expectation value is now expressed as a ratio of reweighted averages over R:

〈O(x)〉 =
∫
R Dz e−V (z) A(z)O(z)∫

R Dz e−V (z) A(z)
= 〈A(z)O(z)〉R

〈A(z)〉R . (15)

Here, the reweighted average

〈f (z)〉R ≡
∫
R Dz e−V (z) f (z)∫

R Dz e−V (z)
(16)

is defined with respect to the (real-valued) invariant volume element Dz on the (N + 1)-dimensional
region R and to the new weight8

e−V (z) ≡ e−Re S(z)−W (t(z)). (17)

The accompanying reweighting factor A(z) is then given by

A(z) ≡ e−S(z)−W (t(z))dt dzt

e−V (z)Dz
= e−i Im S(z) dt dzt

Dz
. (18)

The aim of this paper is to establish an HMC algorithm for the reweighted average (16) on the
worldvolume R. To demonstrate that this algorithm works correctly, we apply the algorithm to a
chiral random matrix model (the Stephanov model) [31,32], for which the complex Langevin method
is known not to work [33].

This paper is organized as follows. In Sect. 2, we review the basics of the HMC algorithm on a
general constrained space R. In Sect. 3, we deepen the argument for the case where the constrained
surface R is the worldvolume of an integration surface. We first study the geometry of the worldvol-
ume R by using the Arnowitt–Deser–Misner parametrization of the metric [34]. We then construct

8 The function t = t(z) is given by t in z = zt(x). Later we will extend the defining region from R to the
vicinity of R in order to define the gradient ∂it(z) on R (see Sect. 3.2).
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molecular dynamics on R, with a prescription to determine the weight e−W (t).After summarizing the
HMC algorithm on the worldvolume R, we give an algorithm to estimate observables. In Sect. 4, we
apply this algorithm to the Stephanov model, and show that our algorithm correctly reproduces the
exact results, solving both the sign and multimodal problems. Section 5 is devoted to the conclusion
and outlook.

2. HMC algorithm on a constrained space (review)

In this section, we briefly review the basics of the RATTLE algorithm [35,36], which is an HMC
algorithm on a constrained space such as our worldvolume R. A detailed discussion is given in
Appendix A with more geometrical terms.

2.1. Stochastic process on a constrained space

Let R be an m-dimensional manifold embedded in the flat space R
M = {z = (zI )} (I = 1, . . . , M ).

We assume that R is characterized by M − m independent constraint equations φr(z) = 0 (r =
1, . . . , M −m). When R is the worldvolume of an integration surface, we set M = 2N and m = N +1,
treating C

N as a real space R
2N .

Denoting the coordinates on R by ξ = (ξμ) (μ = 1, . . . , m), the embedding is expressed by
functions zI = zI (ξ), and the induced metric on R is given by

ds2 = (dzI (ξ))2 ≡ gμν(ξ) dξμdξν with gμν(ξ) = ∂μzI (ξ) ∂νzI (ξ), (19)

which defines the invariant volume element as

Dz ≡ √
g(ξ) dξ , (20)

where dξ = dξ1 · · · ξm.
The probability distribution p(z) on R is defined with respect to Dz, and thus is normalized as∫

R Dz p(z) = 1. The transition matrix is also defined for Dz, so that a transition from a probability
distribution p(z) to p′(z) (z ∈ R) is expressed with a transition matrix P(z′|z) as

p′(z′) =
∫

R
Dz P(z′|z) p(z) (z′ ∈ R). (21)

For the equilibrium distribution on R with respect to a potential V (z),

peq(z) ≡ e−V (z)/ZR
(

ZR =
∫

R
Dz e−V (z)

)
, (22)

the detailed balance condition is given by

P(z′|z) e−V (z) = P(z|z′) e−V (z′) (z, z′ ∈ R). (23)

Throughout this paper, we denote a function on R by f (z) and f (ξ), interchangeably, with the
understanding that z = z(ξ). The transition matrix on R is also written as P(z′|z) and P(ξ ′|ξ) for
z = z(ξ), z′ = z(ξ ′) ∈ R.

2.2. HMC on a constrained space

Denoting by π = (π I ) the conjugate momentum to z = (zI ) ∈ R, we consider the Hamiltonian
dynamics on R with the Hamiltonian

H (z,π) = 1

2
(π I )2 + V (z), (24)
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which can be expressed as a set of first-order differential equations in time s with Lagrange multipliers
λr:

∂sz = π , (25)

∂sπ = −∂V (z)− λr ∂φ
r(z), (26)

φr(z) = 0, (27)

π · ∂φr(z) = 0. (28)

Here, ∂ ≡ (∂zI ) is the gradient in R
M .

Equations (25)–(28) can be discretized such that the symplecticity and the reversibility still hold
after the discretization (below, �s is the step size) [35,36]:

π1/2 = π − �s

2
∂V (z)− λr ∂φ

r(z), (29)

z′ = z +�sπ1/2, (30)

π ′ = π − �s

2
∂V (z′)− λ′

r ∂φ
r(z′), (31)

where λr and λ′
r are determined, respectively, so that the following constraints are satisfied:9

z′ ∈ R (i.e., φr(z′) = 0), (32)

π ′ ∈ Tz′R. (33)

One can easily show that the map �s : (z,π) → (z′,π ′) actually satisfies the symplecticity and
the reversibility (with λr and λ′

r interchanged):10

• ω(z′,π ′) = ω(z,π), (34)

• (z′,π ′) = �s(z,π) ⇒ (z, −π) = �s(z
′, −π ′). (35)

The Hamiltonian is conserved to the order of �s2, i.e., H (z′,π ′)− H (z,π) = O(�s3).
The HMC algorithm on R then consists of the following three steps for a given initial configuration

z ∈ R:

Step 1. Generate a vector π̃ = (π̃ I ) ∈ TzR
M from the Gaussian distribution

1

(2π)M/2 e−π̃2/2, (36)

and project it onto TzR to obtain an initial momentum π = (π I ) ∈ TzR.
Step 2. Calculate �s(z,π) from Eqs. (29)–(33). We repeat this step n times to obtain (z′,π ′) =
n
�s(z,π).

Step 3. Update the configuration z to z′ with a probability

min
(
1, e−H (z′,π ′)+H (z,π)). (37)

9 We regard the tangent bundle TR = ⋃
z TzR (not the cotangent bundle T ∗R) as the phase space for

motions on R [35,36]. See Appendix A for details.
10 ω(z,π) ≡ dπ I ∧ dzI

∣∣
TR is the induced symplectic form for the embedding of the phase space TR into

TR
M (see Appendix A).
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The above process defines a stochastic process on R. One can show that its transition matrix P(z′|z)
satisfies the detailed balance condition (see Appendix A):

P(z′|z) e−V (z) = P(z|z′) e−V (z′). (38)

3. HMC on the worldvolume

In this section, we apply the general formalism in the previous section to the case where R is the
worldvolume of an integration surface. We first clarify the geometry of the worldvolume R and then
construct the HMC algorithm on R.

3.1. Geometry of the worldvolume R
Recall that our worldvolume R is an N + 1-dimensional submanifold embedded in C

N = R
2N . As

in the previous section, we again assume that R ⊂ R
2N is characterized by a set of independent

constraint equations: φr(z) = 0 (r = 1, . . . , N − 1). We will often write a point z = (zi) ∈ C
N

(i = 1, . . . , N ) with real coordinates as11

z = (zI ) =
(

Re zi

Im zi

)
∈ R

2N (I = 1, . . . , 2N ). (39)

Since ξ = (ξμ) ≡ (t, xa) specifies a point z(ξ) = (zI (ξ)) ≡ (zI
t (x)) in R, we can use ξ as coordinates

of R. The flow equation (6) then takes the form

∂zI

∂t
= ∂zI Re S(z), (zI )|t=0 =

(
xi

0

)
. (40)

Similarly, we write an N -dimensional complex vector v = (vi) ∈ C
N (i = 1, . . . , N ) as a real

vector12

v = (vI ) =
(

Re vi

Im vi

)
∈ R

2N (I = 1, . . . , 2N ). (41)

The vectors Eμ = (EI
μ = ∂zI/∂ξμ) form a basis of TzR (see Fig. 2), from which the induced metric

gμν on R is given by

gμν = Eμ · Eν . (42)

Since our worldvolume R = ⋃
t �t is foliated by the antiholomorphic gradient flow, its intrinsic

geometry should be best described (at least for physicists) by the Arnowitt–Deser–Misner (ADM)
parametrization [34], for which the metric is expressed in the form

ds2 = gμν(ξ) dξμdξν = α2(ξ) dt2 + γab(ξ) (dxa + βa(ξ)dt)(dxb + βb(ξ)dt). (43)

11 We use the same symbol for both complex and real coordinates to avoid a mess of many symbols. We will
clarify when one needs to specify which coordinates are implied.

12 We define the inner product of two real vectors u = (uI ), v = (vI ) ∈ R
2N by u · v ≡ uT v = uI vI . In terms

of complex vectors u = (ui), v = (vi) ∈ C
N , the inner product is expressed as Re (u†v). We do not distinguish

the upper and lower indices for I .
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Fig. 2. A basis of TzR, {Eμ} = {E0, Ea}. R is drawn one dimension less than in Fig. 1.

Fig. 3. Geometrical meaning of theADM parametrization.α dt is the geodesic distance from a point ξ = (t, xa)

on �t to the surface �t+dt . βadt shows that the time axis t is tilted with respect to the normal of �t by this
amount in the x coordinates. γab is the induced metric on �t . The geodesic distance ds between two points
ξ = (t, xa) and ξ + dξ = (t + dt, xa + dxa) is then obtained from the Pythagorean theorem as in Eq. (43).

Here, γab is the induced metric on �t (with its inverse matrix γ ab), βa is the shift vector, and α is
the lapse function:

γab ≡ Ea · Eb, (44)

βa ≡ γ ab βb ≡ γ ab E0 · Eb, (45)

α2 ≡ E0 · E0 − γ ab βaβb = E0 · (1 − γ ab EaET
b )E0. (46)

The inverse matrix of (gμν) can be easily calculated to be

(gμν) =
(

1/α2 −βb/α2

−βa/α2 βaβb/α2 + γ ab

)
. (47)

The geometrical meaning of the ADM parametrization is explained in Fig. 3.
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Since the flowed surfaces �t are determined by the flow equation, we can write down the explicit
form of the basis Eμ = (EI

μ = ∂zI/∂ξμ) of TzR as

EI
0 = ∂zI Re S(z), EI

a =
(

Re J i
a

Im J i
a

)
, (48)

where we have defined J (ξ) = J (t, x) ≡ Jt(x). Thus, the induced metric γab can be directly expressed
in terms of the Jacobian as13

γab = Re (J †J )ab = (J †J )ab. (49)

The lapse function α can be expressed as the length of the normal component of E0:

α2 = E⊥
0 · E⊥

0 = (E⊥
0 )

2. (50)

Here, the decomposition of E0 to the tangential and normal components is given by

E0 = E‖
0 + E⊥

0 , (51)

E‖
0 ≡ ��t E0, E⊥

0 ≡ (1 −��t )E0, (52)

where ��t is the projector onto Tz�t :14

��t ≡ γ abEaET
b . (53)

Note that the following relation holds:

βaEa = E‖
0. (54)

Then, by using Eqs. (47), (50), (53), and (54), we see that the projector from TzR
2N onto TzR is

given by

�R ≡ gμνEμET
ν = 1

(E⊥
0 )

2
E⊥

0 (E
⊥
0 )

T +��t . (55)

In the ADM parametrization, the volume element of R is given by (see Fig. 4)

Dz = √
g dξ = α | det J | dt dx. (56)

Since the complex measure on�t is given by dzt = det J dx, we find that the reweighting factor (18)
takes the form

A(z) = dt dzt

Dz
e−i Im S(z) = α−1(z) eiϕ(z)−i Im S(z)

(
eiϕ(z) ≡ det J

| det J |
)

. (57)

Note that the inverse lapse, α−1(z), plays the role of the radius of A(z).

13 The second equality is a direct consequence of the identity Im (J †J ) = 0, which can be proved by
a differential equation (d/dt) Im (J †J ) = 0 [as can be shown from Eq. (12)] with the initial condition
Im (J †J )|t=0 = 0.

14 In actual calculations, we do not need the explicit form of ��t in projecting vectors in TzR
2N onto TzR

(see Sect. 3.2), and thus do not have to calculate the Jacobian J . A similar statement can be applied to the
expressions below.
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Fig. 4. E⊥
0 and the volume element.

InAppendix B, in order to show the typical behaviors of various geometrical quantities near critical
points at large flow times, we give explicit expressions of these quantities for the Gaussian case with
the action

S(x) = β

2

N∑
k=1

(xk − i)2. (58)

There, we find that α−1(z) increases exponentially in flow time t as zk = zk(t, x) approaches the
Lefschetz thimble at Im zk = 1.

3.2. Molecular dynamics on the worldvolume

We first rewrite the Lagrange multiplier term λr ∂φ
r in Eq. (26) in a more convenient form. Note

that λr ∂φ
r is normal to R, and thus it satisfies

(λr ∂φ
r) · E0 = 0, (λr ∂φ

r) · Ea = 0. (59)

Since the vectors

Fa ≡
(

ImJ i
a

−Re J i
a

)
(a = 1, . . . , N ) (60)

span the normal vector space Nz�t at z ∈ �t ,15 the second equation in Eq. (59) means that λr ∂φ
r can

be written as a linear combination of Fa with new Lagrange multipliers λa ∈ R (a = 1, . . . , N ):16

N−1∑
r=1

λr ∂φ
r =

N∑
a=1

λaFa. (61)

The first equation in Eq. (59) is then treated as a constraint on λaFa:17

λaFa · E0 = 0. (62)

15 Fa form a basis of the normal space Nz�t because Ea · Fb = −Im (J †J )ab = 0 (see footnote 13). They
can be written as Fa = iEa as complex vectors.

16 We put the summation symbols here to stress the summation ranges for r and a.
17 It is possible to solve the constraint (62) as follows. We first take a subset {Fr} (r = 1, . . . , N − 1) of {Fa},

whose elements are not parallel to E0. Then, we construct a basis of NzR by F̃r ≡ Fr − (Fr · E0/(E0)
2)E0, and

replace λaFa in Eq. (62) by μrF̃r with new Lagrange multipliers (μr) ∈ R
N−1.
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From the above argument, we find that the RATTLE algorithm (29)–(33) can be written as

π1/2 = π − �s

2
∂V (z)− λaFa(z), (63)

z′ = z +�sπ1/2, (64)

π ′ = π − �s

2
∂V (z′)− λ′aFa(z

′), (65)

where λa and λ′a are determined, respectively, so that the following constraints are satisfied:

z′ ∈ R and λaFa(z) · E0(z) = 0, (66)

π ′ ∈ Tz′R and λ′aFa(z
′) · E0(z

′) = 0. (67)

The gradient of the potential, ∂V (z), now takes the form

∂V (z) = ∂Re S(z)+ W ′(t(z)) ∂t(z). (68)

In order to define the gradient ∂t(z) at z ∈ R, we regard (φr) as coordinates in the extra dimensions
and construct 2N coordinates (ξμ,φr) in the vicinity of R in R

2N . Then, one can show (seeAppendix
C) that the gradient ∂t(z) is given by

∂t(z) = 1

(E⊥
0 )

2
E⊥

0 − Er · E⊥
0

(E⊥
0 )

2
∂φr(z) (z ∈ R). (69)

Since the last term is a linear combination of the gradients ∂φr(z) and thus can be absorbed into the
Lagrange multiplier terms in Eqs. (63) and (65), we can (and will) set ∂t(z) to the form

∂t(z) = 1

(E⊥
0 )

2
E⊥

0 (z ∈ R). (70)

3.3. Solving the constraints in molecular dynamics

In this subsection, we present numerical algorithms to solve the constraints (66) and (67).

3.3.1. Solving Eq. (66)
The condition z′ ∈ R for a given z = z(ξ) ∈ R is equivalent to the existence of an N +1-dimensional
vector ε = (εμ) = (h, ua) such that z′ = z(ξ + ε) = zt+h(x + u). Thus, Eq. (66) can be solved by
finding a solution to 2N + 1 equations

f P(w) = 0 (P = 0, 1, . . . , 2N ) (71)

for 2N + 1 unknowns w = (wP) = (εμ, λa) ∈ R
2N+1 (see Fig. 5), where

f 0(w) ≡ λa Fa(ξ) · E0(ξ) = −λa Im
[
∂zi S(z(ξ)) J i

a(ξ)
]
, (72)

f I (w) ≡ zI (ξ + ε)− zI (ξ)−�zI + λaFI
a(ξ) (I = 1, . . . , 2N ) (73)

with

�z ≡ �sπ − �s2

2
∂V (z). (74)
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Fig. 5. Finding z′ = z(ξ + ε) = zt+h(x + u) on R from z = z(ξ) = zt(x) ∈ R.

Adopting Newton’s method to find a solution, we iteratively update the vector w = (wP) = (εμ, λa)

as w → w +�w, where �w is a solution of the linear equation

∂f P(w)

∂wQ �wQ = −f P(w). (75)

The matrix elements ∂f P/∂wQ are easily found to be

(∂f P(w)

∂wQ

)
=
[

0 0 Fa(ξ) · E0(ξ)

EI
0(ξ + ε) EI

a(ξ + ε) FI
a(ξ)

]

=
⎡
⎢⎣ 0 0 −Im

[
∂zi S(z(ξ)) J i

a(ξ)
]

Re
[
∂zi S(z(ξ + ε))

]
Re J i

a(ξ + ε) −Im J i
a(ξ)

−Im
[
∂zi S(z(ξ + ε))

]
Im J i

a(ξ + ε) Re J i
a(ξ)

⎤
⎥⎦ . (76)

When the DOF (= N ) is small, Eq. (75) can be solved by a direct method such as the LU
decomposition of Eq. (76), for which we integrate the second flow equation (12) to know the value
of J . When the DOF is large, the computation of J becomes expensive, and we can instead use an
iterative method such as GMRES [37] or BiCGStab [38], for which we do not need to compute the
matrix elements of J as in Ref. [19]. To see this, we first note that the right-hand side of Eq. (75) can
be written in terms of complex vectors as

f 0(w) = −Im
[
∂zi S(z(ξ)) J i

a(ξ)λ
a], (77)

f i(w) = zi(ξ + ε)− zi(ξ)−�zi + iJ i
a(ξ)λ

a. (78)

The left-hand side of Eq. (75) can also be written as

∂f 0(w)

∂wN �wN = −Im
[
∂zi S(z(ξ)) J i

a(ξ)�λ
a], (79)

∂f i(w)

∂wN �wN = [∂zi S(z(ξ + ε))]∗ + J i
a(ξ + ε)�ua + iJ i

a(ξ)�λ
a. (80)

We thus see that, in the above equations, J appears only in the form J i
a(ξ)va or J i

a(ξ + ε)va with a
real vector v = (va) ∈ R

N . The former can be evaluated from the solution to the flow equation (6)
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and the following equation [see Eq. (12)]:

v̇i
t = [Hij(zt) vj

t ]∗, vi
t=0 = vi, (81)

by setting J i
a(ξ)va = vi

t . The latter is obtained in a similar way, by replacing t → t + h and
xa → xa + ua. We thus find that both sides of Eq. (75) can be calculated without computing the
matrix elements of J .

3.3.2. Solving Eq. (67)
We first note that solving the constraint (67) is equivalent to projecting the vector

π̃ ′ ≡ π − �s

2
∂V (z′) (82)

onto Tz′R [see Eq. (55)]:

π ′ ≡ �R(z′) π̃ ′ = E⊥
0 (z

′) · π̃ ′

(E⊥
0 (z

′))2
E⊥

0 (z
′)+��t (z

′) π̃ ′. (83)

Here, the second term can be computed as a complex vector as in Ref. [14] (see also Refs. [19,21]):

��t (z
′) π̃ ′ = J (z′)Re

(
J −1(z′) π̃ ′). (84)

One can also show that the normal vector E⊥
0 (z

′) can be computed as a complex vector to be

E⊥
0 (z

′) = iJ (z′) Im
(
J −1(z′) [∂S(z′)]∗). (85)

The expressions (84) and (85) can again be evaluated either by a direct method with the computation
of J (z′), or by an iterative method without computing J (z′) as in Ref. [19]. When the iterative method
is used, the inversion J −1(z′) c is obtained for a given complex vector c = (ci) ∈ C

N by looking for
vectors a = (aa), b = (ba) ∈ R

N iteratively such that

c = J (z′) a + iJ (z′) b, (86)

where J (z′) a and J (z′) b are evaluated by integrating the flow equation (81) with the initial conditions
vt=0 = a and vt=0 = b, respectively. The multiplication J (z′) v is again calculated by integrating
Eq. (81). Therefore, the projection (83) can be performed without computing J (z′).

Note that, every time we evaluate ∂V (z) [Eq. (68)], we need ∂t(z) and thus E⊥
0 (z) [see Eq. (70)].

E⊥
0 (z) can be calculated from Eq. (85) by replacing z′ with z.

3.4. Construction of W (t)

In this subsection, we present a prescription to construct a weight function e−W (t) in Eq. (13) [or in
Eq. (17)] so that it gives an almost uniform distribution with respect to t. The key is that, for a given
weight e−W (t), the probability of finding a configuration at t is proportional to

Z(t; W ) ≡ e−W (t)
∫

RN
dx α(t, x)| det J (t, x)|e−Re S(z(t,x)). (87)

Thus, when a weight e−W (t) does not give a uniform distribution of t, the desired weight can be
obtained by (see, e.g., Ref. [39])

W (new)(t) = W (t)+ ln Z(t; W )+ const, (88)
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Fig. 6. Estimating Z(t; W ) from {h�}.

because then Z(t; W (new)) becomes constant in t:

Z(t; W (new)) = e−W (new)(t)
∫

RN
dx α(t, x) | det J (t, x)| e−Re S(z(t,x))

= const
e−W (t)

Z(t; W )
· eW (t) Z(t; W ) = const. (89)

Of course, the above procedure is possible only when we know the values of Z(t; W ) explicitly,
which is usually not the case. However, we can estimate Z(t; W ) from the histogram of flow times
{t}. To be more specific, we first divide the interval [T0, T1] into p + 1 bins, I� ≡ [�h, (� + 1)h]
(� = 0, . . . , p)with h ≡ (T1 −T0)/(p+1), and generate a certain number (≡ ntune) of configurations
by using V (z) = Re S(z) + W (t(z)) as the potential. The numbers h� of configurations inside the
bins I� give a rough estimate of the functional form of Z(t; W ) up to a normalization factor (see
Fig. 6). Then, from the histogram h� (� = 0, . . . , p), we calculate

W (new)
� = W (a�)+ ln h�, (90)

and construct a function W (new)(t) to be approximated by a polynomial satisfying W (new)(a�) =
W (new)
� with a� ≡ (�+ 1/2)h.
In general, the minimum-order polynomial that has values b� at a� = (� + 1/2)h is given by a

Lagrange interpolation of the form

L(t; {b�}) ≡
p∑
�=0

∏
m �=�(t − am)∏

m �=�(a� − am)
b� =

p∑
�=0

[∏
m<�

(t − a�)
] ��b0

�! h�
, (91)

where, for an array {v0, v1, v2, . . .}, we define �v� ≡ v�+1 − v�, so that

��v0 =
�∑

k=0

(−1)k
(
�

k

)
v�−k . (92)
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Using this polynomial, we define18

W (new)(t) ≡ L(t; {W (new)
� }). (93)

Since the estimate of Z(t; W ) from the histogram {h�} includes statistical errors, we use an iterative
algorithm to update {W�} until an almost uniform distribution is obtained:

◦ Initialize {W�} with appropriate values (e.g., W (0)
� = 0).

◦ From an array {W (k)
� }, construct an order-(p + 1) polynomial L(t; {W (k)

� }), and set W (k)(t) ≡
L(t; {W (k)

� }).
◦ Generate ntune configurations with the potential V (z) = Re S(z) + W (k)(t(z)), and record the

numbers h(k)� of configurations in the intervals I�.
◦ Update {W�} as W (k+1)

� ≡ W (k)
� + ln(h(k)� + εc). Here, εc is a cutoff to avoid the divergence

arising when h(k)� = 0.
◦ Terminate the iteration when the histogram becomes almost flat. We use the following stopping

condition:

1

p

p−1∑
l=0

[ hl+1 − hl

(hl+1 + hl)/2

]2
< δ2. (94)

In the calculation below, we set p = 7, ntune = (p + 1)× 200 = 1, 600, εc = 0.01, and δ2 = 0.2.

3.5. Summary of the HMC algorithm on the worldvolume

We summarize the HMC algorithm for a given initial configuration z ∈ R.

Step 1.Generate π̃ = (π̃ I ) from the Gaussian distribution, and project it onto TzR to obtain an initial
momentum π = (π I ): π = �R(z) π̃ .

Step 2.Calculate (z,π) → �s(z,π) with Eqs. (63)–(67). The gradient ∂V (z) takes the form (68),
where ∂t(z) is given by Eq. (70) and W (t) is determined from test runs by using the iterative
algorithm given in Sect. 3.4. The first constraint (66) is solved by finding a root of the functions
(72) and (73), and the second constraint (67) is solved by calculating Eqs. (82) and (83). We repeat
this process n times to obtain (z′,π ′) = n

�s(z,π).
Step 3.Update the configuration z to z′ with a probability

min
(
1, e−H (z′,π ′)+H (z,π)). (95)

Upon measurement, we further compute the reweighting factor A(z) [see Eq. (57)], which requires
the phase eiϕ(z) = det J (z)/| det J (z)|, which is evaluated by first solving Eq. (12) to get J (z) and then
computing its determinant. The lapse function α(z) = |E⊥

0 (z)| is already obtained in the preceding
molecular dynamics step (Step 2).

18 In the calculation below, we put two additional terms in Eq. (91) to prevent the function from changing
drastically near boundaries. The above L(t; {b�}) is then replaced by

L(t; {b�}) ≡ (const t + const)
p∏
�=0

(t − a�)+
p∑
�=0

[∏
m<�

(t − a�)
] ��b0

�! h�
.

The constants are determined by the conditions L′(T0; {W�}) = c0 and L′(T1; {W�}) = c1. We set c0 =
1.2 × min�(0,�W�/h) and c1 = 0.01 in the calculation below.
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Fig. 7. A transition passing over the boundary at T1.

In the course of molecular dynamics (Step 2), it sometimes happens that the equation (z′,π ′) =
�s(z,π) does not have a solution because z +�z passes over the boundary of R (see Fig. 7). Here,
the boundary in the t direction is given by T0, T1, while that in the x direction is given by zeros of
e−S(z). When a solution is not found near a boundary, we replace the operator�s by the momentum
reflection T :

T (z,π) ≡ (z,π ′), (96)

where for π , which is expanded with Eμ ≡ gμνEν as π = η0E0 + ηaEa, the reflected momentum
π ′ is defined by π ′ ≡ −η0E0 + ηaEa = π − 2η0E0, i.e.,

π ′ ≡ π − 2
E0 · π
E⊥

0
2 E⊥

0 . (97)

This preserves the reversibility and the phase-space volume element because the induced symplectic
form is given by ω = dημ ∧ dξμ = dη0 ∧ dξ0 + dηa ∧ dξa (see Appendix A). However, this can
change the value of the Hamiltonian. The change comes only from the difference between the norms
of momenta π and π ′, and its effect is absorbed in the probability at the Metropolis test in Step 3
above, so that the detailed balance condition (38) still holds. If the change is larger than a prescribed
value (e.g., if e−|�H | = e−|π ′2−π2|/2 < 0.8), we instead use the momentum flip � [21]:

�(z,π) ≡ (z, −π). (98)

Since the replacement of �s by T or � preserves the phase-space volume element and the
reversibility, the detailed balance condition (38) still holds.19

19 In practice, we check the reversibility at every step of molecular dynamics, (z,π) → (z′,π ′) = �s(z,π),
by monitoring that the time-reversed process (z̃, −π̃) ≡ �s(z′, −π ′) (= �s ◦� ◦�s(z,π)) correctly gives
(z, −π). In the calculation below, we require that |z̃ − z|/√N < 10−5. If this condition is not met, we replace
�s by T or � as in the case where a transition passes over a boundary.
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3.6. Estimation of observables

We first recall that the boundary flow times (T0 and T1) can be chosen arbitrarily due to Cauchy’s
theorem. In practice, T0 must be set sufficiently small in order to keep in R a region that is free from
multimodality (to be set to T0 = 0 when the multimodal problem is absent there). On the other hand,
T1 must be taken sufficiently large in order to keep a region where the sign problem is resolved, but,
at the same time, T1 should not be set too large in order to avoid introducing an unnecessarily large
computational time.

When estimating observables, we take a subinterval in [T0, T1] (to be denoted by [T̂0, T̂1]). Namely,
for a sample of configurations that are generated in the range [T0, T1] (with sample size Nconf ), we
construct a subsample {z(k)} (k = 1, . . . , N̂conf ) taking configurations from the interval [T̂0, T̂1]
(T0 ≤ T̂0 < T̂1 ≤ T1), and take a ratio of sample averages over this subsample:20

Ō(T̂0, T̂1) ≡ (1/N̂conf )
∑

k A(z(k))O(z(k))
(1/N̂conf )

∑
k A(z(k))

. (99)

T̂0 should now be set sufficiently large in order to exclude a region that is contaminated by the sign
problem. Note that T̂0 and T̂1 should be set far enough apart in order to maintain a sufficient size for
the subsample. Then, if the original range [T0, T1] is properly chosen as above, and if the system is
close enough to global equilibrium, there must be a region in two-parameter space (T̂0, T̂1) such that
the estimations Ō(T̂0, T̂1) are stable against the variation of the estimation ranges (i.e., the estimates
change only within statistical errors).

The whole process of the WV-TLTM thus proceeds as follows:

(1) Choose a sufficiently small T0 and a sufficiently large T1 to tame both sign and multimodal
problems.

(2) Construct a weight function e−W (t) such that the distribution of t becomes almost uniform (see
Sect. 3.4 for more details).

(3) Use the HMC algorithm in Sect. 3.5 to generate configurations in the range [T0, T1] from the
distribution ∝ e−V (z) with V (z) = Re S(z)+ W (t(z)).

(4) For the obtained full sample, vary the estimation range [T̂0, T̂1], looking for a stable region
(plateau) in the two-parameter space (T̂0, T̂1) that gives the same estimate Ō(T̂0, T̂1) within
statistical errors.

(5) Choose a point (T̂0, T̂1) from the plateau and take the corresponding Ō(T̂0, T̂1) as the estimate
of 〈O(x)〉. The error of estimation is read from the statistical error for the chosen subsample.

4. Application to a chiral random matrix model

In this section, to confirm that the WV-TLTM works correctly, we apply the WV-TLTM to a chiral
random matrix model, the Stephanov model [31,32]. We show that the algorithm correctly reproduces
the exact results, solving both the sign and multimodal problems.

4.1. The model

The Stephanov model is a large-N matrix model that approximates QCD at finite density. For Nf

quarks with equal mass m, the partition function is given by the following integral over n×n complex

20 N̂conf = Nconf (T̂0, T̂1) is the number of configurations in [T̂0, T̂1]. The total number of configurations
corresponds to Nconf = Nconf (T0, T1).
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matrices X = (Xij = xij + i yij):

Z
Nf
n = enμ2

∫
d2X e−S(X ,X †) ≡ enμ2

∫
d2X e−n tr X †X detNf (D + m). (100)

Here, D + m represents the Dirac operator in the chiral representation and takes the form

D + m ≡
(

m 1n i (X + C)
i (X † + C) m 1n

)
, (101)

where

i C ≡
(
(μ+ iτ) 1n/2 0

0 (μ− iτ) 1n/2

)
. (102)

The parameters μ and τ correspond to the chemical potential and the temperature, respectively
[31,32]. The number of DOF is N = 2n2, which may be compared with the DOF of the SU (Nc)

gauge field on the lattice of linear size L as N = 4(N 2
c − 1)L4.

For the case Nf = 1, the partition function at finite n can be written as an integral over a single
variable:

Z
Nf =1
n = n en(μ2−m2)

∫ ∞

0
dρ e−nρ I0(2nm

√
ρ)
[
(ρ − μ2 + τ 2)2 + (2μτ)2

]n/2, (103)

where Ik(x) (k = 0, 1, 2, . . .) are modified Bessel functions of the first kind. Then, the chiral
condensate is expressed as

〈ψ̄ψ〉 ≡ 1

2n

∂

∂m
ln Z

Nf =1
n

= −m +
∫∞

0 dρ e−nρ I1(2nm
√
ρ)

√
ρ
[
(ρ − μ2 + τ 2)2 + (2μτ)2

]n/2∫∞
0 dρ e−nρ I0(2nm

√
ρ)
[
(ρ − μ2 + τ 2)2 + (2μτ)2

]n/2 . (104)

Similarly, the number density is expressed as

〈ψ†ψ〉 ≡ 1

2n

∂

∂μ
ln Z

Nf =1
n

= μ− μ

∫∞
0 dρ e−nρ I0(2nm

√
ρ)
[
(ρ − μ2 + τ 2)2 + (2μτ)2

]n/2−1
(ρ − μ2 − τ 2)∫∞

0 dρ e−nρ I0(2nm
√
ρ)
[
(ρ − μ2 + τ 2)2 + (2μτ)2

]n/2 .

(105)

We apply the WV-TLTM to this model, by complexifying the real and imaginary parts (xij and yij)
separately, and by considering the antiholomorphic gradient flow with respect to the action given in
Eq. (100). We estimate the chiral condensate and the number density using the formulas

〈ψ̄ψ〉 = 1

2n
〈tr (D + m)−1〉, (106)

〈ψ†ψ〉 = μ+ 1

2n

〈
tr
[
(D + m)−1

(
0 1n

1n 0

)]〉
. (107)

It is convenient to introduce the matrices

A ≡ X + C, B ≡ X † + C, K ≡ (BA + m2)−1, (108)
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with which D + m and (D + m)−1 are expressed as21

D + m =
(

m 1n i A
i B m 1n

)
, (109)

(D + m)−1 =
(

m (AB + m2)−1 −i A(BA + m2)−1

−i (BA + m2)−1B m (BA + m2)−1

)

=
(

m AKA−1 −i AK
−i KB m K

)
. (110)

The flow equation is then written only with A, B, K , and the expectation values (106) and (107) are
estimated from the expressions

〈ψ̄ψ〉 = m

n
〈tr K〉, (111)

〈ψ†ψ〉 = μ− i

2n
〈tr K(A + B)〉. (112)

4.2. Setup in the simulation

We summarize the setup in the simulation. We set n = 10, m = 0.004, τ = 0, and estimate the chiral
condensate 〈ψ̄ψ〉 and the number density 〈ψ†ψ〉 as functions of μ = 0.4, . . . , 0.8.22

We set T0 = 0 while we choose T1 depending on μ as in Table 1. Other simulation parameters are
also given in Table 1.
There, Ninit is the number of initial configurations, and Nconf is the number of configurations in the
simulation range [T0, T1], while Nconf (T̂0, T̂1) is that in the estimation range [T̂0, T̂1], corresponding
to the point (T̂0, T̂1) chosen from a plateau. Note that T̂0 and T1 depend on the choice of observables.
We set the initial configuration to the final configuration in the test run determining W (t). The tuning
of W (t) turns out to take two iterations to realize the condition (94). In Fig. 8, we show the final
form of W (t) at μ = 0.575 and the resulting histogram of t.
It sometimes happens that R = ⋃

t �t is not well explored for large t because of the complicated
geometrical structure there. To facilitate transitions, at every start of the HMC algorithm we change
the step size �s and the step number n by randomly taking them from a set C = {(�c, nc} (c =
0, . . . , cmax).23 In the calculation below, we set cmax = 3 and choose C as in Table 2.

We comment that, if we use the original TLTM based on parallel tempering, we need about 70
replicas for n = 10. We list in Table 3 the numbers of replicas at μ = 0.6 for various n. Here, we
first determine the maximum flow time T so that the sign problem is well resolved there, and then
determine the number of replicas so that the acceptance rate of the swapping is in the range 0.2–0.5.

4.3. Results and analysis

Figure 9 shows the average reweighting factors from the naive reweighting method (blue) and from
the WV-TLTM (orange), the former exhibiting the existence of the sign problem around μ = 0.6.
Figure 10 gives the estimates of 〈ψ̄ψ〉 from the WV-TLTM at μ = 0.575 with various estimation

21 Note that (AB + m2)−1 = AKA−1 = B−1KB = (1/m2) (1 − AKB).
22 Since the lattice size is small, we adopt the direct method in the HMC algorithm; we compute J by

integrating the flow equation (12) and use the LU decomposition in the inversion processes. The computation
of J is not necessary if we adopt the iterative method (see Sect. 3.3).

23 This prescription is justified by noticing that this gives a Markov chain on an extended space R × C.
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Table 1. Simulation parameters.

μ 0.4 0.45 0.5 0.55 0.575 0.6

T0 0 0 0 0 0 0
T1 0.025 0.048 0.056 0.068 0.068 0.068
Ninit 80 60 50 50 50 40
Nconf 4000 4000 9000 14 000 17 000 12 000
T̂0 (〈ψ̄ψ〉) 0.01 0.027 84 0.004 48 0.0272 0.016 32 0.024 48
T̂1 (〈ψ̄ψ〉) 0.025 0.048 0.056 0.068 0.068 0.065 28
Nconf (T̂0, T̂1) (〈ψ̄ψ〉) 2250 1600 8500 9000 13 500 7400
T̂0 (〈ψ†ψ〉) 0.0105 0.021 12 0.0336 0.0272 0.029 92 0.016 32
T̂1 (〈ψ†ψ〉) 0.025 0.048 0.056 0.068 0.068 0.065 28
Nconf (T̂0, T̂1) (〈ψ†ψ〉) 2300 2400 3600 8800 10 000 8800
μ 0.625 0.65 0.7 0.75 0.8
T0 0 0 0 0 0
T1 0.068 0.064 0.06 0.052 0.04
Ninit 50 75 50 40 40
Nconf 9000 8000 4000 4000 4000
T̂0 (〈ψ̄ψ〉) 0.035 36 0.010 24 0.0204 0.009 36 0.0056
T̂1 (〈ψ̄ψ〉) 0.068 0.064 0.06 0.052 0.04
Nconf (T̂0, T̂1) (〈ψ̄ψ〉) 4800 6800 2600 3250 3400
T̂0 (〈ψ†ψ〉) 0.019 04 0.014 08 0.0048 0.004 16 0.0176
T̂1 (〈ψ†ψ〉) 0.068 0.064 0.06 0.052 0.04
Nconf (T̂0, T̂1) (〈ψ†ψ〉) 6800 6800 3750 3500 2100

Fig. 8. (Left) Final {W�} and its polynomial fit W (t). (Right) Final histogram of t. Both figures are atμ = 0.575.

Table 2. HMC parameters.

index c 0 1 2 3

�sc 0.01 0.005 0.001 0.000 25
nc 25 50 50 100

ranges [T̂0, T̂1]. We see a plateau with a value 0.043(15) close to the exact one 0.041. Figure 11
exhibits the estimated values thus obtained for the chiral condensate 〈ψ̄ψ〉 and the number density
〈ψ†ψ〉. As a comparison, we also display in the same figure the results from the naive reweighting
method and the complex Langevin method, both with a sample size of Nconf = 10 000. We see that
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Table 3. Maximum flow time T and the number of replicas at μ = 0.6.

n 4 6 8 10

T 0. 0.02 0.06 0.068
#replicas 1 4 ∼ 33 ∼ 70

Fig. 9. Average phase factors 〈A〉 = 〈e−i Im S(x)〉rewt from the naive reweighting method (blue) and the average
reweighting factors 〈A〉 = 〈A(z)〉R from the WV-TLTM (orange). The estimation range [T̂0, T̂1] in the WV-
TLTM is set to that for the chiral condensate (see Table 1).

Fig. 10. Estimates of 〈ψ̄ψ〉 at μ = 0.575 with various T̂0 and T̂1. The red filled box is the point taken from a
plateau, giving the estimate 0.043(15) (shown by the dotted line). The exact value (= 0.041) is shown by the
dashed line.

the WV-TLTM correctly reproduces exact values, while the complex Langevin method suffers from
the wrong convergence even for a parameter region free from the sign problem.

One may find it strange that correct estimates are still obtained from the WV-TLTM even for such
parameters that give small average reweighting factors 〈A(z)〉R (see Fig. 9). To understand this, let
us see Figs. 12 and 13, which show the histogram of A(z) = α−1(z) e−i Im S(z)+iϕ(z), and those of its
modulus and phase, in the estimation range [T̂0, T̂1] at μ = 0.575.
We observe that the distribution of α−1(z) has a peak around α−1(z) = 0.12. The point is that this
small value reduces not only the mean value of A, but also the statistical errors. This is in sharp
contrast to the situation in the naive reweighting (see the right panel of Fig. 12). In fact, in the latter
(the naive reweighting), the reweighting factor is actually a phase factor, and is distributed uniformly
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Fig. 11. (Left) The chiral condensate. (Right) The number density. The top panels are the results from the
reweighting method, and the bottom panels are from the WV-TLTM and the complex Langevin method.

Fig. 12. (Left) Histogram of A(z) = α−1(z) eiϕ(z)−i Im S(z) obtained from the WV-TLTM. (Right) Histogram of
the phase factor eiϕ(z)−i Im S(z) obtained from the reweighting. Both figures are at μ = 0.575.

on a unit circle, giving a vanishingly small average phase factor. The statistical errors are then of
O(1/

√
Nconf ), because the standard deviation of phase factors for uniformly distributed phases is

of O(1). One thus needs a huge sample size of eO(N ) to make the statistical errors relatively small
compared to the mean value. In the WV-TLTM, in contrast, the reweighting factor A(z) is distributed
in a 2D way (not on a circle), and the contributions of the radius α−1 enter both the mean value
and the statistical errors, and also both the numerator and the denominator. Thus, the effect of small
radius cancels out in a ratio of reweighted averages. Therefore, no additional problem is caused by

23/33

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/2/023B08/6132354 by Kyoto U

niversity user on 23 M
arch 2021



PTEP 2021, 023B08 M. Fukuma and N. Matsumoto

Fig. 13. (Top) Histograms of the modulus |A(z)| = α−1(z) and the phase arg A(z) = ϕ(z)− Im S(z) from the
WV-TLTM. (Bottom) Histogram of the phase from the reweighting method. All figures are at μ = 0.575.

the smallness of the reweighting factor, and the extent of the sign problem is still governed by the
phase factor, which is reduced by taking sufficiently large flow times.

5. Conclusion and outlook

In this paper, we have proposed an HMC algorithm on the worldvolume R of an integration surface
�t , where the flow time t changes in the course of molecular dynamics, and thus the multimodal
problem is resolved without introducing replicas. Furthermore, computation of the Jacobian is not
necessary in generating a configuration. We applied this algorithm to a chiral random matrix model
(the Stephanov model) and confirmed that it reproduces the correct results, solving both the sign and
multimodal problems simultaneously.

The validity of this algorithm should be further investigated by applying it to other systems that also
have the sign problem, including finite density QCD, strongly correlated electron systems, and real-
time quantum field theories as well as frustrated spin systems like the antiferromagnetic Heisenberg
model on the triangular lattice and the Kitaev model on the honeycomb lattice.

It is also important to keep developing the algorithm in order to perform large-scale calculations
for such systems as those listed above with lower computational cost. For example, it should be
nice to find a more efficient algorithm to tune W (t).24 At the same time, it is worth developing an
algorithm where the weight e−W (t) need not be introduced, as happens when one switches from
simulated tempering [40] to parallel tempering [25–27]. It would also be desirable to construct
an algorithm to evaluate the phase eiϕ = det J/| det J | without computing the matrix elements of J
explicitly. Furthermore, in order to make a more accurate statistical analysis, it is important to develop

24 Machine learning may be one of the possible tools.
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a systematic method to estimate numerical errors that are necessarily introduced in integrating the
antiholomorphic gradient flow and in solving Newton’s method iteratively (Step 2 in Sect. 3.5).

The modification of the flow equation (6) also deserves intensive investigation for various reasons.
To see this, note that Eq. (6) is not the only possible equation deforming the original integration
surface R

N so as to approach a union of Lefschetz thimbles. For example, it can be modified with a
positive Hermitian matrix Gij(z, z∗) to the form

dzi
t

dt
= Gij(z, z∗) [∂jS(zt)]∗, (113)

without changing the structure of the thimbles. However, this modification changes the flows of
the configurations off the thimbles, and can be designed so that the flowed configurations approach
zeros of e−S(z) only very slowly (see, e.g., Ref. [41]). We have investigated this type of modification,
proposing to take Gij of the following simple form [42]:

Gij(z, z∗) = δij

1 + (|∂S(z)|/�)α (α ≥ 2). (114)

This actually removes zeros from R for finite flow times, and is sometimes helpful in iteratively
solving the constraint (66). However, it seems that the obtained gain does not exceed the increased
complexity of the algorithm, and also that the functional form of Gij needs to be fine-tuned, depending
on the parameters of each model. This is the reason why we did not pursue this possibility in this
paper. However, it will be essentially important when one develops a Metropolis–Hastings algorithm,
described in Appendix D, because the configuration space R̃ = {ξ = (t, xa) | T0 ≤ t ≤ T1} comes
to have a simple structure if points to be mapped to zeros do not exist in the region.

Another possible application of modifying the flow equation is to provide a mechanism to solve the
so-called global sign problem (cancellation among contributions from different thimbles). In fact,
since α−1(z) increases exponentially in the vicinity of a Lefschetz thimble [see the comment below
Eq. (B.8)], a change of flows caused by the modification may significantly shift the distribution
of A(z) and distort the balanced contributions from different thimbles, which was the origin of the
global sign problem.

A study along these lines is now in progress and will be reported elsewhere.
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Appendix A. Geometry of the RATTLE algorithm

In this appendix, we clarify the geometrical aspects of the RATTLE algorithm and prove a few
statements necessary for discussions in the main text.

As in the main text, let R be an m-dimensional manifold embedded in the flat space R
M = {z =

(zI )} (I = 1, . . . , M ).25 With local coordinates ξ = (ξμ) (μ = 1, . . . , m) of R, the embedding is

25 When R is the worldvolume of an integration surface in C
N = R

2N , we set M = 2N and m = N + 1.
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expressed by functions zI = zI (ξ). The vectors

Eμ = (
EI
μ = ∂zI/∂ξμ

)
(A.1)

form a basis of the tangent space TzR at z ∈ R, and give the induced metric ds2 = gμν(ξ) dξμdξν

as

gμν = Eμ · Eν . (A.2)

Furthermore, denoting the inverse of (gμν) by (gμν), and defining another basis of TzR by26

Eμ ≡ gμνEμ, (A.3)

we also introduce local coordinates η = (ημ) on TzR as coefficients in an expansion with respect to
Eμ.27 Namely, for π ∈ TzR, its coordinates η = (ημ) are defined through the relation

π = ημ Eμ, (A.4)

whose explicit forms are given by

ημ = Eμ · π . (A.5)

The line element on TzR then takes the form

(dπ I )2
∣∣
TzR = gμν(ξ) dημ dην , (A.6)

and thus the volume elements of TR are given by

dVTR = Dz Dπ = Dξ Dη (A.7)

with

Dz ≡ Dξ ≡ √
g dξ , Dπ ≡ Dη ≡ dη/

√
g. (A.8)

We think of the tangent bundle TR
M = {(zI ,π I )} (not the cotangent bundle) as the phase space

of motions in R
M with a symplectic form � ≡ dπ I ∧ dzI . The sub-bundle TR = {(zI ,π I ) | z ∈

R, π ∈ TzR} is then regarded as the phase space of constrained motions on R. Its symplectic form
is given by28

ω ≡ �|TR = dημ ∧ dξμ, (A.9)

which defines the Poisson bracket as {ξμ, ην} = δ
μ
ν , {ξμ, ξν} = {ημ, ην} = 0. The volume element

(A.7) agrees with the phase-space volume element associated with ω:

dVTR = ωm

m! , (A.10)

26 Note that Eμ · Eν = gμν .
27 As in the main text, we denote a function on R by f (z) and f (ξ), interchangeably, with the understanding

that z = z(ξ). The transition matrix is also written as P(z′|z) and P(ξ ′|ξ) for z = z(ξ), z′ = z(ξ ′) ∈ R.
Similarly, a function on TR is written as f (z,π) and f (ξ , η), interchangeably.

28 This can be proved as follows: ω = dπ I ∧ dzI |TR = [
dπ I |TzR

] ∧ dzI (ξ) = [
dπ I |TzR

] ∧ EI
μ(ξ) dξμ =

d
[
π I |TzR EI

μ(ξ)
]∧ dξμ = dημ ∧ dξμ, where we have used d

[
EI
μ(ξ)

]∧ dξμ = (
∂2zI/∂ξν∂ξμ

)
dξ ν ∧ dξμ = 0.
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because ωm/m! = dξ dη = (
√

g dξ) (dη/
√

g) = Dξ Dη.
We now consider molecular dynamics on TR with a Hamiltonian

H (ξ , η) = 1

2
(π I )2 + V (z)

∣∣∣
TR

= 1

2
gμν(ξ) ημην + V (z(ξ)), (A.11)

with which the time evolution of (ξ , η) is given by

∂sξ
μ = {ξμ, H } = ∂ημH (ξ , η), ∂sημ = {ημ, H } = ∂ξμH (ξ , η). (A.12)

It is easy to see that this evolution preserves the Hamiltonian H , the symplectic form ω, and thus
also the phase-space volume element dVTR:

∂sH = 0, ∂sω = 0, ∂s(dVTR) = 0. (A.13)

We write the motion from (ξ , η) to (ξ ′, η′) with time interval s as a map s:

(ξ , η) → (ξ ′, η′) = s(ξ , η) ≡ (ξs(ξ , η), ηs(ξ , η)). (A.14)

Since the Hamiltonian satisfies the relation H (ξ , −η) = H (ξ , η), the maps preserves the reversibil-
ity. Namely, if (ξ ′, η′) = s(ξ , η) is a motion, we have (ξ , −η) = s(ξ

′, −η′). Furthermore, due to
the volume preservation, the kernel

s(ξ
′, η′|ξ , η) ≡ δ

(
ξ ′ − ξs(ξ , η)

)
δ
(
η′ − ηs(ξ , η)

)
(A.15)

satisfies the relation

s(ξ
′, η′|ξ , η) = s(ξ , −η|ξ ′, −η′). (A.16)

For stochastic processes on R, we define the probability density p(z(ξ)) = p(ξ) on R with respect
to the volume element Dz = Dξ = √

g dξ , which is thus normalized as∫
R

Dξ p(ξ) = 1. (A.17)

One can then easily show that the transition matrix

Ps(ξ
′|ξ) ≡

∫
Tz′R

Dη′
∫

TzR
Dηs(ξ

′, η′|ξ , η)
1

(2π)m/2
e−gμν(ξ) ημην/2 (A.18)

satisfies the detailed balance condition29

Ps(ξ
′|ξ) e−V (z(ξ)) = Ps(ξ |ξ ′) e−V (z(ξ ′)) (A.19)

and the normalization condition ∫
R

Dξ ′ Ps(ξ
′|ξ) = 1. (A.20)

The Gaussian distribution e−gμν(ξ) ημην/2/(2π)m/2 in Eq. (A.18) can be obtained by first generating
π̃ = (π̃ I ) ∈ TzR

M from the Gaussian distribution e−π̃2/2/(2π)M/2 and then projecting it onto TzR.
In fact, for the orthogonal decomposition π̃ = π + π⊥, π̃2 is written as π̃2 = π2 + π2⊥, and the

29 This will be proved for a more complicated case in Eq. (A.39).
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integration measure of TzR
M is factorized as dM π̃ ≡ dπ̃1 · · · dπ̃M = Dπ Dπ⊥. By integrating out

only the normal component, the distribution of π ∈ TzR is left in the desired form:∫
NzR

dM π̃
1

(2π)M/2 e−π̃2/2 = Dπ
∫

NzR
Dπ⊥

1

(2π)M/2 e−(π2+π2⊥)/2 = 1

(2π)m/2
e−π2/2 Dπ .

(A.21)

Note that the projector �R from π̃ ∈ TzR
M to π = �R π̃ ∈ TzR is given by

�R = Eμ(E
μ)T = gμνEμET

ν . (A.22)

We now assume that R is characterized by M − m independent constraint equations, φr(z) = 0
(r = 1, . . . , M − m). Then, Hamilton’s equations (A.12) can be expressed as constrained motions in
R

M by using Lagrange multipliers λr:

∂sz = π , (A.23)

∂sπ = −∂V (z)− λr ∂φ
r(z), (A.24)

φr(z) = 0, (A.25)

π · ∂φr(z) = 0. (A.26)

Here, ∂ ≡ (∂zI ) is the gradient in R
M .

The RATTLE algorithm [35,36] is an algorithm that discretizes Eqs. (A.23)–(A.26) preserving the
symplecticity and the reversibility (below �s is the step size):

π1/2 = π − �s

2
∂V (z)− λr ∂φ

r(z), (A.27)

z′ = z +�sπ1/2, (A.28)

π ′ = π − �s

2
∂V (z′)− λ′

r ∂φ
r(z′). (A.29)

Here, λr and λ′
r are determined, respectively, so that the following constraints are satisfied:

z′ ∈ R (i.e., φr(z′) = 0), (A.30)

π ′ ∈ Tz′R. (A.31)

One can easily show that the map �s : (z,π) → (z′,π ′) actually satisfies the symplecticity and
the reversibility (with λr and λ′

r interchanged):

• ω(z′,π ′) = ω(z,π), (A.32)

• (z′,π ′) = �s(z,π) ⇒ (z, −π) = �s(z
′, −π ′), (A.33)

which means that

�s(z
′,π ′|z,π) = �s(z, −π |z′, −π ′). (A.34)

The Hamiltonian is conserved to the order of �s2, i.e., H (z′,π ′)− H (z,π) = O(�s3).
The HMC algorithm then consists of the following three steps for a given initial configuration

z ∈ R:

28/33

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/2/023B08/6132354 by Kyoto U

niversity user on 23 M
arch 2021



PTEP 2021, 023B08 M. Fukuma and N. Matsumoto

Step 1.Generate a vector π̃ = (π̃ I ) ∈ TzR
M from the Gaussian distribution

1

(2π)M/2 e−π̃2/2 (A.35)

and project it onto TzR to obtain an initial momentum π = (π I ) ∈ TzR.
Step 2.Calculate�s(z,π) from Eqs. (A.27)–(A.31). We repeat this step n times to obtain (z′,π ′) =
n
�s(z,π)

Step 3.Update the configuration z to z′ with a probability

min
(
1, e−H (z′,π ′)+H (z,π)). (A.36)

The above process defines a stochastic process on R with the following transition matrix for z′ �= z:

P(z′|z) ≡
∫

Tz′R
Dπ ′

∫
TzR

Dπ min
(
1, e−H (z′,π ′)+H (z,π))n

�s(z
′,π ′|z,π)

e−π2/2

(2π)m/2
. (A.37)

The diagonal (z′ = z) components are determined from the probability conservation. P(z′|z) can be
shown to satisfy the detailed balance condition

P(z′|z) e−V (z) = P(z|z′) e−V (z′) (z, z′ ∈ R) (A.38)

as follows:

P(z′|z) e−V (z) =
∫

Tz′R
Dπ ′

∫
TzR

Dπ min
(
1, e−H (z′,π ′)+H (z,π))n

�s(z
′,π ′|z,π)

e−H (z,π)

(2π)m/2

= 1

(2π)m/2

∫
Tz′R

Dπ ′
∫

TzR
Dπ min

(
e−H (z,π), e−H (z′,π ′))n

�s(z, −π |z′, −π ′)

= P(z|z′) e−V (z′), (A.39)

where we have used Eq. (A.34) n times to get the second line, and have made the change of integration
variables, π → −π and π ′ → −π ′, with the relation H (z, −π) = H (z,π) to obtain the third line.

Appendix B. Analytical expressions for the Gaussian case

We present analytical expressions for some geometrical quantities defined in Sect. 3.1 for the action

S(x) = β

2

N∑
k=1

(xk − i)2. (B.1)

This has a single critical point at zσ = (zk
σ = i), and the corresponding Lefschetz thimble is given

by Jσ = {z = (zk) ∈ C
k | Im zk = 1 (∀k)}. Complex vectors will be used throughout this appendix.

The solution of the antiholomorphic flow equation (6) takes the form

zk(t, x) = xkeβt + i(1 − e−βt). (B.2)

The Jacobian J (t, x) is thus given by

J k
a(t, x) = ∂zk(t, x)

∂xa = eβt δk
a . (B.3)
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The tangent vectors E0 and Ea are

Ek
0 = β (zk − i)∗ = β (xkeβt + ie−βt), Ek

a = eβt δk
a . (B.4)

Using Eq. (85), we have

(E⊥
0 )

k = −iβ (Im zk − 1) = iβ e−βt . (B.5)

The components of gμν are then given in the ADM parametrization (43) by

γab = (J †J )ab = e2βt δab, (B.6)

βa = γ ab Re (E†
0Eb) = β xa, (B.7)

α = |E⊥
0 | = β

√
N e−βt . (B.8)

We see that the inverse lapse is given by α−1 = eβt/(β
√

N ) and increases exponentially in flow time
t as z(t, x) approaches the Lefschetz thimble.

The ideal weight function e−W (t) giving a uniform distribution of t is given by [see Eq. (87)]

e+W (t) =
∫

RN
dx α(t, x) | det J (t, x)| e−Re S(z(t,x)) = β

√
N
(2π

β

)N/2
e−βt+(βN/2)e−2βt

, (B.9)

and thus we have

W (t) = −βt + βN

2
e−2βt . (B.10)

We have ignored t-independent constants. We see that the weight factor also increases exponentially,
e−W (t) � eβt , at large flow times.

Appendix C. Proof of Eq. (69)

In this appendix, we prove the equality (69). First, we construct 2N coordinates (ζA) ≡ (ξμ,φr) in
the vicinity of R in R

2N , by regarding (φr) as coordinates in the extra dimensions, and introduce at
each point z ∈ R a basis {EA} of the tangent space TzR

2N as

EA = (
EI

A ≡ ∂zI/∂ζA). (C.1)

We further introduce the dual basis {ÊA} to {EA} by

ÊA = (
ÊA I ≡ ∂ζA/∂zI ), (C.2)

which satisfies

ÊA · EB = δA
B . (C.3)

Note that Ê0 and Êr equal the gradients ∂t(z) and ∂φr(z), respectively. Then, since the vectors E⊥
0 ,

Êa, and Êr also form a basis of TzR
2N , Ê0 can be expanded in the form

Ê0 = c⊥E⊥
0 + caÊa + crÊr . (C.4)

The coefficients can be calculated by using the relations (C.3) and E0 · E⊥
0 = (E⊥

0 )
2 to be

c⊥ = 1

(E⊥
0 )

2
, ca = 0, cr = −(Er · E⊥

0 )× c⊥ = −Er · E⊥
0

(E⊥
0 )

2
, (C.5)
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and thus we find that Ê0 = ∂t(z) takes the form

∂t(z) = 1

(E⊥
0 )

2
E⊥

0 − Er · E⊥
0

(E⊥
0 )

2
∂φr(z). (C.6)

Appendix D. Another version of WV-TLTM with a Metropolis–Hastings algorithm

In this appendix, we give another version of WV-TLTM that also does not require the computation
of the Jacobian in generating a configuration. This is a Metropolis–Hastings algorithm on a subspace
in the parameter space (not in the target space), R̃ ≡ {ξ = (t, xa) | T0 ≤ t ≤ T1}.

We first rewrite Eq. (13) to the form

〈O(x)〉 =
∫

dξ det J (ξ) e−S(z(ξ))−W (t)O(z(ξ))∫
dξ det J (ξ) e−S(z(ξ))−W (t)

, (D.1)

where dξ ≡ dt dx ≡ dt dx1 · · · dxN . Then, by introducing a new positive weight and a new
reweighting factor as

e−Ṽ (ξ) ≡ e−Re S(z(ξ))−W (t), (D.2)

Ã(ξ) ≡ det J (ξ) e−i Im S(z(ξ)), (D.3)

we can rewrite Eq. (D.1) as a ratio of new reweighted averages,

〈O(x)〉 = 〈Ã(ξ)O(z(ξ))〉R̃
〈Ã(ξ)〉R̃

, (D.4)

where

〈f (z)〉R̃ ≡
∫
R̃ dξ e−Ṽ (ξ) f (ξ)∫

R̃ dξ e−Ṽ (ξ)
. (D.5)

The weight e−W (t) is determined so that the function

Z̃(t; W ) ≡ e−W (t)
∫

RN
dx e−Re S(z(t,x)) (D.6)

is almost independent of t, as in Sect. 3.4.
The distribution e−Ṽ (ξ)/ZR̃ (ZR̃ = ∫

R̃ dξ e−Ṽ (ξ)) can be obtained from a Markov chain without
evaluating J explicitly, if one uses the Metropolis–Hastings algorithm to update a configuration.30

Namely, from a configuration ξ we first propose a new configuration ξ ′ with a probability

Prop(ξ ′|ξ) ≡ 1√
2πσ 2

t

e−(t′−t)2/2σ 2
t

1

(2πσ 2
x )

N/2 e−(x′−x)2/2σ 2
x , (D.7)

where we have treated t and x anisotropically. We then accept ξ ′ with a probability

min
(

1,
Prop(ξ |ξ ′) e−Ṽ (ξ ′)

Prop(ξ ′|ξ) e−Ṽ (ξ)

)
. (D.8)

30 One can also use the HMC algorithm in principle, but this requires the computation of the Jacobian J =
(J i

a(ξ)) because Hamilton’s equation in molecular dynamics involves the gradient ∂xaS(z(ξ)) = ∂zi S(z) J i
a(ξ).
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This algorithm gives a stochastic process with the transition matrix31

P̃(ξ ′|ξ) ≡ min
(

1,
Prop(ξ |ξ ′) e−Ṽ (ξ ′)

Prop(ξ ′|ξ) e−Ṽ (ξ)

)
Prop(ξ ′|ξ) (ξ ′ �= ξ), (D.9)

and one can easily show that this satisfies the detailed balance condition:

P̃(ξ ′|ξ) e−Ṽ (ξ) = P̃(ξ |ξ ′) e−Ṽ (ξ ′). (D.10)

In a generic case, Re S(z(t, x)) changes rapidly at large flow times t, and thus we should better
change the proposal depending on ξ = (t, xa). One way is to change (σ 2

t , σ 2
x ) by randomly taking

them from a set C̃ = {(σ 2
t,c, σ 2

x,c)} (c = 1, . . . , cmax) as in Sect. 4.2. Another way is to use an
asymmetric proposal Prop(ξ ′|ξ) by making σ 2

t and σ 2
x t-dependent functions:

Prop(ξ ′|ξ) = 1√
2πσ 2

t (t)
e−(t′−t)2/2σ 2

t (t)
1

(2πσ 2
x (t))N/2

e−(x′−x)2/2σ 2
x (t). (D.11)

In the latter case, the functional forms of σ 2
t (t) and σ 2

x (t) are fixed manually or adaptively from test
runs.

After a sample is obtained for the region [T0, T1], we consider subsamples for various estimation
ranges [T̂0, T̂1], and estimate an observable by looking at a plateau in the 2D parameter space
{(T̂0, T̂1)}, as in Sect. 3.6.
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