〈経済学研究科優秀修士論文賞受賞論文〉

マルコフ転換モデルによる仮想通貨市場の分析

井澤公彦*

I 序論

1 はじめに

1.1 この研究の意義

現在日本では貨幣決済から、キャッシュレス決済に移行するべきであるという風潮が高まってい る。永井[2018]では日本の決済手段の現状について、「2015年現在、世界各国のキャッシュレス 決済比率の比較を行うと、キャッシュレス化が進んでいる国は40%~60%台であるのに対し、日 本は約20%にとどまっている」と述べており、現金決済比率の高さについて問題提起している。 電子決済、クレジットカード、デビットカードなどがキャッシュレス決済の手段としてあげられる が、貨幣決済にとって代わるもう一つの候補になりうるのがビットコインを筆頭とする仮想通貨で ある。ビットコインは、Nakamoto [2008] によって提案されたモデルをもとに 2009 年から運営 が始まり、CoinMarketCap [2019]のデータによるとその時価総額は2015年1月1日には42億 9753万5768 円しかなかったものが2017年12月17日には最大で35兆5743億9755万1220円ま で高騰し、4年で約8000倍に価値が膨らんだ。その後ビットコインの価格は下落したものの2019 年11月では時価総額は15兆円ほどで推移しており依然存在感を見せている。

一方で仮想通貨には様々なリスクが存在する。

まず,仮想通貨は政府が関与しない通貨であることから,安全性が取引所に依存してしまうという問題がある。例えば2018年にコインチェックが保有する仮想通貨のNEMがほぼ100%流出するという事件が起こり,仮想通貨の価値の信頼性や安全性が失われたことから通貨価格が大幅に下落した。また,2014年には顧客が保有する75万ビットコインと自社保有の10万ビットコインがシステムバグを悪用した不正アクセスにより盗まれ消失したことからビットコイン取引所を運営していたMTGOXが破綻した。

他にも,詳細は2.2や2.3で説明するが,ビットコインを含む仮想通貨はボラティリティが従来 の貨幣と比べて高く,価値の貯蔵に適さないことや,ビットコインネットワークがビットコインの 需要に耐えられず決済手数料が高騰してしまい決済機能としてのメリットが失われてしまうなどの 問題点がある。

このように仮想通貨に対しては、ビットコインを中心に新たな決済手段として期待されている。 しかし一方で、ビットコインのリスクの多さから、現金決済にとって代わるには至ってはいないの が現状である。 本研究では、仮想通貨の貨幣機能としての問題点とその影響を分析するために、仮想通貨の時系 列データを基にした定量分析を行う。仮想通貨の定量分析の意義は、価格変動の因果関係や構造を 分析することによって、仮想通貨の特徴を明らかにできることである。本研究では特に取引コスト に注目することで、ビットコインの貨幣機能の現状とその影響を明らかにすることを目指す。この ため、仮想通貨が決済手段としての現状を論じる上で本研究は有意義なものである。

1.2 本研究の目的と研究方法

本研究の目的は、仮想通貨の貨幣機能の問題点が価格にどのような影響を及ぼしているかについ て定量的に分析することである。本研究では、特に、ビットコインの決済機能の問題点を分析し、 それがどのように価格に影響を及ぼすかを検証する。具体的には、トランザクション手数料やメモ リープールの変動率と、ビットコインの価格変動率がどのような関係にあるかを分析する。なお、 本研究では二段階の検証を行う。最初に、線形回帰分析を行い、データ間の関係を調査する。次 に、トランザクション手数料、メモリープールを情報変数としてマルコフ転換モデルを活用した データ分析を行う。マルコフ転換モデルを使うメリットについて、沖本 [2010] (p181) では、 「経済・ファイナンスのデータは景気や投資家の心理など、観測できない変数に影響を受けるもの が多く、MS モデルは観測できない変数の状態によって特性が異なるデータを分析するのに便利で ある」と述べている。

本研究においては Dievold, Lee and Weinbach [1994] にて発案されたモデルを使用する。この 論文によると、従来のマルコフ転換モデルは周期的なレジームを感知するのに効果的である一方 で、推移確率が一定になるという制約がある。これはつまり、一つのレジームからもう一つのレ ジームに転換するときの確率をその状況下の経済ファンダメンタルズに依存させたモデルを作るこ とができないということである。一方、このモデルでは推移確率に情報変数を入れることによって 経済ファンダメンタルズに依存させることができる。本研究では、仮想通貨の情報が、ビットコイ ンにどのような影響を与えたかを分析する際には、ビットコインのアメリカドルに対する価格変動 率の平均と分散をモデルのパラメーターとする。そしてトランザクション手数料、メモリープール の外部情報がレジームの転換にそれぞれどのような影響を及ぼすか、もしくはその情報がどのよう にビットコイン価格の平均と分散を二つのレジームに分離するかを観測する。本研究においては ビットコイン価格については CoinMarketCap [2019] のビットコインのアメリカドルに対する価 格の日時データを用いる。また、トランザクション手数料、メモリープールのデータは Blockchain [2019]¹⁾のデータを参照する。これ以降登場する図形やグラフは Matlab2018a のソフトを活 用したものである。今回のマルコフ転換モデルを活用する際には、データの対数差分系列を利用 し、情報となるデータについても対数差分系列を用いる。今回使用する、ビットコインの時系列 データと対数差分データは以下の図のようになる。なお期間は 2017 年 10 月 16 日から 2019 年 10 月15日までの2年間である。

メモリープールのデータについて2点ほどデータの変更を行った。1点目としてはメモリープールのデータは 約21時間ごとのデータであり、1日に2つデータがある日はその平均をその日の値にした。2点目として2019 年1月31日にメモリープールが0というデータがあったが異常値なのが明らかであったため1月30日と2月1日のデータの平均を使った。

図1 ビットコインの価格の時系列データ

図2 ビットコインの価格変動率の時系列データ

2 ビットコインの意義と問題点

2.1 ビットコインの意義

現状の決済システムについて Nakamoto [2008] では以下の問題点を挙げている。それは、現状 のインターネット上の取引システムは第三者の信用に依存しているということである。第三者が仲 介することの問題点は取引の仲介手数料が高くつくことである。例えばクレジットカード取引や銀 行振り込みに多額の手数料が必要である。一方で、Nakamoto [2008] では第三者の信用が必要な 理由として二重支払い問題²⁾をあげている。つまり、手数料を安く抑えるためには、第三者の仲介 なしにこの問題を解決することができる決済システムが必要であり、それが可能であれば仲介手数 料による取引の機会損失を防ぐことができるということである。この論文ではビットコインのシス テムである "peer-to-peer distributed timestamp"を使うことで、第三者の信用に頼ることなく、 二重支払い問題を解決した。

2.2 ビットコインのボラティリティ

次にビットコインの問題点について述べる。

1.1でも述べたように、ビットコインには以下の3つの問題点がある。

2) 一度支払われたはずのお金が再び使用されうるという問題

ビットコインのボラティリティが高い。

②取引所の信頼性が低い。

③ビットコインが普及すると取引コストが上昇する。

この節ではこれらの問題点のうち①について解説する

経済学には一般的に貨幣には3つの機能があると定められている。

堀,二神[2017]によると,貨幣には,価値の基準,交換手段,価値の貯蔵手段,の三つの機能 がある。このうち価値の基準や価値の貯蔵手段としての役割を果たすには貨幣としての価値の安定 性が必要不可欠である。そのためビットコインを貨幣として評価するためには,ビットコインの価 値の安定性について検証することが必要である。

ここでは、ビットコインが従来の貨幣と比べどれくらいボラティリティが高いのかを検証する。 具体的には日本円とビットコインの貨幣としての価値の安定性を比較する。検証方法としては米ド ルとの交換レートの変遷の対数差分系列の比較を行う。具体的には、ビットコインの対数差分系列 と日本円の対数差分系列を比較した。日本円のデータは、DataStream を用いた。この比較を行っ た結果、図3のような結果を得ることができた。

図3より,ビットコインは日本円と比べて,貨幣価値の変化が明らかに大きく,価値基準や価値 の貯蔵手段としての適性が低いことが分かる。

2.3 ビットコインの取引コストの高騰

次にビットコインの普及が取引コストの上昇を引き起こす問題について説明する。ビットコイン が貨幣の三技能の一つである交換手段としての役割を果たすためには,取引コストが低いことが重 要である。しかし,ビットコインの取引コストはビットコインの普及とともに上昇した。その原因 について,トランザクション手数料の決定方法,ビットコインの普及とトランザクション手数料の 関係,メモリープールについての説明という三つの視点で解説する。なおトランザクションの仕組 みについては字数の都合上割愛する。

まず,ビットコインのトランザクション手数料の決定方法について解説する。ビットコインのト ランザクション手数料はトランザクションの構造のデータの大きさによって決定する。つまり,ト ランザクション手数料はデータの大きさ×1バイト当たりのトランザクション手数料によって決定 される。ここからは,1バイト当たりのトランザクション手数料がどのように決定するかについて 説明する。

ビットコインの1バイト当たりのトランザクション手数料は2つのステップを経て決定する。ま ず,需要者側が1バイトあたりのトランザクション手数料を自由に決定する。次に、マイナーが送 金側のトランザクション手数料を見て自分が引き受けたいトランザクションを見つけマイニングに 参加する。つまり送金者側は早く決済を承認してほしい場合、トランザクション手数料を引き上 げ、マイニングを行うインセンティブを引き上げ、送金時間が長くてもトランザクション手数料を 抑えたい場合は、マイニングを行うインセンティブが低くてもいいので、トランザクション手数料 を低めに設定する。

次にビットコインの普及がなぜトランザクション手数料の上昇を促したかについて説明する。 ビットコインのトランザクションに使えるメモリは1回のブロックにつき1MBという制約があ る。これはビットコインのスケーラビリティ問題と呼ばれ,Atomic Wallet [2019] によると, ビットコインのトランザクションに使えるメモリが少ないため,取引量や送金需要が高くなると, 供給側が1MBの制限により供給が追い付かず,ビットコインのトランザクション手数料が高騰す るという問題が発生する。この問題に対する対策として,Segwitというトランザクションの容量 を節約して使う方法や,Bitcoin Cash³⁾という他の仮想通貨とハードフォークすることなどが行わ れた。しかし,これらの対策ではビットコインの需要の増加を吸収できず,図5のように,ビット コインの知名度が向上し,ビットコインの価格が高騰した2017年末から,2018年初頭にかけて, トランザクション手数料は爆発的に増加した。

最後にビットコインの取引コストを論じる上で重要な位置を占めるメモリープールについて解説 する。Antonopoulos [2015] 今井, 鳩貝訳 [2016] (p166) によると, メモリープール⁴⁾は, 「未 検証のトランザクションの一時的なリスト」としている。そして, メモリープールにあるトランザ クションはマイニングが行われブロックに収められるまでこのプールに待機することになるとされ ている。つまり, トランザクション手数料を低く設定したときには長くこのメモリープールにいる 可能性が高くなることになる。

このメモリープールについても図4のように 2017 年末から 2018 年初頭の価格高騰の時にメモ

³⁾ Bitcoincash は 2017 年にビットコインから分離(ハードフォーク)したもの。

⁴⁾ Antonopoulos [2015] 今井, 鳩貝訳 [2016] ではトランザクションプールという表記がされている。

リープールの値が増加し、ビットコインの普及が多くのトランザクションの承認を滞らせたことが 分かる。

図4 メモリープールの量に関する時系列データ(2017/10/16~2019/10/15)

以上のことからビットコインの普及が取引コストの上昇を引き起こすことが分かる。本論では, 取引コストの変化がビットコインの価格にどのような影響をもたらすかを分析する。

3 ビットコインの価格モデルに関する先行研究

仮想通貨は2節でも述べたように、為替と比較して非常にボラティリティの高い。それゆえに、 仮想通貨の時系列分析に関する先行研究は非常に多く存在し、仮想通貨の価格モデルは日々研究さ れている。この節では、仮想通貨の価格モデルについて、いくつかのパターンに分けて先行研究を 紹介する。

3.1 ビットコインの認知度やインターネット上での評価を考慮した研究

ビットコインの価格モデル,もしくは価格の予想を行うときに、多くの研究が,SNSの評価や インターネット上の情報を活用している。例えば Matta, Lushesu, and Marchesi [2015] は "Senti Strength tool" という感情分析方法や、オプションマイニングの方法を用いて、2015 年 1 月から 3 月の肯定的、中立的、否定的の三つに分類したツイッターの投稿と Google の検索トレンドの四 つの情報と、ビットコイン価格の相互相関を調査した。その結果ビットコインに対して肯定的なツ イートとビットコインの価格には、3 日のラグを経て-0.35 の負の相関関係を持つこと、Google の 検索トレンドとビットコインの価格には 0.64 の強い相関関係があることを示した。また、Li, and Wang [2016] は、ビットコインの価格についてマイニングの難しさや経済状況のほかに Google での検索数、ツイート数も活用した ADLM(Autoregressive Distributed Lag Model)で分析を 行った。その結果、Google での検索数に関しては 3 日のラグがあるとき正の強い影響が観測され、 Twitter の検索に関しては 5 日のラグがあるとき強い負の影響があることが観測された。一方で、 ツイッターやグーグルの検索数などの仮想通貨に対する反応全体を対象にするのでなく、より仮想 通貨について専門的なコミュニティーについて分析したものもある。Kim et al [2016] では、イン ターネット上の暗号通貨のコミュニティー⁵⁾の情報を「クローリング⁶⁾」という手法で収集し、コ ミュニティー内でのコメントやそれに対する返信の反応と、ビットコイン、イーサリアム、リップ

⁵⁾ https://bitcointalk.org/のサイト内のコミュニティー

ルの価格の影響を、グレンジャー因果性⁷⁾を用いて分析した。その結果、ビットコインの価格については6日のラグがあるときコミュニティーで得られる情報を使うと価格予想において79%の精度で的中したほか、トランザクションの量においては3日のラグがあるとき77%の精度で的中した。また、イーサリアム及びリップルの価格においても6日、もしくは7日のラグがあるとき最も 精度の高い価格予想をすることができたとしている。

3.2 従来の MS モデルを用いた研究

ビットコインの価格に対して MS モデルを用いて行った研究もある。Chappell [2018] ではビッ トコインの価格を2つから7つまでのレジームに分けてマルコフ転換モデルの推定を行い,ベイジ アン (BIC), Hannan-Quinn (HQ),赤池情報基準 (AIC)の三つの方法を用いて評価した。AIC の評価では5つのレジーム,-HQC の結果では4つのレジームの時,BIC のときは三つのレジーム のモデルがそれぞれ適切であると評価した。また,分散の面を考慮すると,5つのレジームの時が 1 番有効なモデルであることを示した。Ardia,Bluteau, and Rüede [2019] ではビットコインのボ ラティリティの高さに注目し仮想通貨の価格を,MSGARCH モデルを用いて分析し,それを VaR (Value at Risk)の手法を用いて評価を行った。

3.3 トランザクション手数料、メモリープールに関する研究

メモリープールもしくはトランザクション手数料に関する研究は 2016 年までは少なく,たとえ 存在していたとしても機械学習の教師データの一つとしての扱いがほとんどである。例えば Sin, and Wang [2017] では, memory pool などを含んだデータを利用しニューラルネットワークモデ ルを構築することにより 53%ベンチマークより上回るトレード戦略を作り上げた。

3.4 先行研究から見える課題

ビットコインに関する先行研究の一部を取り上げたが,ビットコインの価格モデルに関する論文 は非常に多い。しかし,ビットコインに対して時系列分析を行うもののほとんどは如何にベンチ マークに対して勝つかもしくは,知名度や経済状況がどのような効果を及ぼすかを分析することに とどまっており,ビットコインの決済システムの問題点に関係する定量分析を行っている論文はほ とんどない。この点において,ビットコインの決済機能としての現状とビットコインの価格の関係 を分析する行為は新規性がある。

4 本研究の流れ

本研究の目的は、ビットコインの取引コストの変化がビットコインの価格にどのような影響を与 えるかを解き明かすことにある。本論では最初に情報変数に使用するトランザクション手数料とメ

⁶⁾ クローリングとは、ロボット型検索エンジンにおいて、プログラムがインターネット上のリンクを辿って Webサイトを巡回し、Webページ上の情報を複製・保存することである。(IT用語辞典より引用)

⁷⁾ 現在と過去の x の値だけに基づいた将来の x の予測と,現在と過去の x と y の値に基づいた将来の x の予測 を比較して後者の MSE のほうが小さくなる場合, yt から xt へのグレンジャー因果性(Granger causality) が存 在するといわれる。沖本 [2010]

モリープールのデータについて解説を行う。次に線形回帰分析を行い価格と情報変数の関係につい て説明する。その後マルコフ転換モデルを活用し,線形回帰分析では不十分であった情報変数と価 格変動の関係性についてさらに詳しく分析を行う。最後に本研究の成果と課題をまとめる。

Ⅱ 本論

1 データの説明

1.1 トランザクション手数料

トランザクションコストの値を直接計算することは、トランザクションにかかるデータの量を計 算することがビットコインの構造上不可能であることから、極めて難しい。

そこで本研究では、1つのブロックごとの取引手数料の総額の推移を観察する。ビットコインの トランザクションは1ブロック当たり1MBの制約があるため、この方法でもトランザクション手数 料を分析することがある程度可能である。

トランザクション総額の推移は図5のようになり、その対数差分系列は図6のようになる。

図5 トランザクションコストの時系列データ(2017/10/16~2019/10/15)

図6 トランザクション手数料の対数差分系列

1.2 メモリープール

次にメモリープールのデータについて説明する。メモリープールのデータも Blockchain [2019] のデータを活用した。Blockchain [2019] ではメモリープールを,承認待ち状態のトランザクショ ンの総数と定めている。ここのデータは,注1にも表記した通り,厳密にはデイリーデータではな いが,このサイトのデータが最適であると判断したためこのデータを活用する。メモリープールの 対数差分系列は図7のようになっている。

2 線形回帰分析を用いた分析

2.1 ビットコインと各変数の線形回帰分析

まず,ビットコインとそれぞれの時系列データに関しての関係を理解するために,ビットコイン を目的変数,トランザクション手数料,メモリープールのそれぞれを説明変数として,線形回帰分 析を行った。線形回帰分析を行った結果以下のような結果が得られた。

表8 線形回帰分析の結果

データ	定数項	標準誤差	係数	標準誤差	決定係数	
トランザクション手数料	6840.094015	90.37958861	0.000804782	0.000032265	0.467876	
メモリープール	6703.455537	104.0834913	0.00005689	0.0000283	0.357530	

2.2 分析の考察と線形回帰分析の限界

ビットコインと各変数の線形回帰分析を行い,表8のような結果が得られた。表8より,決定係 数は十分には高くないものの,トランザクション手数料やメモリープールが大きい時のほうがビッ トコインの価格が大きい傾向にある。しかし,これらの結果が示していることは,ビットコインの 決済機能の利点からすると,不可解な結果である。なぜなら,ビットコインの意義の所でも述べた ように,決済機能としてのビットコインの優位性は,第三者を仲介しないことにより「手数料を低 く抑えられる」ことにあるからである。そこで,私は以下のような仮説を考えた。

- ① ビットコインの価格の上昇は知名度の向上など別の要因にある。
- ② ビットコインの価格はトランザクションコストによって以下のように循環している
- (ア)ビットコインの需要が大きくなるにつれて、ビットコイン決済需要が増加し、トランザクション手数料が増加、もしくはトランザクションしきれない取引が増加することによりメモリープールの量が増加。
- (イ)トランザクション手数料やメモリープールの増加によって決済機能としてのビットコインの 優位性がなくなりビットコインの価格が低下。
- (ウ)価格が下がったビットコインに対して送金需要が減少、トランザクション手数料、メモリー

プールの値が減少。

- (エ)トランザクション手数料、メモリープールの値が減少したことにより、ビットコインの決済手段としての優位性が復活し価格が再び上昇する。
- (オ)(イ)に戻る

この過程を検証するために必要なことは3つあると考える。

- ① ビットコインの上昇トレンドと下降トレンドをとらえる。
- ② それぞれの変数とトレンドの変化の関係を明らかにする。
- ③ 情報があった時にどのトレンドにあるかを識別する。

そしてこの三つの条件に合った検証を行うために私は, Diebold, Lee, and Weinbach [1994] で 紹介された方法で検証を行った。

3 本研究のモデルの紹介

3.1 今回使用するマルコフ転換モデルの紹介

今研究のモデルにおいては、ビットコインの価格変動率が正規分布に従うという仮定を置く。図 9は正規分布プロットといい Mathworks [2019] によると、正規分布に近い場合、プロットは赤 い直線に沿うようになる。この図よりビットコインの価格変動率は正規分布と比較したときに極め て fat-tail であることがわかる。しかし、多くの先行研究においてビットコインを正規分布と仮定 してマルコフ転換モデルを使用していることから、この仮定を置くことは妥当である。

図9 ビットコイン価格変動率の正規確率プロット

ここからは、まず Kim and Nelson [1999] の4章に従い、一般的なマルコフ転換モデルについ て説明を行い、その後に Diebold, Lee, and Weinbach [1994] の説明に基づき、本研究のマルコフ 転換モデルについて解説する。

2つのレジームがあるモデルについて考える。

 $y_t = x_t \beta_{s_t} + e_t, \quad t = 1, 2, ..., T, \quad e_t \sim N(0, \sigma_{s_t}^2)$ (1.1)

 $\beta_{S_t} = \beta_0 (1 - S_t) + \beta_1 S_t, \tag{1.2}$

 $\sigma_{S_t}^2 = \sigma_0^2 (1 - S_t) + \sigma_1^2 S_t \tag{1.3}$

 $S_t=0$ or 1 (レジーム 0 か 1)

これらの変数について説明する。 y_t は目的変数で x_t は外生的なベクトル, β_{s_t} はxにかかるパラ メーターであり σ_{s_t} は誤差項の分散である。

この式よりレジーム0の時は β₀ と σ₀ がパラメーターとして与えられ,レジーム1の時は β₁ と σ₁ がパラメーターとして与えられる。St が既知の場合はダミー変数モデルとなる。マルコフ転換 モデルのパラメーターを推定する際には対数尤度関数を最大化する手法を利用する。対数尤度関数 は

$$\ln \mathbf{L} = \sum_{t=1}^{T} \ln(f(y_t|S_t)) \tag{1.5}$$

であり, f(yt | St) は式 (1.6) によって与えられる

$$f(y_t|S_t) = \frac{1}{\sqrt{2\pi\sigma_{S_t}^2}} \exp\left(-\frac{\{y_t - x_t\beta_{S_t}\}^2}{2\sigma_{S_t}^2}\right)$$
(1.6)

この対数尤度関数におけるパラメーターは実際に観測することができないため、2つの段階に よって値を決定する。

第一段階 まず yt の同時分布と, St の値を考える。

$$f(y_{t},S_{t}|\psi_{t-1}) = f(y_{t}|S_{t},\psi_{t-1})f(S_{t}|\psi_{t-1})$$
(1.7)

なお, ϕ_{t-1} は t-1 期までの情報のことを示している。 第二段階 全ての *S*_t に対して $f(y_t|S_t,\phi_{t-1})$ の期待値をとり f(*S*_t| ϕ_{t-1})を得る。

$$f(y_t | \psi_{t-1}) = \sum_{S_t=0}^{1} f(y_t, S_t | \psi_{t-1})$$

$$= \sum_{S_t=0}^{1} f(y_t | S_t, \psi_{t-1}) f(S_t | \psi_{t-1})$$

$$= \frac{1}{\sqrt{2\pi\sigma_0^2}} exp\left(-\frac{\{y_t - x_t\beta_0\}^2}{2\sigma_0^2}\right) Pr[S_t=0 | \psi_{t-1}] + \frac{1}{\sqrt{2\pi\sigma_1^2}} exp\left(-\frac{\{y_t - x_t\beta_1\}^2}{2\sigma_1^2}\right) Pr[S_t=1 | \psi_{t-1}]$$
(1.8)

そして,対数尤度関数は

$$\ln L = \sum_{t=1}^{T} \ln \{\sum_{s_t=0}^{1} f(y_t | S_t, \psi_{t-1}) Pr[S_t | \psi_{t-1}]\}$$

で与えられる。この式の計算をするためには $\Pr[S_t|\phi_{t-1}]$ がどれくらいの値であるかを計算する ことが必要不可欠である。今回のモデルではマルコフ転換モデルを使用する。r 次のマルコフ転換 モデルでは S_t の値は $S_{t-1}, S_{t-2}, ..., S_{t-r}$ までの過去の値に依存する。今回のモデルでは 1 次のマルコ フ転換モデルについて扱うので S_t の値は S_{t-1} の値に依存する。

一般的なマルコフ転換モデルにおいて、状態変化確率は以下の式で計算される。

$$\Pr[S_t=1|S_{t-1}=1] = p = \frac{\exp(p_0)}{1 + \exp(p_0)}$$
(1.10)

$$\Pr[S_t=0|S_{t-1}=0] = q = \frac{\exp(q_0)}{1 + \exp(q_0)}$$
(1.11)

この計算を行う上では、各地点において状態 S, がどれくらいの確率でどのレジームにいるのか

(1.4)

(1.9)

を計算する必要がある。計算方法としては、その時点までの情報を活用して計算を行うフィルター 化と T 期までの全情報を利用して計算を行う平滑化の二つの手法がある。今回のモデルで使用し た、それぞれの手法の計算手順については、付録にて解説する。

次に今回のマルコフ転換モデルと通常のマルコフ転換モデルの違いについて Diebold, Lee, and Weinbach [1994]の説明に基づいて解説を行う。

2.1.2 で述べたように、従来のモデルは状態変化確率に対して景気の変動などの経済ファンダメ ンタルズの要素を入れることが不可能である。一方でこのモデルでは、外部の情報を入れつつ、状 態変化確率を内生変数として導出することができる。具体的には状態1と状態2⁸⁾の二つのレジー ムが存在すると仮定し、β₁,β₂をパラメーターとしてロジスティック関数を作る。式にして表すと、

$$\Pr[S_t=1 | S_{t-1}=1] = p_t^{11} = \frac{\exp(x_{t-1}\beta_1)}{1 + \exp(x_{t-1}\beta_1)}$$
(1.12)

$$\Pr[S_t=2|S_{t-1}=1] = p_t^{12} = 1 - \frac{\exp(x_{t-1}\beta_1)}{1 + \exp(x_{t-1}\beta_1)}$$
(1.13)

$$\Pr[S_t=1|S_{t-1}=2] = p_t^{21} = 1 - \frac{\exp(x_{t-1}\beta_2)}{1 + \exp(x_{t-1}\beta_2)}$$
(1.14)

$$\Pr[S_t=2|S_{t-1}=2] = p_t^{22} = \frac{\exp(x_{t-1}\beta_2)}{1 + \exp(x_{t-1}\beta_2)}$$
(1.15)

になる。これ以外の仮定については通常のマルコフ転換モデルと同様のプロセスで計算を行い, フィルター化と平滑化の方法で得られた確率変数をもとに計算を行う。

今回のモデルでは、状態変数 S_t は1と2の二つの値をとる。情報変数 x_t は2×Tの行列であり、 1列目はすべて1が入り、2列目にトランザクション手数料とメモリープールのそれぞれの変動率 を代入する。 β_1, β_2 はそれぞれ $\beta_1 = (\beta_{10},\beta_{11}), \beta_2 = (\beta_{20},\beta_{21})$ の1×2のベクトルであり、 β_{10}, β_{20} はそれ ぞれ定数項になり、 β_{11}, β_{21} は情報変数にかかるパラメーターになる。今回の分析では、まず情報 変数の影響を受けた二つのレジームがどのような特徴を持つか、そして、それぞれのレジームの転 換に対して情報変数はどのような影響を及ぼしているかを分析する。具体的には計算によって導出 された平均 μ が高いほうのレジームを上昇期、 μ の値が低いほうのレジームを下降期と定め、上昇 期のレジーム、下降期のレジームへの状態変化確率に対して情報変数 x_t が正の影響を及ぼすのか 負の影響を及ぼすのかを β_{11}, β_{21} の推定値を計算することによって考察する。

これらの計算プロセスを実施し対数尤度関数を推定するために必要不可欠なのが EM アルゴリズムである。次節において Diebold, Lee, and Weinbach [1994] において利用されている EM アルゴリズムの計算プロセスについて解説を行う。

3.2 EM アルゴリズムについての説明

この説ではまず, Kim and Nelson [1999] の4.3.5節の EM アルゴリズムの内容にそって説明 を行い,そのあと今回のマルコフ転換モデルにどのように適応されたかについて説明を行う。なお 詳細な数式及び計算に使用したコードは付録に記載する。

⁸⁾ Diebold, Lee, and Weinbach [1994] では状態0,状態1の二つのレジームとしているが、今回のモデルでは 状態1と状態2の二つのレジームと定義したためこのように表記している。

EM アルゴリズムの手法は Dempster, Laird, and Rubin [1977] によって生み出された手法であり、不完全なデータもしくは不完全な値を含んだモデルの尤度関数を推定する代替的方法として生み出された。EM アルゴリズムは θ を未知のパラメーターが入ったベクトルと定義すると、 θ の値の下で観測できない値の期待値を計算する "Expectation"のステップと計算された期待値をもとに θ のパラメーターを最大化させる "Maximization"の二つのステップを繰り返すアルゴリズムである。具体的には

1. k-1回目の反復によって得られたパラメーターの推定値 θ^{k-1}を利用して, 潜在変数の期待値 を測定する。

2.1. によって得られた潜在変数の条件付き期待値を利用して,パラメーターの尤度関数を最大 化させ, θ^{*}の値を計算する。

なおこの計算を行う際、 θ^{0} はこちらが設定を行い、またこのアルゴリズムは $|\theta^{k} - \theta^{k-1}|$ が十分 に小さくなるまで計算を行う。

次に EM アルゴリズムが今回のモデルにどのように適応されているかについて Diebold, Lee, and Weinbach [1994] の内容に基づいて説明を行う。

まず今回のマルコフ転換モデルにおいて
θのパラメーターは以下の要素で構成される。

1. レジーム1及びレジーム2の平均 (μ_1,μ_2) 及び分散 (σ_1^2,σ_2^2)

2. それぞれのレジームの状態変化確率関数内のパラメーター (β₁₀,β₁₁,β₂₀,β₂₁)

である。また、状態変化確率の計算のために第一期確率である ρ₁,ρ₂ も初期値として与える。

これらを踏まえたうえで、今回使用する EM アルゴリズムのステップを説明すると以下のよう になる。

1. 適当な初期値 θ⁰ を与える。

2. 与えられたパラメーターの状態確率及び平滑化した状態変化確率を求める。つまり、

	(2.1)
	(2.2)
\forall_t	(2.3)
$\forall t$	(2.4)
\forall_t	(2.5)
\forall_t	(2.6)
	$ \begin{array}{l} \forall t \\ \forall t \\ \forall t \\ \forall t \\ \forall t \end{array} $

また,これらの確率を使って E[log(y_T,S_t|x_T:θ⁰)] を計算する。

3. 計算した平滑化した状態変化確率から θ¹を計算する。

 $\theta^1 = arg \max \mathbb{E}[\log(y_T, S_t | x_T: \theta^0)]$

(2.7)

4.2.と3.のステップを繰り返し、 $|\theta^1 - \theta^0|$ が収束するまで計算する。

なお今回のモデルでは、パラメーターの値の大きさも加味した結果収束判断としては、すべての パラメーターの中で差が最大のものの差が10⁻⁷よりも小さいことを条件とした。なおEステップ とMステップの具体的な計算過程は巻末の付録に記載する。

4 結果と考察

4.1 それぞれの結果について

それぞれの情報変数について計算を行ったところ以下のような結果となった。なお,この時 $\pi_1\pi_2$ についてはそれぞれ,(1.12)における p_i^{11} と,(1.15)における p_i^{22} を意味している。

トランザクション手数料								
パラメーター	μ_1	μ_2	σ_1	σ_2	β_{10}	β_{11}	β_{20}	β_{21}
結果	-0.000903	0.002060	0.003354	0.000258	2.621439	8.196010	2.020619	-4.332608
メモリープール								
パラメーター	μ_1	μ_2	σ_1	σ_2	β_{10}	β_{11}	β_{20}	β_{21}
結果	0.0003734	0.0006556	0.00310135	0.00086978	42.733199	21.759099	14.177958	-5.743039
データなし								
パラメーター	μ_1	μ_2	σ_1	σ_2	π_1	π_2		
結果	0.0020	-0.0007	0.0002	0.0032	0.8352	0.8622		

表10 それぞれの結果一覧

モデルの評価としてはより情報を多く利用して計算した平滑化確率を軸として評価を行った。 今回,情報変数をトランザクション手数料,メモリープール,もしくは情報変数なしの場合で計 算した時すべての場合について高収益低分散のレジームと,低収益高分散のレジームに分かれた。

またトランザクションコストとメモリープールの時について、βの値は両方ともβ₁₁>0,β₂₁<0の 値を計測した。これが意味することとは、情報変数が正の値をとるとき(つまり、トランザクショ ン手数料が増加もしくは、メモリープールの量が増加したとき)、レジーム1からはレジーム1に とどまりやすくなり一方でレジーム2にいるときはレジーム1に推移しやすくなる。一方で情報変 数が負の値をとる(つまり、トランザクション手数料が減少及び、メモリープールの量が減少)場 合、レジーム1からはレジーム2に移行する確率が上がる一方で、レジーム2からはレジーム2に とどまる確率が上昇する。つまりこの表を見る限りでは取引コストの上昇がビットコインの価格を 下落するレジームに移行を促し、逆に取引コストの下落がビットコインの価格を上昇させることを 促しているように見える。

次節ではこの考察が正しいかどうかをビットコインの実際の価格と比較して考察する。

前節で、トランザクション手数料もしくはメモリープールの量の増加がビットコインの下降レジームに誘導するということが分かった。しかし、3つの方法すべてにおいて、2017年末にビットコイン価格が高騰しているときに対しても下降レジームにいると判断していることから、レジーム1とレジーム2をビットコイン価格の上昇、下降という分け方は適当ではなく、ビットコインの

変動率に注目し、変動期と安定期という分け方をした方が適切であるといえる。

また、トランザクションコストのデータを代入したものと通常のマルコフ転換モデルにおいて、 図を見たら明らかであるようにレジームの評価としてはほとんど一致した結果となった。そのた め、トランザクションコストの情報はビットコイン価格の変動に影響があるものの平滑化確率を用 いたレジームの判定については、あまり影響を及ぼさないといえる。

またメモリープールに関しては、2017年末から2018年初頭にかけてほぼすべてレジーム1と判定した一方で2018年末の増減に関しては一部増減が激しいところもレジーム2という評価を行った。これはメモリープールのデータの変動率が2018年中旬以降著しく大きいことからこのような結果になったと推測される。

これらのレジーム判定から自分が線形回帰分析をした時の循環仮設は明確に否定されたわけでは ないものの、レジームと価格のグラフを見る限り、価格そのものよりもその変動の大きさが重要で あることがいえることが分かった。

Ⅲ 結論

1 本研究の成果

今回のモデル検証では, βの値によってレジームの移行確率を計算することで情報変数の値が ビットコインの価格変化に対してどのように影響を与えているかについて,ある程度検証すること ができた。

2 今回のモデルの限界

今回のモデルにおいてはいくつかの限界点も見つかった。一つはこのモデルにおいて標準誤差を 出すことができなかったことである。理由としては本研究で参照した, Diebold, Lee and Weinbach [1994] においては標準誤差についての言及が一切ないことや,本研究で使用したモデルは一般的 なマルコフ転換モデルと異なり,推移確率の値は一定ではなく,不確定な値があることから,解析 的に標準誤差を出すことが極めて難しいことがあげられる。

また、このモデルでは EM アルゴリズムを用いるが、EM アルゴリズムが導出する値は極値収 束の可能性を排除することができない。

これらの点においては本研究の限界があったことは認めざるを得ない。

3 今後の課題

この研究において今後の課題としては主に三点あげられる。まず一点目には予測精度の向上があ げられる。今回の研究では、レジームの転換の回数が非常に多く、特にフィルター化確率において はレジームの予想は困難な結果になっている。今後の研究では、レジームの転換がより少なくな り、将来のレジームの予想が容易になるようなモデルに改善したい。二点目は、ビットコイン以外 の仮想通貨に関する研究である。現在では、イーサリアムやビットコインキャッシュなど多くの仮 想通貨が作られている。それらの中にはマイニングの容量問題や、発行数を改善するなど、ビット コインネットワークの問題点を解決しているものもある。それらの通貨に関しても、今回と同様の 検証を行った際に同じ結論が得られるのかは今後の課題である。三点目にはレジームの数の変更が あげられる。今回のモデルでは、ビットコイン価格の増加減少の方向しか見ていなかったので、計 算の容易な2つのレジームでの計算を行った。もしレジームの数を3つなどに増やしたときに同じ 結論が得られるのかどうかは今後の課題である。

Ⅳ 謝辞

本研究では指導教官の江上教授に多くの助言をいただいた。また,ルースダン講師にはモデルの コーディングに関して貴重な助言をいただいた。さらに学部2回生だった時のゼミの担任の秋田教 授には EM アルゴリズムの計算に苦戦していた時に高性能のコンピューターを提供していただき, 計算をスムーズに行うことができた。また,仮想通貨同好会の皆さんには,仮想通貨の仕組みにつ いて議論していく中で仮想通貨に対してより深い理解をすることができた。これらすべての協力が あって自分の修士論文は書き上げることができた。深く感謝したい。

参考文献

- IT 用語辞典バイナリ [2019]「クローリングとは何? Weblio 辞典」https://www.weblio.jp/content/%E3%82% AF%E3%83%AD%E3%83%BC%E3%83%AA%E3%83%B3%E3%82%B0 (2019 年 12 月 1 日アクセス)
- 沖本竜義 [2010] 『経済・フファイナンスデータの計量時系列分析』朝倉書店
- 永井武彦 [2018]「キャッシュレス社会への取り組み」経済産業省(https://www.kantei.go.jp/jp/singi/keizaisai sei/miraitoshikaigi/sankankyougikai/fintech/dail/siryou2.pdf) 2019 年 11 月 24 日アクセス
- 日下弘樹 [2019] 「仮想通貨マイニングのブロック報酬の半減期とは?ライトコインの価格高騰との関連性やセ キュリティにどのような影響を与えるのか」(https://crypto.watch.impress.co.jp/docs/theme/1190780.html) 2019 年 12 月 22 日アクセス
- 二神孝一・堀敬一 [2009] 『マクロ経済学 第二版』 有斐閣 p100
- 日本経済新聞 [2014] 「マウントゴックス破綻ビットコイン 114 億円消失」(https://www.nikkei.com/article/ DGXNASGC2802 C_Y4A220C1MM8000/) 2019 年 11 月 23 日アクセス
- ルースダンケヴヘイッシュウィリ [2013] 「マルコフ転換モデルによるバブル期の分析」
- Andreas M. Antonopoulos [2015] Mastering Bitcoin Unlocking Digital Cryptcurrency, O'Reilly (今井崇也, 鳩貝 良一郎訳『ビットコインとブロックチェーン』NTT 出版株式会社, 2016 年)
- Atomic Wallet [2019] Bitcoin Scaling Problem, Explained (https://atomicwallet.io/bitcoin-scaling-problem-expla ined) 2019 年 11 月 30 日アクセス
- Bitcoin Forum [2019] (https://bitcointalk.org/) 2019年12月28日アクセス
- Bitcoin Transaction Fees [不明] (https://bitcoinfees.info/) 2019年11月23日アクセス
- Blockchain [2019]"Memory pool size the aggregate size of transaction waiting to be comfirmed (https://www.blockchain.com/ja/charts/mempool-size?timespan=all) 2019 年 10 月 15 日アクセス
- Captainaltcoin. com [2018] What is Bitcoin Memory Pool (https://captainaltcoin. com/bitcoin-memory-poolmempool/) 2019 年 11 月 23 日アクセス
- Daniel R. Chappell [2018] "Regime heteroscedasticity in Bitcoin: A comparison of Markov switching models," MPRApaperNo. 90682
- David Ardia, Keven Bluteau, Maxume Rüede [2019] "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters 29, pp. 266-271
- Dempster, Laird and Rubin [1977] "Maximum Likelihood from Incomplete Data Via the EM Algorithm," Journal of

the Royal Statistical Society: Series B (Methodological) 39, pp. 1-38

- Edwin Sin, Lipo Wang [2017] "Bitcoin Price Prediction Using Ensembles of Neural Networks, 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2017)"
- Francis X. Diebold, Joon-Haeng Lee and Gretchen C. Weinbach [1994] Regime switching with time-varying transition probabilities, Oxford:Oxford University Press, pp.283-302
- Hamilton, J. D. [1989] "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica 57(2) pp. 357-384
- Jose A. Scheinkman and Wei Xiong [2003] "Overconfidence and Speculative Bubbles," Journal of Political Economy 111, pp. 1183–1219
- Kim, C. J. [1994] "Dynamic Linear Models with Marcov-Switching," Journal of Econometrics 60(1-2), pp. 39-70.
- Kim C. J. and Nelson C. R. [1999] State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Apprications, MIT Press

MacLachlan and Krishnan [2008] The EM Algorithm and Extensions, John Wiley& Sons, Inc

Martina Matta, Illaria Leushesu, Michele Marchesi [2015]

XiangLi, ChongAlexWang [2017] "The technology and economic determinants of cryptocurrency exchange rates: The case of Bitcoin, Decision Support Systems 95, pp. 49–60"

S. Nakamoto [2008] "Bitcoin: A Peer-to-Peer Electronic Cash System" dhimmel/bitcoin-whitepaper@a5f36b3

- TradeBlock [2019] "HistoricalData" (https://tradeblock.com/bitcoin/historical/) 2019 年 12 月 28 日アクセス
- Young Bin Kim et al. [2016] "Prediciting Fluctuations in Cryptocurrency Transactions Based on User Comments and Replies," Plos one11(8)

付録 1

1. Matlab のコード この節では EM アルゴリズムのコードを記す。 関数コード tvem.m function[new_output,filtprob,smoothedP_one,smoothedP_two,convergence_meter]=tvem(par,data,info) T=length(data); transp=zeros(2,2*(T-1));%transprobabilities which change on time jcd=zeros(4,T-1);%joint conditional distribution of (y,s,s(t-1)) cl=zeros(1,T-1);%conditional likelihood stateprob=zeros(4,T-1);%time-t filtered state probabilities filtprob=zeros(2,T-1);%filtrationprobability all=zeros(1,T-1); new_miu=[par(1) par(2)];% 平均 new variance=[par(3) par(4)]:%分散 new_betal=[par(5) par(6)];new_beta2=[par(7) par(8)];% 情報 X に対する係数 rho=[par(9) par(10)];% 第一期確率 f=zeros(2,T);z=zeros(2,T-1): convergence_meter=ones(1,8); %for i = 1:100 while max(convergence_meter)>0.0000001 disp(convergence_meter)

```
betal=new_betal;
   beta2=new_beta2;
   miu=new_miu;
   variance=new variance:
    for t=1:T%Y の分布確率を1 期から T 期まで計算(ステップ1)
        f(1,t)=1/sqrt(2*pi*variance(1,1))*exp(-(data(t,1)-miu(1,1))^2/(2*variance(1,1)));
       f(2,t)=1/sqrt(2*pi*variance(1,2))*exp(-(data(t,1)-miu(1,2))^2/(2*variance(1,2)));
    end
   for t=1:T-1% 第一期から第二期より T-1 期から T 期までの transp(時間変化で変わる状態変化確率)を計
算(ステップ1)k=2
       transp(1,2*t-1) = \exp(betal(1,1) + betal(1,2)*info(t,1)) / (1 + \exp(betal(1,1) + betal(1,2)*info(t,1)));
        transp(2,2^{*}t) = \exp(beta2(1,1) + beta2(1,2)^{*}info(t,1)) / (1 + \exp(beta2(1,1) + beta2(1,2)^{*}info(t,1)));
        transp(1,2^{*}t)=1-transp(1,2^{*}t-1);
        transp(2,2^{t-1})=1-transp(2,2^{t});
    end
   %transp
% 条件付同時確率を計算する (Calculate filtered joint state probabilities) (2-a~2-d)
%条件付同時分布の二期の値を計算
   icd(1,1)=f(1,2)*transp(1,1)*rho(1,1);
   jcd(2,1)=f(2,2)*transp(1,2)*rho(1,1);
   jcd(3,1)=f(1,2)*transp(2,1)*rho(1,2);
   icd(4,1)=f(2,2)*transp(2,2)*rho(1,2);
   cl(1,1)=sum(jcd(:,1));%yの条件付尤度を計算(2期)
   for k=1:4
        stateprob(k,1)=jcd(k,1)/cl(1,1);
        z(1,1)=f(1,2)/cl(1,1);
        z(1.2) = f(2.2)/cl(1.1):
    end
    for t=3:T%3 期以降の値について計算
       jcd(1,t-1)=f(1,t)*(transp(1,2*(t-1)-1))*(stateprob(1,t-2)+stateprob(3,t-2));
       jcd(2,t-1)=f(2,t)^{*}(transp(1,2^{*}(t-1)))^{*}(stateprob(1,t-2)+stateprob(3,t-2));
       jcd(3,t-1)=f(1,t)*(transp(2,2*(t-1)-1))*(stateprob(2,t-2)+stateprob(4,t-2));
       jcd(4,t-1)=f(2,t)*(transp(2,2*(t-1)))*(stateprob(2,t-2)+stateprob(4,t-2));
        cl(1,t-1)=sum(jcd(:,t-1));
        z(1,t-1)=f(1,t)-cl(1,t-1);
        z(2,t-1)=f(2,t)-cl(1,t-1);
        for k=1:4
            stateprob(k,(t-1))=jcd(k,(t-1))/cl(1,(t-1));
        end
        filtprob(1,t-1) = stateprob(1,t-1) + stateprob(3,t-1);
        filtprob(2,t-1) = stateprob(2,t-1) + stateprob(4,t-1);
    end
% 平滑化した同時状態確率を計算する(ステップ3)
%時間1から2の時が1列目になるようになるため一つ少ない
   jointprob_oo_start=zeros(4,T-1);%t-1=1 t=1 の初期値(ステップ 3a)
```

```
jointprob_ot_start=zeros(4,T-1);%t-1=1 t=2
       jointprob_to_start=zeros(4,T-1);%t-1=2 t=1
       jointprob_tt_start=zeros(4,T-1);%t-1=2 t=2
       smoothedJST_oneone=zeros(1,T);%smoothed joint state probability for time t(\Im \overline{\tau} \vee \mathcal{T} \Im b)
       smoothedJST_onetwo=zeros(1,T);
       smoothedJST_twoone=zeros(1,T);
       smoothedJST_twotwo=zeros(1,T);
       smoothedP one=zeros(1.T):% 平滑化限界状態確率(ステップ4)
       smoothedP_two=zeros(1,T);
       smoothedP_one(1,1)=rho(1,1);
       smoothedP_two(1,1)=rho(1,2);
       for t=3:T%3a の第一項についての計算(tau t t-1 の 2<sup>-3</sup> パターンしかない。該当しないパターンはゼロと
して処理する)
               jointprob oo start(1,t-1)=(f(1,t)*transp(1,2*(t-1)-1)*stateprob(1,t-2))/cl(1,t-1);
               jointprob_oo_start(2,t-1)=(f(2,t)*transp(1,2*(t-1))*stateprob(1,t-2))/cl(1,t-1);
               jointprob_ot_start(3,t-1)=(f(1,t)*transp(2,2*(t-1)-1)*stateprob(2,t-2))/cl(1,t-1);
               jointprob ot start(4,t-1)=(f(2,t)*transp(2,2*(t-1))*stateprob(2,t-2))/cl(1,t-1);
               jointprob_to_start(1,t-1)=(f(1,t)*transp(1,2*(t-1)-1)*stateprob(3,t-2))/cl(1,t-1);
               jointprob_to_start(2,t-1) = (f(2,t)*transp(1,2*(t-1))*stateprob(3,t-2))/cl(1,t-1);
               jointprob_tt_start(3,t-1) = (f(1,t)*transp(2,2*(t-1)-1)*stateprob(4,t-2))/cl(1,t-1);
               jointprob_tt_start(4,t-1) = (f(2,t)*transp(2,2*(t-1))*stateprob(4,t-2))/cl(1,t-1);
       end
       for t=2:T-2%2 期から T-2 期について計算
               jointprob_oneone=zeros(4,T);
               jointprob_onetwo=zeros(4,T);
               jointprob_twoone=zeros(4,T);
               jointprob_twotwo=zeros(4,T);
               jointprob_oneone(:,t)=jointprob_oo_start(:,t);
               jointprob_onetwo(:,t)=jointprob_ot_start(:,t);
               jointprob_twoone(:,t)=jointprob_to_start(:,t);
               jointprob_twotwo(:,t)=jointprob_tt_start(:,t);
               for tau=t + 2:T
                       jointprob_oneone (1, tau-1) = f (1, tau) * transp (1, 2* (tau-1) - 1) * (jointprob_oneone (1, tau-2) + jointprob_oneone (1, 
tprob_oneone(3,tau-2))/cl(1,tau-1);
                       jointprob_oneone(2,tau-1)=f(2,tau)*transp(1,2*(tau-1))*(jointprob_oneone(1,tau-2)+jointprob_
oneone(3,tau-2))/cl(1,tau-1);
                       jointprob_oneone (3, tau-1) = f (1, tau) * transp (2, 2* (tau-1) - 1) * (jointprob_oneone (2, tau-2) + join-
tprob_oneone(4,tau-2))/cl(1,tau-1);
                       jointprob_oneone (4,tau-1)=f(2,tau)*transp (2,2*(tau-1))*(jointprob_oneone (2,tau-2)+jointprob_
oneone(4,tau-2))/cl(1,tau-1);
                       jointprob_onetwo(1,tau-1)=f(1,tau)*transp(1,2^*(tau-1)-1)^*(jointprob_onetwo(1,tau-2)+join-1)
tprob_onetwo(3,tau-2))/cl(1,tau-1);
                       jointprob_onetwo(2,tau-1)=f(2,tau)*transp(1,2*(tau-1))*(jointprob_onetwo(1,tau-2)+jointprob_
onetwo(3,tau-2))/cl(1,tau-1);
                       jointprob_onetwo (3, tau-1) = f (1, tau) * transp (2, 2* (tau-1) - 1) * (jointprob_onetwo (2, tau-2) + join-
```

tprob_onetwo(4,tau-2))/cl(1,tau-1);

jointprob_onetwo(4,tau-1)=f(2,tau)*transp(2,2*(tau-1))*(jointprob_onetwo(2,tau-2)+jointprob_ onetwo(4,tau-2))/cl(1,tau-1);

 $jointprob_twoone (1,tau-1)=f(1,tau) * transp (1,2*(tau-1)-1)*(jointprob_twoone (1,tau-2) + jointprob_twoone (3,tau-2))/cl(1,tau-1);$

jointprob_twoone(2,tau-1)=f(2,tau)*transp(1,2*(tau-1))*(jointprob_twoone(1,tau-2)+jointprob_twoone(3,tau-2))/cl(1,tau-1);

 $jointprob_twoone (3, tau-1) = f (1, tau) * transp (2, 2* (tau-1) - 1) * (jointprob_twoone (2, tau-2) + jointprob_twoone (4, tau-2))/cl(1, tau-1);$

 $jointprob_twoone(4,tau-1)=f(2,tau)*transp(2,2*(tau-1))*(jointprob_twoone(2,tau-2)+jointprob_twoone(4,tau-2))/cl(1,tau-1);$

 $jointprob_two two (1,tau-1) = f (1,tau) * transp (1,2*(tau-1)-1)*(jointprob_two two (1,tau-2) + jointprob_two (3,tau-2))/cl(1,tau-1);$

jointprob_twotwo (2,tau-1)=f (2,tau) *transp (1,2* (tau-1)) * (jointprob_twotwo (1,tau-2) + jointprob_twotwo(3,tau-2))/cl(1,tau-1);

jointprob_twotwo (3,tau-1)=f (1,tau) *transp (2,2* (tau-1)-1) * (jointprob_twotwo (2,tau-2) + jointprob_twotwo (4,tau-2))/cl(1,tau-1);

 $\label{eq:constraint} jointprob_twotwo~(4,tau-1)=f~(2,tau)~*transp~(2,2*~(tau-1))*~(jointprob_twotwo~(2,tau-2)+~jointprob_twotwo~(4,tau-2))/cl(1,tau-1);$

end

```
smoothedJST\_oneone(1,t)=sum(jointprob\_oneone(:,T-1));
```

 $smoothedJST_onetwo(1,t)=sum(jointprob_onetwo(:,T-1));$

```
smoothedJST_twoone(1,t)=sum(jointprob_twoone(:,T-1));
```

```
smoothedJST_twotwo(1,t)=sum(jointprob_twotwo(:,T-1));
```

```
smoothedP\_one(1,t)=(smoothedJST\_oneone(1,t)+smoothedJST\_twoone(1,t));\\smoothedP\_two(1,t)=(smoothedJST\_onetwo(1,t)+smoothedJST\_twotwo(1,t));\\end
```

```
%1 期についての計算
```

```
smoothedP\_one(1,1)=smoothedJST\_oneone(1,2)+smoothedJST\_onetwo(1,2);
```

```
smoothedP_two(1,1)=smoothedJST_twoone(1,2)+ smoothedJST_twotwo(1,2);
%T-1 期についての計算
```

```
smoothedJST_oneone(1,T-1)=sum(jointprob_oo_start(:,T-1));
```

%smoothedJST_onetwo(1,T-1)=sum(jointprob_ot_start(:,T-1));

%smoothedJST_twoone(1,T-1)=sum(jointprob_to_start(:,T-1));

smoothedJST_twotwo(1,T-1)=sum(jointprob_tt_start(:,T-1));

smoothedP_one (1, T-1)=jointprob_oo_start (1, T-1) + jointprob_oo_start (2, T-1) + jointprob_to_start (1, T-1)+ jointprob_to_start (2, T-1);

```
smoothedP_two (1, T-1)=jointprob_ot_start (3, T-1) + jointprob_ot_start (4, T-1) + jointprob_tt_start (3,
```

```
T-1) + jointprob_tt_start(4,T-1);
```

%T 期についての計算(フィルタリングの流用)

 $smoothedJST_oneone\,(1,T)=stateprob\,(1,T-1);$

```
%smoothedJST_onetwo(1,T)=stateprob(2,T-1);
            %smoothedJST_twoone(1,T)=stateprob(3,T-1);
            smoothedJST_twotwo(1,T)=stateprob(4,T-1);
            smoothedP_one(1,T) = filtprob(1,T-1);
            smoothedP_two(1,T)=filtprob(2,T-1);
            %mean (jointprob_tt_start) + mean (jointprob_oo_start) + mean (jointprob_ot_start) + mean (jointprob_to_
start)
            %平滑化確率の合計値の確認に使用。誤差1.2%が望ましい。
%M_algorithm,solve FOC and derive miu,variance and rho value
            miu vector=zeros(T.2):
            var_vector=zeros(T,2);
            for t=1:T
                         miu vector(t,1)=data(t,1)*smoothedP one(1,t);
                         miu vector(t,2)=data(t,1)*smoothedP two(1,t);
            end
new_miu(1,1)=sum(miu_vector(:,1))/sum(smoothedP_one(1,:));
new miu(1,2)=sum(miu vector(:,2))/sum(smoothedP two(1,:));
            for t=1:T
                         var_vector(t,1) = (data(t,1) - miu(1,1))^2 monothedP_one(1,t);
                         var_vector(t,2) = (data(t,1) - miu(1,2))^2 monothedP_two(1,t);
            end
new_variance(1,1)=sum(var_vector(:,1))/sum(smoothedP_one(1,:));
new_variance(1,2)=sum(var_vector(:,2))/sum(smoothedP_two(1,:));
            rho(1,1) = smoothed P_one(1,1);
            rho(1,2) = smoothed P_two(1,1);
%M_algorithm, solve FOC and derive beta(b0 and b1 is have two value for each t)
%make vectors for calculating beta
            beta_dash10=zeros(T-1,1);%beta の微分
            beta_dash11=zeros(T-1,1);
            beta_dash20=zeros(T-1,1);
            beta_dash21=zeros(T-1,1);
            beta bunnshiu=zeros(T-1.2):%beta の分子のそれぞれの項の計算
            beta_bunnshid=zeros(T-1,2);
            beta bunnboa=zeros(T-1.2);
            beta_bunnbob=zeros(T-1,2);
            beta bunnboc=zeros(T-1,2);
            beta bunnbod=zeros(T-1,2);
            beta_bunnbo_matrix1=zeros(2,2);%beta の分母のそれぞれの項の計算
            beta_bunnshi_matrix1=zeros(2,1);
            beta_bunnbo_matrix2=zeros(2,2);
            beta bunnshi matrix2=zeros(2,1);
            for t= 2:T%k=2 の式を活用
                         beta_dash10(t-1,1)=(exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,1)+betal(1,1))/(1+exp(betal(1,1)+betal(1,1)+betal(1,1))/(1+exp(betal(1,1)+betal(1,1)+betal(1,1))/(1+exp(betal(1,1)+betal(1,1)+betal(1,1))/(1+exp(betal(1,1)+betal(1,1)+betal(1,1))/(1+exp(betal(1,1)+betal(1,1)+betal(1,1))/(1+exp(betal(1,1)+betal(1,1)+betal(1,1))/(1+exp(betal(1,1)+betal(1,1)+betal(1,1))/(1+exp(betal(1,1)+betal(1,1)+betal(1,1))/(1+exp(betal(1,1)+betal(1,1)+betal(1,1))/(1+exp(betal(1,1)+betal(1,1)+betal(1,1))/(1+exp(betal(1,1)+betal(1,1)+betal(1,1))/(1+exp(betal(1,1)+betal(1,1)+betal(1,1))/(1+exp(betal(1,1)+betal(
(t-1,1)) - (\exp(betal(1,1) + betal(1,2))/(1 + \exp(betal(1,1) + betal(1,2)*info(t-1,1))))^2);
                         beta_dashl1(t-1,1)=info(t-1,1)*(exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,2)*info(t-1,1)))/(1+exp(betal(1,1)+betal(1,1)+betal(1,1)))/(1+exp(betal(1,1)+betal(1,1)+betal(1,1)))/(1+exp(betal(1,1)+betal(1,1)+betal(1,1)))/(1+exp(betal(1,1)+betal(1,1)))/(1+exp(betal(1,1)+betal(1,1)+betal(1,1)))/(1+exp(betal(1,1)+betal(1,1)))/(1+exp(betal(1,1)+betal(1,1)))/(1+exp(betal(1,1)+betal(1,1)))/(1+exp(betal(1,1)+betal(1,1)))/(1+exp(betal(1,1)+betal(1,1)))/(1+exp(betal(1,1)+betal(1,1)))/(1+exp(betal(1,1)+betal(1,1)))/(1+exp(betal(1,1)+betal(1,1)))/(1+exp(betal(1,1)+betal(1,1)))/(1+exp(betal(1,1)+betal(1,1)))/(1+exp(betal(1,1)+betal(1,1)))/(1+exp(betal(1,
```

 $(t-1,1)))-(\exp(beta2(1,1) + beta2(1,2))/(1 + \exp(beta2(1,1) + beta2(1,2)*info(t-1,1))))^2);$

 $beta_{dash21} (t-1,1) = info (t-1,1) * (exp (beta2(1,1) + beta2(1,2) * info (t-1,1)) / (1 + exp (beta2(1,1) + beta2(1,2) * info (t-1,1))) - (exp (beta2(1,1) + beta2(1,2)) / (1 + exp (beta2(1,1) + beta2(1,2) * info (t-1,1))))^2);$

beta_bunnboa(t-1,1)=smoothedP_one(1,t-1)*beta_dash10(t-1,1);

beta_bunnbob(t-1,1)=smoothedP_one(1,t-1)*beta_dash11(t-1,1);

 $beta_bunnboc(t-1,1)=info(t-1,1)*smoothedP_one(1,t-1)*beta_dash10(t-1,1);$

 $beta_bunnbod(t-1,1)=info(t-1,1)*smoothedP_one(1,t-1)*beta_dash11(t-1,1);$

 $beta_bunnshiu(t-1,1) = (smoothedJST_oneone(1,t) - smoothedP_one(1,t-1)^*(exp(betal(1,1) + info(t-1, 1)^*betal(1,2))) - beta_dash10(t-1,1)^*betal(1,1) - beta_dash11(1,2)) - beta_dash10(t-1,1)^*betal(1,1) - beta_dash11(1,2)) - beta_dash10(t-1,1)^*betal(1,2)) - beta_dash10(t-1,2)^*betal(1,2)) - beta_dash10(t-1,2)^*betal(1,2) - beta_dash10(t-1,2)^*betal(1,2)) - beta_dash10(t-1,2)^*betal(1,2) - beta_dash10(t-1,2)^*betal(1,2)) - beta_dash10(t-1,2)^*betal(1,2) - beta_dash10(t-1,2)^*b$

(t-1,1)*beta1(1,2)));

 $beta_bunnshid(t-1,1)=info(t-1,1)*(smoothedJST_oneone(1,t)-smoothedP_one(1,t-1)*(exp(betal(1,1)+info(t-1,1)*betal(1,2)))-beta_dash10(t-1,1)*betal(1,1)-beta=dash10(t-1,1)*betal(1,2)));$

 $beta_bunnboa(t-1,2)=smoothedP_two(1,t-1)*beta_dash20(t-1,1);$

 $beta_bunnbob(t-1,2)=smoothedP_two(1,t-1)*beta_dash21(t-1,1);$

 $beta_bunnboc(t-1,2)=info(t-1,1)*smoothedP_two(1,t-1)*beta_dash20(t-1,1);$

 $beta_bunnbod(t-1,2)=info(t-1,1)*smoothedP_two(1,t-1)*beta_dash21(t-1,1);$

 $beta_bunnshiu (t-1,2) = (smoothedJST_twotwo (1,t) - smoothedP_two (1,t-1) * (exp (beta2 (1,1) + info (t-1,1) * beta2 (1,2)) / (1 + exp (beta2 (1,1) + info (t-1,1) * beta2 (1,2))) - beta_dash20 (t-1,1) * beta2 (1,1) - beta_dash21 (t-1,1) * beta2 (1,2)));$

 $beta_bunnshid(t-1,2)=info(t-1,1)*(smoothedJST_twotwo(1,t)-smoothedP_two(1,t-1)*(exp(beta2(1,1)+info(t-1,1)*beta2(1,2)))-beta_dash20(t-1,1)*beta2(1,1)-beta_dash21(t-1,1)*beta2(1,2)));$

end

```
%300 ページの式計算
```

beta_bunnbo_matrix1(1,1)=sum(beta_bunnboa(:,1));

beta_bunnbo_matrix1(1,2)=sum(beta_bunnbob(:,1));

beta_bunnbo_matrix1(2,1)=sum(beta_bunnboc(:,1));

beta_bunnbo_matrix1(2,2)=sum(beta_bunnbod(:,1));

beta_bunnbo_matrix2(1,1)=sum(beta_bunnboa(:,2));

beta_bunnbo_matrix2(1,2)=sum(beta_bunnbob(:,2));

beta_bunnbo_matrix2(2,1)=sum(beta_bunnboc(:,2));

```
beta_bunnbo_matrix2(2,2)=sum(beta_bunnbod(:,2));
```

```
beta_bunnshi_matrix1(1,1)=sum(beta_bunnshiu(:,1));
```

beta_bunnshi_matrix1(2,1)=sum(beta_bunnshid(:,1));

 $beta_bunnshi_matrix2(1,1)=sum(beta_bunnshiu(:,2));$

beta_bunnshi_matrix2(2,1)=sum(beta_bunnshid(:,2));

new_betal=transpose(beta_bunnbo_matrix1\formatrix1);

new_beta2=transpose(beta_bunnbo_matrix2¥beta_bunnshi_matrix2);

 $new_output=[new_miu\ (1,1), new_miu\ (1,2), new_variance\ (1,1), new_variance\ (1,2), new_betal\ (1,1), new_betal\ (1,$

```
(1,2),new_beta2(1,1),new_beta2(1,2)];
```

```
output=[miu(1,1),miu(1,2),variance(1,1),variance(1,2),betal(1,1),betal(1,2),beta2(1,1),beta2(1,2)];
convergence_meter=abs(new_output-output);
```

end

スクリプトファイル scripttvem.m

```
bit_price=importdata('C:\Users\Lesktop\Fronbun_data\bitcoin_twoyear-2.csv');
%trans_cost=importdata('C:\Users\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cinters\cisters\cisters\cisters\cisters\cisters\cisters\cinters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cinters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cisters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinters\cinte
%mempool=importdata('C:\Users\cism\Desktop\ronbun_data\mempool_daily_twoyear_2.csv');
data=zeros(729,1);
info=zeros(729.1);
for t =1:729
data(t,1) = log(bit_price(t + 1,1)/bit_price(t,1));
(t,1) = \log(trans_cost.data(t+1,1)/trans_cost.data(t,1));
\%info(t,1)=log(mempool(t + 1,1)/mempool(t,1));
end
betal=1
beta2=-1
p1=exp(beta1)/(1+exp(beta1));
p2=\exp(beta2)/(1+\exp(beta2));
m=sum(data)/729:
%initial=[0.0003734;0.0006556;0.00310135;0.00086978;42.733199;21.759099;14.177958;-5.74304;0;1];
%initial=[-0.000903:0.00206:0.003354:0.000258:2.621439:8.196010:2.020619:-4.3326790:1:0]:
%initial2=[0.002011797900075;-0.000728682611612;0.000234708051842;0.003235393573295;0.835151638262381;
0.862162453994054]
initial2=[0.001;-0.001;0.0017;0.0017;p1;p2;0.5;0.5];
format long
%[a,b,c,d,e]=tvem(initial,data,info);
 [a,b,c,d,e]=emem(initial2,data);
```

付録2

2 EM アルゴリズムの計算過程

.....

この節では実際にモデルに使用した EM アルゴリズムの計算過程について解説する。途中でフィルター化確率 と平滑化確率についての計算を行うのでそこでフィルター化確率と平滑化確率のそれぞれの解説も行う。なお、こ の計算過程はすべて Francis X. Diebold, Joon-Haeng and Grechen C Weinbach [1994] の説明に従っている。 2.1 EM アルゴリズムの E ステップにおける計算過程

まず, E ステップにおいては, 観測されたデータを利用して尤度関数の期待値を計算する。E ステップの計算は 以下の順序で行う。

2.1.1 ステップ1

それぞれのt時点における, yの条件付分布と,状態変化確率を計算する。

$$(y_i|S_i=i;\alpha_i) \stackrel{\text{\tiny nu}}{\sim} N(\mu_i,\sigma_i^2),\tag{1}$$

$$f(y_t|S_t = i;\alpha_t) = \frac{1}{\sqrt{2\pi\sigma_t}} \exp\frac{-y_t - \mu_t^2}{2\sigma_t^2}$$
(2)

$p_t^{00} = \frac{\exp x_{t-1}'\beta_0}{1 + \exp x_{t-1}'\beta_0}$	(3)
$p_t^{01} = 1 - \frac{\exp x_{t-1}^{'}\beta_0}{1 + \exp x_{t-1}^{'}\beta_0}$	(4)
$exp x_{t-1}\beta_1$	(-)

$$p_t^{10} = 1 - \frac{\exp(x_{t-1}\beta_1)}{1 + \exp(x_{t-1}\beta_1)} \tag{5}$$

$$p_t^{11} = \frac{\exp x_{t-1}' \beta_1}{1 + \exp x_{t-1}' \beta_1} \tag{6}$$

2.1.2 ステップ2

フィルター化確率を以下の手順で計算する。フィルター化確率はその時点より前の情報だけを用いて計算する確 率である。

2.1.2.1 2A 同時条件付分布の計算

同時条件付分布を計算で求める。y_{t-1}x_{t-1}の情報に基づいて,t=2の時は以下のように計算する。

$$f(y_2, s_2, s_1 | y_1, x_1; \theta^{(j-1)}) = f(y_2 | s_2; \alpha^{(j-1)}) P(s_2 | s_1; x_1 \beta^{(j-1)}) P(s_1)$$

$$\tag{7}$$

t=3以降については以下のように計算する。

$$f\left(y_{t}, s_{t}, s_{t-1} \middle| \underline{y}_{t-1, \underline{x}_{t-1}}; \theta^{(j-1)} \right) = \sum_{t-2=0}^{1} f\left(y_{1} \middle| s_{t-1, x_{t-1}}; \beta^{(j-1)} \right) P\left(s_{t-1, s_{t-2}} \middle| \underline{y}_{t-1, \underline{x}_{t-1}}; \theta^{(j-1)} \right)$$
(8)

なおこの時の条件付分布と状態変化確率はステップ1のを活用する。

2.1.2.2 2B条件付尤度関数の計算

条件付尤度関数 yt をそれぞれの状態の同時条件付分布を合計して計算する。

$$f\left(y_{t} \middle| \underline{y}_{t-1}, \underline{x}_{t-1}; \theta^{(j-1)}\right) = \sum_{s_{t=0}}^{1} \sum_{s_{t-1=0}}^{1} f\left(y_{t}, s_{t}, s_{t-1} \middle| \underline{y}_{t-1}, \underline{x}_{t-1}; \theta^{(j-1)}\right)$$
(9)

2.1.2.3 2C フィルター化確率の計算

t時点のフィルター化された状態確率を計算する。分子に 2A で計算した同時条件付分布,分母に 2B で計算した条件付尤度関数を代入する。

$$P\left(s_{t}, s_{t-1} \middle| \underline{y}_{t}, \underline{x}_{t}, \theta^{(j-1)}\right) = \frac{f\left(y_{t}, s_{t}, s_{t-1} \middle| \underline{y}_{t}, \underline{x}_{t}, \theta^{(j-1)}\right)}{f\left(y_{t} \middle| \underline{y}_{t}, \underline{x}_{t}, \theta^{(j-1)}\right)}$$
(10)

2.1.2.4 2D繰り返し

2aから2cのステップをT-2回繰り返す。

2.1.3 ステップ3

今度は平滑化した状態変化確率を計算する。平滑化確率は満期までの情報すべてを使い確率の値を計算する。

2.1.3.1 3A 同時確率の計算

まず t=2 であるとする。この時所与である (s_t, s_{t-1}) と $\underline{y}_t, \underline{x}_t$ から同時確率 ($s_\tau, s_{\tau-1}, s_t, s_{t-1}$) を計算する。まず $\tau=t-1$ の時はその計算は以下の式から導出される。

$$P\left(s_{t+1}, s_{t}, s_{t-1} \middle| \underline{y}_{t+1}, \underline{x}_{t+1}; \theta^{(j-1)}\right) = \frac{f\left(y_{t} \middle| s_{t+1}; \alpha^{(j-1)}\right) P\left(s_{t+1} \middle| s_{t}, x_{t}; \beta^{(j-1)}\right) P\left(s_{t}, s_{t-1} \middle| \underline{y}_{t}, \underline{x}_{t}; \theta^{(j-1)}\right)}{f\left(y_{t+1} \middle| \underline{y}_{t}, \underline{x}_{t}; \theta^{(j-1)}\right)}$$
(11)

次に r=t+2 以降の時は以下のように導出する。

$$P(s_{\tau,s_{\tau-1},s,s_{t-1}}|\underline{y}_{\tau,\underline{x}_{\tau};\theta^{(j-1)}}) = \frac{\sum_{s_{\tau-2}=0}^{1} f(y_{\tau}|s_{\tau;\alpha^{(j-1)}}) P(s_{\tau}|s_{\tau-1,x_{\tau-1};\beta^{(j-1)}}) P(s_{\tau-1,s_{\tau-2},s_{t},s_{t-1}}|\underline{y}_{\tau-1,\underline{x}_{\tau-1};\theta^{(j-1)}})}{f(y_{\tau}|\underline{y}_{\tau-1,\underline{x}_{\tau-1};\theta^{(j-1)}})}$$
(12)

それぞれの τ について計算を行い、 $\tau = T$ になるまで計算を繰り返す。

2.1.3.2 3B 平滑化同時状態確率の計算

τ=Tにまで到達したらT時点とT-1時点のそれぞれの状態確率について足し合わせ、(s_t,s_{t-1})の確率を導出す

167

る。

$$P\left(s_{t},s_{t-1} \mid \underline{y}_{T},\underline{x}_{T};\theta^{(j-1)}\right) = \sum_{s_{T=0}}^{1} \sum_{s_{T-1=0}}^{1} P\left(s_{T},s_{T-1},s_{t},s_{t-1} \mid \underline{y}_{T},\underline{x}_{T};\theta^{(j-1)}\right)$$

(13)

2.1.3.3 3C 繰り返し計算

ステップ 3a とステップ 3b を繰り返し,それぞれの状態についての (st,st-1)の値を計算する

2.1.3.4 3D 繰り返し計算

t=3,4,..., Tについても同様に計算する。

(注意) t=T-1, t=Tのときに同様に計算することはできない。よって t=T-1の時は式 (11) を使用して計算を行い t=Tの時はフィルター化確率と同じ値が出るのでフィルター化確率を使用して計算した。これは Francis X. Diebold, Joon-Haeng and Gretchen C Weinbach [1994] では見落とされている。

2.1.4 ステップ4平滑化した周辺状態確率の計算

平滑化した周辺状態確率は平滑化した状態変化確率の合計として求められる。以下の式は一つの例である。

$$P(s_{t}=1|\underline{y}_{\tau},\underline{x}_{\tau};\theta^{(j-1)}) = P(s_{t}=1,s_{t-1}=0|\underline{y}_{\tau},\underline{x}_{\tau};\theta^{(j-1)}) + P(s_{t}=1,s_{t-1}=1|\underline{y}_{\tau},\underline{x}_{\tau};\theta^{(j-1)})$$
(14)

2.2 EM アルゴリズムの M ステップ

次にMステップの解説をする。平滑化状態変化確率が所与である中で全データを使った対数尤度関数は、モデ ルパラメーターの制約において直接的に最大化されている。これらの尤度関数の一階条件を計算することでパラ メーターの値を計算することができる。

2.2.1 μ, σ, 第一期確率 ρ の計算

μ,σ,ρは以下の一階条件を解くことで求められる。

$$\sum_{t=1}^{t} P(s_t | \underline{y}_{T,\underline{x}_{T};\theta^{(j-1)}})(y_t - \mu_t^{(j)}) = 0$$
(15)

$$\sum_{i=1}^{\infty} P(s_i | \underline{y}_{T, \underline{x}_{T}; \theta^{(j-1)}}) \left(\frac{s_1 - s_1}{(\sigma_i^2)(j)} - 1 \right) = 0$$

$$P(s_1 | \underline{y}_{T, \underline{x}_{T}; \theta^{(j-1)}}) \left(\frac{1}{\rho} \right) - 1 = 0$$

$$(16)$$

よってこれらの式を解いてやると

$$\mu_{t}^{(j)} = \frac{\sum_{t=1}^{T} P(s_{t} | \underline{y}_{T, \underline{x}} \underline{r}; \theta^{(j-1)})(y_{t})}{\sum_{t=1}^{T} P(s_{t} | \underline{y}_{T, \underline{x}} \underline{r}; \theta^{(j-1)})}$$
(18)

$$(\sigma_{t}^{2})^{(j)} = \frac{\sum_{t=1}^{T} P(s_{t} | \underline{y}_{T}, \underline{x}_{T}; \theta^{(j-1)}) (y_{t} - \mu_{t}^{(j)})^{2}}{\sum_{t=1}^{T} P(s_{t} | \underline{y}_{T}, \underline{x}_{T}; \theta^{(j-1)})}$$
(19)

$$\rho^{(j)} = P\left(s_i = 1 \left| \underline{y}_{T, \underline{x}; \overline{r}}; \theta^{(j-1)} \right)$$

$$\tag{20}$$

i = 0, 1

2.2.2 βの導出

次にβの導出過程を説明する。βの一階条件は以下の式で与えられる。

$$\sum_{t=2}^{T} x_{t-1} \left\{ P\left(s_t = 0, s_{t-1} = 0 \, \middle| \, \underline{y}_{T, \underline{x}_{T}; \theta^{(j-1)}} \right) - p_t^{00} P\left(s_{t-1} = 0 \, \middle| \, \underline{y}_{T, \underline{x}_{T}; \theta^{(j-1)}} \right) \right\} = 0$$
(21)

$$\sum_{t=2}^{T} x_{t-1} \left\{ P\left(s_{t}=1, s_{t-1}=1 \mid \underline{y}_{T, \underline{x}_{T}; \theta^{(j-1)}}\right) - p_{t}^{00} P\left(s_{t-1}=0 \mid \underline{y}_{T, \underline{x}_{T}; \theta^{(j-1)}}\right) \right\} = 0$$
(22)

この時 p⁰⁰ と p¹¹ はテイラー展開の一時近似を利用する。つまり,

$$p_t^{00}(\beta_0) \approx p_t^{00}(\beta_0^{(j-1)}) + \frac{\partial p_t^{00}(\beta_0^{(j-1)})}{\partial \beta_0} |_{\beta_0 = \beta_0^{(j-1)}}(\beta_0 - \beta_0^{(j-1)})$$
(23)

$$p_t^{11}(\beta_1) \approx p_t^{11}(\beta_1^{(j-1)}) + \frac{\partial p_t^{11}(\beta_1^{(j-1)})}{\partial \beta_1} |_{\beta_1 = \beta_1^{(j-1)}} (\beta_1 - \beta_1^{(j-1)})$$
(24)

と近似をする。議論を単純化するために以下のように表記する。

$$p_{tt}^{00}(\beta_0) = \frac{\partial p_t^{00}(\beta_0^{(j-1)})}{\partial \beta_{i0}} |_{\beta_0 = \beta_0^{(j-1)}, i = 0, 1$$
(25)

$$p_{it}^{11}(\beta_1) = \frac{\partial p_i^{11}(\beta_1^{(j-1)})}{\partial \beta_{i1}} |_{\beta_1 = \beta_1^{(j-1)}, i = 0, 1}$$
(26)

よって確率のベクトルは以下のように与えられる。

$$\frac{\partial p_t^{00}(\beta_0^{(j-1)})}{\partial \beta_{i0}} |_{\beta_0 = \beta_0^{(j-1)}} = \left(p_{0t}^{00}(\beta_0^{(j-1)}), p_{1t}^{00}(\beta_0^{(j-1)}) \right)$$
(27)

$$\frac{\partial p_t^{i1}(\beta_1^{(j-1)})}{\partial \beta_{i1}} |_{\beta_1 = \beta_1^{(j-1)}} = \left(p_{1t}^{11}(\beta_1^{(j-1)}), p_{1t}^{11}(\beta_1^{(j-1)}) \right)$$
(28)

でありそれぞれの要素は以下の式で導出できる。

$$p_{tt}^{00}(\beta_0^{(j-1)}) = x_i t - 1 \left(p_{0t}^{00}(\beta_0^{(j-1)}) - \left(p_{0t}^{00}(\beta_0^{(j-1)}) \right)^2 \right), i = 0, 1$$
⁽²⁹⁾

$$p_{tt}^{11}(\beta_1^{(j-1)}) = x_{t,t} - 1\left(p_{1t}^{11}(\beta_1^{(j-1)}) - \left(p_{1t}^{11}(\beta_1^{(j-1)})\right)^2\right), i = 0, 1$$
(30)

これらの式を代入すると一階条件は以下のように変形する。

$$\sum_{t=2}^{T} x_{t-1} \left\{ P\left(s_t = 0, s_{t-1} = 0 \mid \underline{y}_{T, \underline{x}_{T}}; \theta^{(j-1)}\right) - P\left(s_{t-1} = 0 \mid \underline{y}_{T, \underline{x}_{T}}; \theta^{(j-1)}\right) \left[p_t^{00}(\beta_0^{(j-1)}) + \frac{\partial p_t^{00}(\beta_0^{(j-1)})}{\partial \beta_{t0}} \mid_{\beta 0 = \beta_0^{(j-1)}} (\beta_0 - \beta_0^{(j-1)}) \right] \right\} = 0$$
(31)

$$\sum_{t=2}^{T} x_{t-1} \left\{ P\left(s_{t}=1, s_{t-1}=1 \mid \underline{y}_{T, \underline{x}_{T}; \theta^{(j-1)}}\right) - P\left(s_{t-1}=0 \mid \underline{y}_{T, \underline{x}_{T}; \theta^{(j-1)}}\right) \left[p_{t}^{00}(\beta_{0}^{(j-1)}) + \frac{\partial p_{t}^{00}(\beta_{0}^{(j-1)})}{\partial \beta_{t0}} \mid_{\beta_{0}=\beta_{0}^{(j-1)}}(\beta_{0}-\beta_{0}^{(j-1)}) \right] \right\} = 0$$
(32)

これをβについて解くと以下の式で表される。

$$\beta_{0}^{(j)} = \begin{pmatrix} \beta_{00}^{(j)} \\ \beta_{01}^{(j)} \end{pmatrix} = \begin{pmatrix} \sum_{t=2}^{T} x_{0,j-1} P(S_{t-1}=0) p_{0t}^{00} & \sum_{t=2}^{T} x_{0,j-1} P(S_{t-1}=0) p_{1t}^{00} \end{pmatrix}^{-1} \\ \sum_{t=2}^{T} x_{1,j-1} P(S_{t-1}=0) p_{0t}^{00} & \sum_{t=2}^{T} x_{1,j-1} P(S_{t-1}=0) p_{1t}^{00} \end{pmatrix}^{-1} \\ \times \begin{pmatrix} \sum_{t=2}^{T} x_{0,t-1} \Big\{ P(s_{t}=0, s_{t-1}=0) - P(s_{t-1}=0) \Big[p_{t}^{00} - \frac{\partial p_{t}^{00}}{\partial \beta_{0}} \beta_{0}^{(j-1)} \Big] \Big\} \\ \sum_{t=2}^{T} x_{1,t-1} \Big\{ P(s_{t}=0, s_{t-1}=0) - P(s_{t-1}=0) \Big[p_{t}^{00} - \frac{\partial p_{t}^{00}}{\partial \beta_{0}} \beta_{0}^{(j-1)} \Big] \Big\} \end{pmatrix}$$
(33)
$$\beta_{1}^{(j)} = \begin{pmatrix} \beta_{10}^{(j)} \\ \beta_{10}^{(j)} = \begin{pmatrix} \sum_{t=2}^{T} x_{0,j-1} P(S_{t-1}=1) p_{01}^{11} \\ \sum_{t=2}^{T} x_{0,j-1} P(S_{t-1}=1) p_{1t}^{11} \\ \sum_{t=2}^{T} x_{0,j-1} P(S_{t-1}=1) p_{1t}^{11} \end{pmatrix} \end{pmatrix}$$

$$\times \begin{pmatrix} \sum_{t=2}^{T} x_{1,t-1} P(S_{t-1}=1) p_{0t}^{11} & \sum_{t=2}^{T} x_{1,t-1} P(S_{t-1}=1) p_{1t}^{11} \\ \sum_{t=2}^{T} x_{0,t-1} \left\{ P(s_{t}=1,s_{t-1}=1) - P(s_{t-1}=1) \left[p_{t}^{11} - \frac{\partial p_{t}^{11}}{\partial \beta_{1}} \beta_{1}^{(j-1)} \right] \right\} \\ \sum_{t=2}^{T} x_{1,t-1} \left\{ P(s_{t}=1,s_{t-1}=1) - P(s_{t-1}=1) \left[p_{t}^{11} - \frac{\partial p_{t}^{11}}{\partial \beta_{1}} \beta_{1}^{(j-1)} \right] \right\} \end{pmatrix}$$
(34)