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Abstract 

Given two pairs of expected ut ility functions we formalize the notion that one 

expected utility function is more risk-averse than the other in the first pair to a 

greater extent than in the second pair. We do so by assuming that the utility 

functions are twice continuously differentiable and satisfy the Inada condition , and, 

in each of t he two pairs, using the function that transforms the derivatives of one 

expected utility function to the derivatives of the other rather than the function 

that transforms one expected utility function to the other. This definition allows 

us to interpret the quantitative results on the ambiguity aversion coefficients of the 

smooth ambiguity model of Klibanoff Marinacci, and Mukerji (2005) in some cases 

not covered by the more-ambiguity-averse-than relation that they conceived. 

JEL Classification Codes: C3 D 1 Gl l. 

Keywords : Expected ut ility functions, risk aversion, ambiguity aversion, smooth 

ambiguity model. 

1 Introduction 

An expected ut ility function (also known as a Bernoulli utility function) is said o be 

more risk-averse han anot her if the former is a concave ransformation of t he la tcr. 

The purpose of his paper is when two pairs of expected utility functions arc given , to 

formalize he idea tha one expected utility function is more risk-averse than the other 

in the first pair to a greater extent han in t he second pair. In symbols if v1 and 11,1 

constit ute he first pair and v2 and u2 constit ute the second pair then we wish to give 

a rigorous and sufficiently general definition to t he statement that v1 is more risk-averse 

han u 1 to a gTeatcr extent t han v2 is more risk-averse than v,2 . In other words, based on 

*I thank Shoko egishi , J ona han ewton, and, especially, Sujoy Mukerji for helpful comments. This 
re:,;carch i:,; funded by the Open Research Arca (OM) for the Social Sciences "Ambiguity in Dynamic 
Environmen 8." 

1 



he standard more-risk-averse-t han relation , we introduce a new binary relation over t he 

differences in risk aversion between two expected utility functions. 

The expected utility function v1 is more risk-averse t han u 1 , and v2 is more risk-averse 

han u 2 , if and only if t here arc two concave functions r.p1 and r.p2 such tha v 1 = r.p1 o 11,1 

and v 2 = r.p2 o u 2 . T he most na ural approach to formalize t hat statement tha v 1 is more 

risk-averse han u1 o a gTca er extent t han v2 is more risk-averse than u2 is o require 

r.p1 to be more concave han r.p2 . But this statement makes sense only if r.p1 and r.p2 have 

the same domain, ha is, u 1 and u2 have t he same range. In many applications, this 

assumption is violated. 

Our approach is instead, to assume hat the ut ility functions arc twice continuously 

differentiable and satisfy t he Inada condit ion , and use the function t hat transforms t he 

derivatives of one ut ility expected function to the derivatives of the other expected utility 

funct ion . In symbols , we define two func ions 'lj;1 : R ++ ---+ R ++ and 'lj;2 : R ++ ---+ R ++ 

by v~ = 'lj;1 o u~ and v; = 'lj;2 o 11,; and compare 'lj;1 and 'lj;2 . These functions 'lj;1 and 'lj;2 

have the same domain because t he ut ility functions u 1 and u2 arc assumed o satisfy t he 

Inada condition, and in our definition we rank 'lj;1 and 'lj;2 in terms of their elasticities 

rather t han t he curvature (which is used when comparing r.p1 and r.p2 ) . "\ c will also give 

necessary and sufficient conditions of t his definition in terms of choice bchavior between 

a random and a deterministic consumpt ion plans. 

This study is motivated by t he smooth ambiguity model of Klibanoff Marinacci and 

ukcrji (2005, hereafter KM ). T heir ut ility functions arc defined in t he form of nested 

expected u ilitics in which t he inner expected ut ilit ies, and t he associated conditional 

certainty cquivalcn s, arc akcn for a ut ility function 11, conditional on probability measures 

on the state space, and t he on er expected utility is taken for a utility function v over t he 

condi ional certainty equivalents with respect to what they termed a..c; the second-order 

belief. T he decision maker is ambiguity-averse if the outer utility function v is more risk­

averse t han t he inner ut ility func ion u. Theorem 2 of KMM proved t hat the curvature 

( concavi y) of t he tranforma ion function cp satisfying v = cp o 11, measures his ambiguity 

aversion much in the , amc way a..c; he Arrow-Pratt measure of absolute risk aversion 

measures risk aversion . 

As emphasized by KM t hemselves, a caveat on their morc-ambigui y-avcrsc-t han 

relation is in order. T he t heorem implies hat whenever one ut ility function is more 

ambig11ity-avcrsc han another hey share essentially the same inner utility function u . 

But it is a common practice in empirical studies to estimate or calibrate the curvature 

of he transformation function r.p (which is the K iM measure of ambiguity aversion) or 

of the outer ut ili y funct ion v wit hout fixing the inner utility function 11, a priori. Thus, 

for two ambiguity-averse ut ility funct ions having two different inner utility functions , 

we cannot conclude hat one is more ambiguity-averse than t he other even when t he 

ransforma ion funct ion r.p of the former is more concave t han t he latter . This significan ly 
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limits t he scope wi hin which we can intcrprc and compare various quan ita ivc results. 

Our definit ion on he other hand is tailored to t he need for a wider scope of numerical 

comparison. It can be applied to two pairs of which the inner ut ility functions arc different 

and, in addit ion has a clear cquivalcn condition in terms of the decision makers' choices. 

Thus, it allows he researcher o make a quantitative assessment on the KM /J: mca..surc 

of ambig11ity aversion wi h no reference to the associated Arrow-Pratt mca..-;ure for pure 

risks.1 

This paper is organized as follows. Section 2 lays out the sctup of t he paper and 

gives some preliminary results. Section 3 presents a new relation between two pairs of 

expected ut ility functions. Sec ion 4 gives examples of t he new relation for t he ca..c;;c of 

constant absolute or rela ivc risk aversion. Section 5 provides an essentially equivalent 

necessary and sufficient condit ion for t he new relation in terms of the decision makers ' 

choice behavior. Section 6 discusses applications to t he ut ility functions of K 1M. Section 

7 gives a summary and suggcs s a couple of directions of future research. All proofs arc 

in t he appendix. 

2 Setup 

Let I he a non-degencra c (containing at least two points) open interval of R and u : 

I • R . Assume t hat 11, is wicc continuously differentiable and that u" < 0 < 1l. We 

also impose he Inada concli ion t hat is u' ( x) • 0 as x • sup I and u' ( x) • as 

x • inf I . We call t hese conditions t he basic conditions. 

Denote by the range of 11, : I • R by Ran 11, that is Ran 11, = u( I) = { u( x) I x E I} . 

Ran u' is analogously defined. Since u" < 0 he Inada condition is cquivalcn to Ran 1l = 

R ++ · 
For a ut ility function 11, : I • R we define the Arrow-Pratt measure of absolute risk 

aversion a(· u) : I • R ++ by let ing a(x u) = -u11 (x)/1l(x) for every x E I . For x > 0, 

we define t he Arrow-Pratt mca..-;urc of relative risk aversion as r(x , 11,) = -u11 (x)x/1l(x). 

The u ili y func ions t hat exhibit cons ant absolute or relative risk aversion sa isfy 

the basic condi ions but t heir ranges arc different. In fact let I = R and wit h , > 0 

1 
u(x) = -- cxp(- , x). 

'Y 
(1) 

Then u has the constant cocfficicn I of absolute risk aversion and Ran 11, = - R ++ · Let 

1 A similar complication a.rises in recursive u ility as well. For example, in presenting functional 
forms of recursive utility, Epstein (1992, cquali ics (4.23) a.nd (4.24)) restricted the constant coefficient 
of rcla ivc risk a.version to be a.t most one a.nd the intcrtcmpornl elasticity of substitution to be a.t least 
one. But when it comes o estimating hcsc values in any quantitative work, other functional forms arc 
also necessary. 
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I = R ++ and, wit h 1 > 0 

n(x) ~ { 
1- , 

if 1 = 1 

otherwise. 

Then 11, has t he constan coefficient of relative risk aversion and 

Ran u = { :++ 
- R ++ 

if 1 < 1 

if 1 = 1 

if ,> 1. 

(2) 

The following proposition covers he case where t he coefficients of relative risk aversion 

arc not constant . 

Proposition 1 Suppose that an e.1:pected utility function u : R ++ ---t R satisfies the basic 

conditions. 

1. If there is a b > 0 such that r(x, u) ::S 1 for every x 2:: b, then Ran 11, is not bounded 

from above. 

2. If there are a b > 0 and a g E (0 1) .'mch that r(x, 11,) < g for every x ::S b, then 

Ran 11, is bounded from below. 

3. If there is a b > 0 such that r(x, u) 2:: 1 for every x ::S b, then Ran 11, is not bounded 

from below. 

4- If there are a b > 0 and a g E (1 
Ran 11, is bounded from above. 

) such that r(x, u) > g for every x 2:: b, then 

Since hesc results will not be used in t he subsequent analysis and their proofs arc 

elementary we omit t hem. The message of t he proposition is t hat t he range of a utility 

funct ions is closely rcla cd to t he risk atti udc that it represents and hence an additional 

rcs riction on it may well turn out to be a significant restriction on t he risk at itudc. Since 

he range of a u ility func ion is the domain of t he function tha transforms he utility 

funct ion to another one, t he implication of this proposition for a formal definition of t he 

statement hat one utility function is more risk-averse t han t he other in the firs pair to a 

greater extent than in t he second is hat t he function t hat transforms one ut ility function 

o another should not be used. V\ c will instead, use t he function t hat transforms t he 

derivative of a ut ility function to t he derivative of another. 
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3 Definition of the new relation 

To understand our definition of t he ranking over more-risk-averse-than relations which 

we will la er give, the following proposition is helpful. 

P roposit ion 2 Suppose that two expected utility functions u : I • R and v : I • R 

satisfy the basic conditions. Define 'I/; : R ++ • R ++ by 'I/;= v' o (u')- 1 . Then, for every 

X E I , 
a(x, v) 
a(x 11,) 

'I/;' ( u' ( x) )u' ( x) 
'l/;(11/(x)) 

(3) 

It is easy to check t hat 'I/;' > 0. As y • 0, (1t') - 1(y) • sup I . Thus, '1/;(y) = 

v' ((1l) - 1 (y)) • 0. Analogously, '1/;(y) • oo as y • . Define the elastici y of t he 

transforma ion function 'I/;, e( ·, 'I/;) : R ++ • R ++ by 

'I/;' (y )y 
e(y 'I/;)= ( ) . 'I/; y 

Then (3) can be rewri ten as 

a(x v) ( '( ) ) 
( ) =eu x,'1/; . 

a x,u 
(4) 

P roposi ion 2 implies tha v is at leas as risk-averse as u if and only if v' is an elas ic 

transforma ion (that is, everywhere having elasticity greater t han or equal to one) of 

1l. In pa.J.· iculm a proport ional increase in t he Arrow-P ratt measure of absolute risk 

aversion from 11, o v is equal to t he elasticity of the transformation. 

D efinition 1 Suppose t hat four expected utility functions 11,1 : J1 • R , v1 : J1 • R , 

u2 : J2 • R and v2 : J2 • R satisfy the basic conditions. Write '1/;1 = 11~ o (uD- 1 and 
I ( I )- 1 

'1/;2 = 112 o U2 · 

1. We say t hat v1 is more risk averse than 11,1 at least to the same extent as v2 is more 

risk averse than u2 , if 

(5) 

for every y1 E R ++ and y2 E R ++ · We then write (u1 v1 ) • (u2 v2 ) . 

2. We say hat 1 1 is more risk averse than 11,1 to a greater extent than v2 is more risk 

averse than 11,2 , if 

(6) 

for every y1 E R ++ and y2 E R ++ · We then write (u1 , v1 ) C> (u2 v2 ) . 

In the definition, t he domains J1 and J2 may be different and the ranges Ran 11,1 , 

Ran v1 , Ran u2 , Ran v2 may all be different. The two levels of marginal utili y y1 and y2 



hat appear on each of the two sides of (5) and (6) may be akcn o be different. If t hey 

were taken to be equal, then t he conditions would be written as 

e(y, 'I/J1) ~ e(y 'I/J2) or e(y, 'I/J1 ) > e(y 'I/J2) (7) 

for every y E R ++, and we may say t hat 'lj;1 is more elastic as 'lj;2 . If in addition we 

fo llowed t he terminology of he strongly-more-risk-averse-than relation of Ross (19 1), 

we could say t hat t hat 'lj;1 is strongly more elastic as 'lj;2 . By (3) (6) is equivalent to t he 

condi ions tha 

a(x1, v1) a(x2, v2) 
---->----
a( x 1 , 111 ) a( x 2 , 112 ) 

( ) 

for every X1 E Ii and x2 E 12. 

Bo h • and I> arc t ransitive , I> is irreflexive, but • is neither reflexive nor irreflexive. 

oreovcr, I> is included in he asymmetric (strict) part of • (that is if (711 , 7Ji) I> (712 7 2 ) 

hen (1.t1 v1) • (712, v2) and (712 v2) " (711 v1)), and the former is strictly smaller t han 

the la ter .2 

Instead of saying hat 11,1 is more risk-averse than v1 to a greater extent than 712 is 

more risk-averse t han v2 we could say more informally t hat 11,1 is more risk-averse t han 

v1 , and even more so t han 712 is more risk-averse than v2 . For brevity we shall thus refer 

o the binary relations I> and • as the even-more-risk-averse-than relation in t he rcs of 

his paper. 

4 Examples 

In this sec ion, we give examples of the even-more-risk-averse-than relation that involve 

constant absolute or rela ivc risk aversion . These examples involves transformation func­

ions 'I/Jn from 71~i to v;i hat have cons ant elasticit ies. The first , simplest, example deals 

with constant absolute risk aversion . 

Example 1 Suppose tha four expected ut ility functions 711 : 11 • R , v1 : 11 • R 

712 : h • R , and v2 : h • R have cons ant coefficients 11, 'f/1 1 2, and 'f/2 of absolute risk 

aversion (1) . T hen 

(9) 

for every n = 1, 2 and every y E R ++ . Hence, 

(10) 

2For every (tt1,12) and every (11,2 v2), (11,1 11) • (11,2,v2) and (11,2,12) • (11,1,v1) if and only if c(-, 't/Ji ) 
and c(• , 'ljJ1) take he same cons ant value. Thm;, the symmetric part of • corresponds to the pair ('I/J1 'I/J2) 
of identical rnnsformations that have a. constant elasticity. 
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for every n = l, 2. T hus, (u1 , v1 ) • (1.t2 v2) if and only if TJi/,1 2:: TJ2/ 12 and (u1 7 1) [> 

(u2 , v2) if and only if TJi/, 1 > TJ2/,2. 

The next one deals with constant relative risk aversion. 

Example 2 Suppose tha four expected ut ility functions u1 : J1 • R , v1 : J1 • R 

u2 : f 2 • R , and v2 : 12 • R have constant coefficients 11 'r/l 12 and 'r}2 of rela ivc 

risk aversion (2). T hen, (9) and (10) hold. T hus (u1 v1) • (u2 v2) if and only if 

77i/, 1 2:: TJ2/, 2, and(u1, v1) [> (n2, v2) if and only if TJi/, 1 > TJ2/,2. 

Example 2 looks much t he same as Example 1, but it illuminates what can be brought 

about by our use of t he funct ion 'l/Jn that transforms u~i to v;i> rather than he function 

cp.,. t hat transforms n n o V n (n = 1, 2). Indeed if we used the latter, the domain of l.{)n 

coincides wit h Ran 7.ln which may be either R ++ or - R ++, depending on whether in is 

smaller or greater t han one. For example, if 11 < 1 < 12, then t he domain of cp1 coincides 

with R ++, while t he domain of cp2 coincides with - R ++· Hence it docs not make sense 

o say tha one of t hem is more concave han the other , and we cannot conclude tha v1 

is more risk averse han 11,1 to a greater extent t han v2 is more risk averse t han u2 or t he 

other way around. 

Example 3 Suppose t hat wo expected utili y func ions 7.L1 : f 1 • R and v1 : Ii • R 

have constant coefficients 11 and 'r/l of absolu c risk aversion (1) and two expected utility 

functions 7.t2 : J2 • R and v2 : J2 • R have constant coefficients 12 and 'r}2 of relative risk 

aversion (2). Then (9) and (10) hold. Thus (u1 , v1) • (u2 v2) if and only if 77i/, 1 2:: TJ2/, 2, 

and(1.t1 v1) [> (u2 , v2) if and only if TJi/, 1 > 'r/2/, 2-

This example is an immcdia c consequence of the first two but it would have been 

impossible to compare a pair of expected ut ility functions of constant absolute risk aver­

sion and a pair of expected ut ility functions of constant relative risk aversion , if we had 

stuck to t he comparison by means of the function l.{)n t hat t ransforms 71,n to Vn . Since 

J1 = R and J2 E R ++ or J2 = - R ++ I 1 =/:. I2 . Thus, the example also shows t hat t he 

comparison of he more-risk-averse han relation is possible even when the domains arc 

different. 

The fo llowing example is a gcncraliza ion of the previous one, in hat t he expected 

ut ility funct ions have decreasing hyperbolic absolute risk aversion. 

Example 4 For each n = l , 2, let bn E R and the four expected utility functions 11,1 

(b1, oo) • R , v1 : (b1, ) • R , 7.t2 : (b2 , ) • R , and v2 : (b2 ) • R have hyperbolic 
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absolu e risk aversion wi h he cautiousness parameters in and 77n: 3 

Then, 

1 
a(xn, nn) = ( ) , 

1n Xn - bn 
1 

a(xn vn) = ( ) 
77n Xn - bn 

a(xn,vn) 
a(xn, 11,n) 

1n 

77n 

for every Xn E (bn, oo). Thus, (7h v1) • (n2 v2) if and only if 77i/11 ~ 772/12 and 

(n1, v1) [> (n2 v2) if and only if 77i/11 < 772/ 12. That is , the even-more-risk-averse-t han 

relation can be characterized as a larger proportional decrease in the cautiousness. 

In he fo llowing example the expected u ility functions have increa..c;ing, rather t han 

decreasing, hyperbolic absolute risk aversion. I covers t he case of quadratic expected 

ut ility functions. 

Example 5 For each n = l 2 let bn E R and the four expected utility functions 11,1 : 

(- , b1) ---+ R , v1 : (-oo b1) ---+ R , 11,2 : (- , b2) ---+ R , and v2 : (- , b2) ---+ R have 

hyperbolic absolu e risk aversion with t he cautiousness parameters in and 77n: 

Then 

1 
a(xn, n.,,) = ( ) 

In bn - Xn 

1 
a(xn, Vn) = (l ) 

77n Jn - Xn 

a(xn,Vn) 
a(xn, 11,n) 

1n 

77n 

for every Xn E (-oo bn)- Thus, (11,1, v1) • (11,2 v2) if and only if 77i/11 ~ 772/12 and 

(n1, v1) [> (11,2 v2) if and only if 77i/11 < 77z/12. That is, t he even-more-risk-averse-t han 

relation can be charac erized as a larger proportional clecrea..c;e in t he absolu e values of 

he caut iousness. 

The above five examples all involve pairs of expected ut ility functions for which t he 

ratio of t he coefficients of absolute risk aversion, (2), is constant. Thus every pair in 

hese examples can be compared with every other pair in t he examples wi h respec to 

• . 
The following example is clue to Collard, Mukerj i Sheppard, and Tallon (201 ). It 

is differen from the previous ones in hat there may be no ranking with respect to t he 

even-more-risk-averse- han relation. 

3The cautiommess is defined as the deriva ive of the reciprocal of the coefficients of absolute risk 
aversion. This terminology is due to WiL"ion {196 ). 



Example 6 Suppose t hat wo expected utility functions 11,1 : J1 • R and u2 : J2 • R 

have constant coefficients 11 and 12 of rcla ivc risk aversion (2) . For each n = 1 2, let 

O'n > 0 and assume t hat !..pn has t he same functional form as the expected u ili y function 

of constan absolute risk aversion (1) with the parameter I replaced by an. Define 

Vn = c.p .. 0 Un . Then 

( ) _ 1 ( O'n 1- -y,. ) 1n X - - - CXp - _ X 
O'n 1 - In 

v;L(x) = X - 'Yn CXp (- O'n Xl- -yn ) , 
1 - In 

and t he basic condit ions arc me . Define 7/Jn = v~i o (u~J - 1 then 

Thus, 

Thus, (u1 , v 1 ) • (n2 , v2 ) if and only if if and only if 

which is equivalent to 
0'112 > l/-y1 - l l - lh2 
-- - Y1 Y2 
0'211 

(11) 

(12) 

for every y 1 and every y2 . If 11 = 12 = 1 then t he right-hand side is equal to one and 

he inequali y holds if and only if a 1 ~ a 2 .1 Ot herwise, t he right-hand side can take any 

value in R ++ as we vary y1 or y2 . Thus, t here is no value of t he ans and t he ins such 

hat (n1, v1) • (11,2, v2) -

In t his example, since I 1 = I2 = R ++ we can take Yn = u~Jx) for each n wit h a 

common consumpt ion level x E R ++ in the above example. Then (12) can be reduced to 

41ri this cm,e, 11,,. has w ns ant coefficient 1 of relative risk aversion and Vn has a constant coefficient 
1 + an of rela ive risk aversion . This will be shown by {13). 1ri this case, (11,1 111) and (112, v2) can be 
compared by t he more-ambigui y-averse-than relation of KMM. 
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which holds for every x if and only if 11 = 12 and a 1 2: a 2 . That is, (8) holds whenever 

x1 = x2 if and only if 11 = 12 and a 1 2: a 2 . This highlights a difference be wccn our 

definition of the even-more-risk-averse- han relation and t he ambiguity measure of KM 1 

o be defined in Sec ion 6. In our dcfini ion, we require (8) to hold for all choices of y1 

and y2 , while the ambiguity measure of KMM is equivalent to requiring it o hold only 

when 11 = 12 and there is an x such t hat u~.(x) = Yn for each n . To compare two 

maJ.·ginal ut ilities at a common consump ion level it is, of course necessary t hat 11 = 12 , 

bu our dcfini ion of the cvcn-morc-risk-avcrsc-t haJ.1 relation is applicable even when this 

condi ion is not me . 

In this example Vn has decreasing or increasing relative risk aversion, depending on 

whc her ,n is greater or smaller han one. Indeed, by (11), 

( ) + 1- -y,. r X Vn = fn lYnX . (13) 

Thus, if ,n > 1 hen r( ·, vn) is s rictly decreasing, while if ,n < 1 then it is stric ly 

increasing. This is a rather unexpected consequence of introducing ambiguity aversion 

by way of 'Pn of the form (1). On t he one hand, the decision maker 's constant coefficient 

of relative risk aversion over purely risky consumption plans can be measured, say, by t he 

fraction of t he total weal h he invests into the asset with purely risky returns. On t he 

other hand, whether he exhibits increase or decreasing relative risk aversion over purely 

ambig11ous consumpt ion plans ( second-order acts according to the terminology of K 1M) 

can be determined, say, by whether he would increase t he fraction of t he total wealth 

he invests in o t he assets wi h purely ambiguous returns a..c:; t he total wealth increases. 

These two a t itudcs towards risk and aJ.nbiguity should better be disentangled in models 

of any quanti ativc analysis, bu in t his specification a restriction on one automatically 

implies a rcs riction on t he other. 

The use of func ions (1) of constant absolute risk aversion a..c:; t he function 'Pn t hat 

ransforms Un o Vn was also suggested by Ju and Miao (2012 pages 566- v67). The 

justification for his i. t hat if we take 'Pn to be a function (2) of constant relative risk 

aversion t hen Vn = 'Pn o Un is no well defined when 11,n has constant coefficient ,n of 

relative risk aversion greater han one (because, hen Ran u .. = - R ++ )- This problem 

can be circumvented if we specify t he function 'I/Jn t hat transforms u~. to v;, to be any 

plausible form, such as (9), because Ran u~. = R ++ regardless of t he values of in · 

5 Behavioral conditions 

In this section, we obtain an cquivalcn bchavioral condition of the cvcn-morc-risk-avcrsc­

han relation. We staJ.·t wit h some dcfini ions. 
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D efinition 2 Suppose t hat four expected utility functions 7.l1 : f 1 • R , v1 : f 1 • R 

11,2 : h • R , and 1 2 : f 2 • R satisfy t he basic conditions. We say t hat v1 is more risk 

averse than 11,1 in behavior at least to the same extent as v2 is more risk averse than 1.L2 

if for each n and for every :i;n E In every cumulative distribution functions Fn and every 

sufficiently small en > 0, if the support of Fn is included in [xn - en Xn + en] and its mean 

is equal o Xn, t hen there arc a qn > 0 and a T > 0 such that 

11,1(x1 - q1) ::; ./ 7.L1(z) dF1(z) 

v1(x1 - Tq1) 2:: ./ v1(z) dF1(z) 

7.L2(:1;2 - q2) 2:: ./ 7.L2(z) dH(z) 

v2(x2 - Tq2) ::; ./ v2(z) dF2(z). 

Y./c t hen write (11,1 v1)• (11,2, v2). If, in addition these four inequalities hold as s rict 

inequalities, t hen we say t hat v1 is more risk averse than 11,1 in behavior to a greater 

extent than 1 2 is more risk averse than 1.L2 and write ( 11,1, v1) C> ( v,2, v2) . 

The first incquali y in he dcfini ion of • tells us that t he certainty premium under 

11,1 is smaller han or equal to q1 while t he second inequality tells us t hat t he certainty 

premium under v1 is greater han or equal to Tq1. Hence, the proportional change in t he 

certainty premium induced by t he change from 7.L1 to v1 is greater t han or equal to T. 

The hird incquali y tells us hat the certain y premium under 7.L2 is greater than or equal 

to q2, while he fourth inequality ells us that t he certainty premium under v2 is smaller 

than or equal to Tq2. Hence, the proport ional change in the certainty premium induced 

by t he change from 7.L2 o v2 is smaller han or equal to T. Thus t he proport ional change 

in certainty premium is greater or equal when changing from 7.l1 to v1 than when changing 

from 7.l2 to v2. The definition of• requires hat this be true for every small risk, regardless 

of the consumpt ion levels at which the certainty premiums arc measured. The inequalit ies 

in t he definit ion of C> arc diffcrcn from t hose in t he definit ion of • only in tha t he s rict 

inequalities arc all replaced by he weak inequalities . Whenever necessary we shall refer 

to the binary relations C> and • as the bchavioral even-more-risk-averse-t han relation. 

The following theorem is concerned with t he four binary relations • C>, • and C> . 

Theorem 1 C> ~ C> ~ • ~ • . 
This hcorcm means tha for four expected ut ility functions 7.L1 : f 1 • R v1 : f 1 • R , 

11,2 : 12 • R , and v2 : 12 • R satisfying he basic conditions. if (u1, v1) C> (u2 v2) then 

( 1.L1 , v1)C> ( 1.L2, v2); if ( 7.l1, v1)C> (1.L2 , 1 2), t hen (u1, v1)• ( 1.L2, v2) · and if ( 7.l1, v1) • (u2 , v2), then 

(u1, v1) • (u2, v2). It shows hat t he even-more-risk-averse-than relation is concerned with 
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he propor ional change in the certainty premiums (the difference between the mean of 

the random prospcc and its certain y equivalent) caused by a change in expected utility 

funct ions. 

Putt ing he four conditions togc her and ignoring t he difference between s rict and 

weak relations, we can conclude that t he even-more-risk-averse-than relation can be dc-

cctcd by a reversal of choices be wccn the deterministic and random consumption plans 

by some common proportional change in t he certainty premiums. otc t hat t he comli­

tions in his t heorem arc also applicable o define the even-more-risk-averse- han relation 

be wccn wo pairs of preference relations over cumulative distributions functions that 

may not be represented by expected utility functions. To formalize this last statcmcn , 

let tt and ti be preference relations defined on a set of cumulative distribution functions 

on 11 , and t½ and t~ be preference relations defined on a set of cumulative distribution 

funct ions on 12 . Imagining that ti ti t½ and t~ arc represented by t he expected 

ut ility functions 1.1,1 , v1 , u2 , and v2 and letting >--L >--i , >--t and >--~ be t heir asymmetric 

(s rict) par s, we can rewrite t he inequalities in the definition of C> a..<; 

F1 >-- i 1 [x1 - q1 ,oo) 

l [x1 - Tq1 , ) >--i F1 , 

l [xrq2 , ) >--t F2 

F2 >--~ 1 1:z:2- Tq'.l , 

where for every x, 1 [:z:, ) dcno cs the (degenerate) cumulative distribution function aking 

value 1 on [x, oo) and O on ( - , x) . The inequalities in t he definition of• can be obtained 

by replacing the >--~i by t he t!i. These conditions can be used to a..<; t he dcfini ion of t he 

statement t hat ti is more risk-averse t han ti to a greater extent t han ( or at least to t he 

same extent as) t~ is more risk-averse han tt even for preference relations t hat cannot 

be represented by expected utility functions . 

6 Application to the ut ility funct ions of KMM 

As we s atcd in t he introduction t his study is motivated by t he smooth ambiguity 

model of K M. In this section we show how our definition can be used o compare 

wo ambig11ity-avcrsc utility functions in he model. 

6 .1 S t up 

Le S be t he state space, which rcprcscn s the uncertainty that the decision maker is 

faced with. Denote by D he set of all probability measures S . Denote by C he set of 
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all funct ions of S into I .5 Suppose tha wo cxpcc cd u ility functions u : I • R and 

v : I • R sa isfy he basic conditions. Let 11, be a probability measure on D. Define a 

ut ility funct ion W: C • R by letting 

W(c) = .l 7 ( u- 1 (l u(c(s)) d1r(s))) dµ (1r) (14) 

for every c E C. This ncs cd expected ut ility function is the functional form t hat KMM 

axiomatizcd. vVritc <p = v o u - 1 , then 

W(c) = .l <p (.l u(c(s)) d1r(s)) dµ (1r). (15) 

This shows t hat t he decision maker is averse to t he uncertainty t hat he perceives in t he 

expected utilities calculated by various probability measures 1r E D if and only if <p is 

concave, t hat is , v is more risk-averse t han 11,. The probabili y measure JL represents his 

subjective assc. smcnt of his unccr ainty which KMM termed as the second-order belief. 

We sec in (14) hat if f5 u(c(s))d1r(s) is independent of 1r , t hen, writing x = 
u- 1 (J5 11,(c(s))d1r(s)) E I , we obtain W(c) = u(x). This means t hat if he conditional 

certainty equivalent of c given a probability measure 1r E supp 11, is, in fact independent 

of 1r , then he ut ility flmction W is determined by the inner utility function 11, ( as it 

determines t he conditional certainty equivalents) and t he outer expected ut ility function 

v is irrelevant as i only monotonically transforms the certainty equivalents. Thus, u 

can be interpreted as representing he atti udcs towards pure risk. On the o her hand, 

suppose that c is constant almos surely wi h respect to every 7r E supp JL, but he con­

stant hat c akes almos surely depends on 1r then denote t he value by c( 1r). Then , 

W(c) = fn v(c(1r)) d11,(1r). This means that W(c) is determined only by the ou er utility 

function v , and the inner ut ili y u is irrelevant as we take t he certainty equivalents in t he 

calculation for W ( c). T hus, v can be interpreted as representing the atti udcs towards 

he uncertainty t hat t he decision maker perceives in the expected utility levels. 

To give a new definition of the morc-ambigui y-avcrsc-t han relation for t he utility 

funct ions of KMM and compare i with he definition KMM gave (Definition 5), we 

impose t he same restrictions on t he sta c space as t hey did. Let S = n x [O 1] where 

n is a measurable space and [O, 1] is t he closed unit interval endowed wit h the Lebesgue 

measure A. It is in crprctcd as an objective probability, and as such all the probabilit ies 

hat he decision maker may conceive of on the state space S have the common marginal 

dis ribution A on [O, 1].6 vVc assume t hat S contains at least two elements. By an abuse 

of notation, we also denote a probability distribution on n by 1r, the set of all probability 

5To ma.kc sure the u ility function is indeed well defined, we need to impose some additional conditions 
on Sand C. To simplify the exposition we omit them. 

6Wc have taken [O, l ] and the Lebesgue measure>. as t he objective probability measure to guarantee 
that any distribution of consumption level-, can be represented as a. random variable on [O, l ]. 
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measures on n by D , t he second-order belief on D by JJ, . By F\1bini s t heorem we can 

then rewrite (14) as 

6.2 An alternative more-ambiguity-averse-than r elation 

Le W1 and W2 be wo K M ut ility functions defined on the same state space S 

n x [O, 1] and determined by two t riples (u1 v1 11,1 ) and (u2 , 7 2 11,2 ) via (16). Denote by In 

the common domain of 11,n and 7 n· Denote by Cn he set of all en : S ~ In. The following 

is a simplified version of t he more-ambigui y-averse-t han relation of KMM. 

Defini t ion 3 (K MM) Assume hat Ii = h and 11,1 = µ2. \ rite C for Cn. We say 

hat W1 is at least as ambiguity-averse as W2 if, for every c E C and every d E C, 

W2 ( c) 2: W2 ( d) whenever d( w c;) is independent of w E n and W1 ( c) 2: W1 ( d) . 

In he first part of his defini ion we assume that the two utility functions share t he 

same domain of consumption levels and t he same second-order belief. The a..,;;sumption of 

common domain is needed a..,;; t his definition is concerned wit h the rankings by W1 and W2 

over common consumpt ion plans c and d. The a..,;;sumption of the common second-order 

belief is imposed to exclude t he possibility hat t he difference in ambiguity a t itudes arises 

from a difference in second-order beliefs. The integral part of their definit ion is in t he 

second par of t his definition . It requires hat for two consumption plans c and d, if d is 

unambig110us and i is at most a..,;; desirable a..,;; another, possibly ambiguous, consumption 

plan c for W1 , then d should also be a most a..,;; desirable as c for W2 . This definit ion 

formalizes the idea putting t he discrepancy between weak and strict preferences a..,;;ide, 

hat if he unambig110us consump ion plan is inferior for t he more ambiguity-averse utility 

function W1 , i should also be so for t he less ambiguity-averse u ility func ion W2 . 

The original definition by KMM is more intricate t han Definition 3. They gave t he 

more-ambig11ity-averse- han relation over the family of pairs of preference relation on 

he set C and preference rela ions on t he set of fictit ious consumpt ion plans (termed 

by K M a..,;; second-order ac s) con ingent on probability mea..,;;ures 1r on n 7 where t he 

family is construe ed by indexing he pairs by the supports of second-order beliefs in 

7Iri fac , KMM axioma ized t he functional form (14) in terms of a pair of a preference relation on C 
and a preference relation on he set of second-order acts, rather than jm;t in terms of a preference relation 
on C. Seo (2000) axiomatized the functional form that extends (14) by dispensing with the preference 
relation on the se of second-order acts and introducing three-stage, rather than two-stage, lotteries. 
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D ; and hey defined one pair as being more ambiguity-averse than ano her if he same 

rankings between an unambiguous consumpt ion plan d and a possibly ambiguous plan c 

holds as in Dcfini ion 3 for all supports of second-order beliefs. In contrast, Definit ion 

3 docs not involve any preference relation on the set of second-order acts, and deals 

with a single preference relation rather than a family of preference relations . K 1M's 

fully-fledged definit ion is importan , especially when we interpret numerical rcsul s on 

K Mu ility funct ions, because it makes explicit the otherwise implicit assumption t hat 

a decision maker's atti udcs towards risk (represented by the inner utility function 11,) 

and ambigui y (represented by the outer utility function v) should travel with him across 

different set ings (represented by t he supports of second-order beliefs). Yet, in t he 

subsequent analysis, we use Definition 3 because this simplified version is sufficient to 

illustrate he difference in he definition of a more-ambiguity-averse-than relation between 

K 1M and t his paper. 

Theorem 2 of KMM shows t hat for W1 and W2 defined through (16) with 11 = 12 

and 11,1 = 11,2 , W1 is a lca..c; as ambigui y averse a..c; vV2 if and only if 11,1 is an affine 

ransforma ion of 11,2 and v1 is a concave ransformation of v2 . The affinity between 11,1 

and 11,2 follows from the fac t hat in Definit ion 3 ( a simplified version of t he definit ion 

of KM ), t he consumption plan c may be unambiguous as well. In fact, by restricting 

he definit ion to t he case where bot h d and c arc unambiguous we can sec tha W1 and 

W2 must agTcc on t he ranking between unambiguous consumption plans whenever one is 

more ambiguity-averse than t he other in the sense of Definition 3. But this is equivalent 

o saying t hat 11,1 is an affine transformation of 11,2 . 

This consequence of t he more-ambiguity-averse- han relation is somewhat unfor u­

natc, because i significantly limits the scope within which we can compare var10us 

quantitative results on ambiguity at itudcs in the literature. To sec this point , imag­

ine t hat given a set of data on portfolio choices we have estimated ambiguity-averse 

ut ility funct ions W1 and W2 for wo groups of investors t hat arc formed on t he basis of 

some observable charac cris ics, such as age , gender and occupation. We would t hen like 

o know to what extent t he difference in ambiguity attitudes can account for the differ­

ence in portfolio choices between t he two groups. The natural course of ac ion would 

be to compare t he cs ima cd r.p1 and r.p2 . However, Definition 3 would provide no sound 

theoretical foundat ion for such a comparison if the estimates of 1.t1 and 11,2 were diffcrcn . 

Our definition of a more-ambiguity-averse-t han relation docs not suffer from this defi­

ciency. Unlike Definit ion 3, our definition neither assume t hat J.t1 = µ 2 nor imply t hat 1.t1 

is an affine t ransformation of 11,2 . Deno c by ,, the function defined on S t hat constan ly 

akcs value one. Our dcfini ion can hen be stated as follows. 

Assumption 4 of KMM requires these attitudes to be separable from the settings. But whether such 
a separation is possible is a eon entious issue as can be seen in the discussions of Epstein (2010) and 
Klibanoff, Ma.rinacei , and Mukerji (2012). 



D efinition 4 vVc say hat W1 is at least as ambiguity-averse as W2 if for each n and for 

every Xn E In, every sufficicn ly small En > 0, every c,.. E C.,. and every dn E Cn if t hey 

satisfy t he firs two of he following three condit ions t hen t here arc a Qn > 0 and a T > 0 

hat satisfy he last one. 

1. dn(w, ~) docs not depend on w En. We thus WTitc dn(~) and rcganl dn : [O 1] • I n· 

2. Define en : D • In by le t ing 

3. 

(17) 

for every 7r E D . T hen he distribut ion of en, /l•n oe;;1, coincides with the distribution 

of dn, Ao d;;1. orcovcr, t heir support is included in [xn - En Xn + En] and heir 

mean is equal o Xn, 

W1((x1 - Q1 )L) :S W1(d1) 

W1 ((x1 - TQ1)L) 2: W1(c1) 

W2((x2 - Q2)L) 2: W2(d2) 

W2 ((x2 - TQ2)1, ) :S W2(c2)-

We then write W1•W2 . If, in addit ion t he inequalit ies in the last condit ion hold ass rict 

inequalities, hen we say t hat W1 is more ambiguity-averse than W2, and write W1i>W2. 

This definition compares the preference between a deterministic consumpt ion plan 

(xn - qn)t, and an unambig110us consumpt ion plan dn with the preference between a 

deterministic consum pt ion plan (xn - Tqn)l and a purely ambiguous consumpt ion plan 

c,., . To be more precise, by (16) and the change-of-variable formula 

Since Vn is mono one, t he ranking between dn and (xn-qn) t, can be reduced o t he ranking 

be wccn the dis ribution >.. o d;;,1 and the deterministic consumpt ion level :_i;n - Qn by t he 

inner cxpcc cd ut ility function 11,n· By (17) and the changc-of-wuiablc formula, 

Thus, the ranking between c,., and (:i;n - TQn) t, can be reduced to the ranking between 

he distribut ion /Ln o e~1 and t he dctcrminis ic consumpt ion level Xn - TQn by the outer 
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exp ected u ility function 7 n· Since A o d:;;1 = µno e.;:;: 1 the two rankings differ only in 

the expected ut ility func ion wi h respect to which t he two (random and deterministic) 

consumpt ion plans arc ranked. Following the terminology of K 1M we shall refer to e as 

he second-order act associated wit h c., •. 

This sort of comparison between two rankings was envisaged by Definition 2, but 

he comparison in Definit ion 4 is different from it in an important respect: While t he 

al crnativcs, x .. - qn, Xn - Tqn, and Fr,, in Definit ion 2 can be set up without knowing t he 

ut ility funct ions (n .. and vn), to sc up t he alternatives c.,, dn , x .. - q .. , and Xn - Tqn, in 

Definit ion 4, we need o know t he inner u ility function 11,n and the second-order belief µn 

because r.,,,, and dn mus satisfy Aod.;:;:1 = JLn oe.;:;: 1 , where t he fictitious consumpt ion plan en 

in (17) depends on he inner ut ili y function 11,n· In this sense the morc-ambiguity-avcrsc­

than relation of Definit ion 4 is better suited o t he case where the attitudes towards risk 

(rcprcscn cd by t he inner u ili y function 11,ri) and t he second-order beliefs µ n arc already 

known.!J 

The next two hcorcms show how our more-ambiguity-averse-than rela ion is related 

o the even-more-risk-averse- han relation in bchavior which we defined in Dcfini ion 2. 

They give an easy way to check whether a KMM ut ility function is more ambiguity-averse 

than another. The first one is simple. 

Theorem 2 Define two utility function W1 : C1 • R and W 2 : C2 • R on the same 

state space S = n x [O, 1], with [O, 1] endowed with the Lebesgue mea.mre, by two triples 

(n1 v1, /L1) and (n2, v2 JLz) via (16) . Then 

1. If (n1, v1)l>(11,2, v2) , then W1e>W2 . 

This t heorem shows, roughly, hat the even-more-risk-averse-than relation, in bchav-

10r implies t he more-ambiguity-averse-t han relation. T he second theorem is a part ial, 

bu not t he full, converse of he first. To sec why the full converse canno be ob aincd , 

consider t he case where he second-order belief µn is concentrated on a single probability 

measure on n t hen, for every ( en dn) satisfying the conditions of Definition 4 he dis-

ribution µno e.;:;:1 is degenerate on a single consump ion level and thus, t he inequalit ies 

9 T hm;, if we were to conduct experiments to infer and compare two KMM utility functions W1 and 
W2 , we should do so in two stages under the assumption t hat we know that the two second-order bclicfa 
111 and JJ,2 m·c he same and, in addition, wha the common second-order belief is. lo the first stage 
of experiments, we only use unambiguous consumption plans to infer the inner utility funct ions U n - lo 
the second stage, based on the inner u ility fuoc ion 7Ln inferred in the first stage and the common 
second-order belief posited at he beginning, we set up en and dn to satisfy condition 2 of Definit ion 4, 
and choose Xn, q,., and T sec if it is possible to generate a preference reversals between the two utility 
functions W1 and W2 when Cn and d.,, a.re compared to Xn - Tq71 and x,. - q ,.. The assumption t hat 
the two second-order beliefs a.re known and idcn ical would be unnecessary if it were possible to set up 
fictitious coosump ions plans contingent on 7f (second-order acts) in experiments to infer /L71 and v,.. 
KMM argued that it may well be possible to do so to justify their Assumption 2, which is one of the 
axioms for the functional form (14) . 
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in Condition 3 of Definit ion 4 cannot have any implication on t he outer utility funct ion 

Vn . 1/llc thus impose the following condi ion on each K M utility function W defined on 

he state space S = n x (0 1] and de ermined by a triple (11,, v, 11,) via (16).10 

D efinition 5 v\c say hat t he second-order belief JJ, is rich if for every Borel probability 

measure v on t he set I of consumpt ion levels with bounded support t here is a funct ion 

c : n x (0, 1] • I such t hat v = JJ, o e- 1 , where e : D • I is defined by 

e(n) = 71,-1 (l 11,(c(w ~)) d(n 0 .\)(w ~)) (1) 

for every 1r E D. 

The aim of t his condition is self-evident. It is to guarantee that every dis ribution on 

I with a bounded support can be a taincd as a distribution of some associated second­

order act. We can hen compare t he risk aversion of t he inner utility function 11,n and 

of he outer u ility function 7 n through t he distribut ion of associated second-order acts. 

The converse of Theorem 2 under t he richness condition can be stated as follows. 

Theorem 3 Define two 11,tility function vVi : C1 • R and W2 : C2 • R on the same 

state space S = n x [0, 1L with (0, 1] endowed with the Lebesgue measure by two triples 

( 11,1 , v1 , 11,1 ) and ( 11,2 , v2 , 11,2) via ( 16) . Suppose that 11,1 and 11,2 are rich. Then 

A drawback of t his t heorem is hat he validity of the richness condition may be 

difficult to check. Below we give a couple of examples t hat docs and docs no satisfy t he 

condi ion o illustrate he fine line between rich and non-rich second-order bcliefs. 11 

Example 7 Le n = (0, 1] and take he suppor of t he second-order belief o be { (Sw I 
w E n}, where dw is the (degenerate) probability measure concentrated on w. With t he 

parametrization of t he (firs -order) beliefs w t----t Ow on n take t he second-order belief to 

be t he uniform distribut ion on n. 
For every c: n • I , if we define e by (18) t hen 

10T he richness condition can be sta ed in he more genera.I form (14) of KMM utility functions. 
11The appa.ren difference between the two examples lies in t he supports of the first-order beliefs in 

the suppor of the second-order belief. In the first example, where the richness condition is satisfied, 
the supports of the first-order beliefs in he support of t he second-order belief are mutually disjoint. In 
the second example, where he richness condi ion is not satisfied, these supports a.re identical almost 
surely with respect to he second-order belief. The importance of disjoint supports of first-order beliefs 
is mentioned in Foo note 5 of KMM and used t he proof of their Proposition 1. 
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for every w E n. Thus for every Borel probability measure v on I if we denote i s 

cumulative distribution func ion by F and let c be its generalized inverse in he sense of 

Embrccht and Hofcrt (2014) , t hen v = 11, o e-1 . Thus, the uniform distribution on t he 

paramctcrizcd family (()w)wEO of probabilities on D satisfies t he richness condition. 

Example 8 Le n = [O, 1]. Let n° and n 1 be two probability measures on n. For each 

0 E [O, 1], define n9 = (l - 0)n° + 0n1 . Then define the second-order belief µ as t he 

uniform distribu ion on t he para.me crizcd family ( 1r9)0E[O,l ] . Thus, just like Example 7 

he second-order belief is a family of probability measures paramctcrizcd by [O 1]. We 

will, however , sec t hat t he richness concli ion is violated in this example. 

For every c: n x [O, 1] • I , if we define e by (1 ), then 

e(n9 ) = 71,- 1 ( f 71,(c(w,~)) d(n9 0 >.)(w ,~) ) 
./n x [0,1] 

= 71, - l ( (1 - 0) r 71,(c(w ~)) d(n° 0 >. )(w) + 0 r 71,(c(w, ~)) d(n1 0 >. )(w, ~)) . 
./ n x [0,1] ./ n x [0,1] 

for every 0 E [O , 1]. vVritc e(0) = e(n9 ) and y9 = f n x[O,l] 11,(c(w ~)) d (n9 0 >. )(w ~) , then 

the above cquali y can be more succinctly written as 

e(0) = 71,- 1((1 - 0)y0 + 0y1). 

If y0 = y1 , t hen e is a cons ant function and 11, o c-1 is a degenerate probability measure 

on I. Suppose t hat y0 < y1 . Then e is a strictly increasing function t hat maps [O 1] 

onto [7L- 1(y0) 71, - 1(y1) ] . Le F: [11,- 1(y0) 71,- 1(y1) ] • [O 1] be the cumula ivc distribution 

funct ion of 11, o e-1 . Then, 

F(z ) = 71,(z ) - yo 
yl -yO 

(19) 

for every z E [7L- 1(y0) 71, - 1(y1) ]. Indeed, since e is strictly increasing and con inuous 

and t he second-order belief 11, as t he uniform distribution on t he paramc crizcd family 

(n9)oE[O,l], F coincides with t he inverse e- 1 : [O 1] • [7L- 1(y0) , 7L- 1(y1 ) ] . But e- 1 coincides 

with t he right-hand side of (19). 

The cquali y (19) implies t hat every probability measure 11, o e- 1 t hat can be attained 

as in Condit ion 2 of Dcfini ion 4 has a cumulative distribution function tha coincides 

with a truncated and normalized inner ut ili y function 71, _ Therefore the second-order 

belief 11, is no rich. 

6.3 Relevance of the alt rnative definition to th literature 

The ambiguity aversion cocfficicn s in t he smooth model were inferred or estimated from 

cxp crimcn al evidence or asset market data borrowed from earlier works or quoted 
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as a consensus m t he profession by Halcvy (2007) Ju and Miao (2011) Chen J u 

and iao (2014) , Jahan-Parvar and Liu (2014) Thimmc and Vi::ickcr (2015) Gallan , 

Jahan-Parvar, and Liu (forthcoming) Altug, Collard Cakmakli, Mukcrji, and Ozsi::iylcv 

(201 ), and Hara and Honda (201 ) . These studies used or obtained different (constant) 

coefficients of ambiguity aversion, which corresponds to TJn/ ,,,. in Examples 1, 2, and 3. 

It is impossible to conclude tha t he decision maker with a higher estimated coefficient 

of ambiguity aversion is more ambiguity-averse in t he sense of KMM (Dcfini ion 3 of this 

paper), because these studies involve different risk aversion coefficients (which correspond 

to rn in Examples 1, 2, and 3) . 

To sec how our more-ambiguity-averse-than relation can be fit in t hese studies let 's 

take up Chen, Ju, and iao (2014) who studied the optimal portfolio choice problem 

of an investor who has au ility func ion of Hayashi and Miao (2011), which no only 

extends ut ility funct ions of KMM to a dynamic setting but also generalizes recursive 

ut ility functions of Epstein and Zin (19 9) , hereby allowing for the t hree-way separation 

be wccn risk aversion, ambiguity aversion , and intcrtcmporal elasticity of subs itution. 

Tables 1 and 3 of heir paper list up various configurat ions of t he cocfficicn s of rela ivc 

risk aversion of t he inner expected u ility function 11,n , which is denoted by r n in Example 

2, and t he cocfficicn s of rela ivc risk aversion of t he outer expected ut ility func ion 7Jn, 

which is denoted by T/ in Example 2. In Table 1 for each pair (, TJ) E {0.5 2 5, 10 15} x 

{ 40, 50 60 70, 80, 90 100 110} they presented the ambiguity premium, defined as t he 

difference between t he certainty equivalents of a purely risky act and a purely ambiguous 

(second-order) act . vVhcn , is fixed say at 2 increasing T/ from 50 to 100 leads to 

a more ambiguity-averse investor in t he sense of KMM. But the investor is not more 

ambig11ity-avcrsc when (,, TJ) = (2 , 40) t han when(,, TJ) = (5, 90) or t he other way around, 

because t he cocfficicn s , of rela ivc risk aversion arc different between t he two pairs. 

Ye according to our definition t he investor is deemed as more ambiguity-averse when 

(, TJ) = (2 , 40) han when (,, TJ) = (5 , 90) , because 40/2 = 20 > 1 = 90/v. oncthelcss 

he ambigui y premium is lower when (, TJ) = (2 , 40) t han when (, TJ) = (5 90). This 

is due to t he difference in t he way t he premiums arc defined. In this paper , he cvcn­

more-risk-avcrsc-than relation is defined according to t he ratio of t he certain y premiums 

( t he differences between the expected reward and t he certainty equivalents of a lot cry) 

with respect to , and with respect to T/ , while their "ambiguity premium' is equal to t he 

difference between he certain y two premiums. The latter is more pronounced when t he 

coefficient , of rela ivc risk aversion is larger. 

In Table 3, Chen, Ju, and Miao (2014) presented the optimal fraction of investment 

into he s ock (the other asset being risklcss in their model). The pairs (,, TJ) hat t hey 
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used arc 

(2 2) (2 60) , (2, 0) , (2,100), 

(5, 5) (5 60) (5 0) , (5,100) 

(10, 10) (10 60) (10, 80), (10,100). 

They observed hat for a fixed 1 , increasing 'r/ leads to a lower fraction of investment 

into the stock. The definit ion of KMM covers t his case, but docs not tell us whether 

he invcs or is more ambigui y-avcrsc when (1 rJ) = (5, 60) than when (, TJ) = (10, 100). 

According to our more-ambiguity-averse-t han relation the investor is deemed as more 

ambig11ity-avcrsc when (,, rJ) = (<>, 60) han when (,, rJ) = (10, 100) , because 60/5 = 

12 > 10 = 100/10. They found t hat the optimal fraction of investment in he s ock is 

higher when (,, rJ) = (v 60) t han when (, rJ) = (10 100). This is consistent with heir 

observation tha the coefficient I of relative risk aversion for t he inner cxpcc cd utility 

funct ion 11, has larger effects on t he opt imal fraction of investment into t he s ock t han t he 

coefficient 'r/ of rcla ivc risk aversion for the inner expected ut ility function v. 

Another instance in which he scope of comparison of ambiguity aversion is enhanced 

by our dcfini ion of ambiguity aversion is Hara and Honda (201 ) versus the o her contri­

bu ions mentioned a t he beginning of t his subsection. Hara and Honda (201 ) assumed 

constant absolute risk aversion as in Example 1 and t he others a..c;sumcd cons ant relative 

risk aversion a..c; in Example 2. The two arc not comparable according he morc-ambiguity­

avcrsc-than relation of KMM . Moreover t he concavity of t he functions 'Pn hat t ransform 

11,n to Vn arc not comparable because the domain of 'Pn is R in the case of constant abso-

1 utc risk aversion while it is R ++ or - R ++ in t he ca..c;c of constant relative risk aversion. 

Ye as mentioned right after Example 3 our definit ion of the morc-ambiguity-avcrsc­

than relation allows us to compare t he ambiguity aversion between t he two ca..c;cs on 

sound economic gTmmd. 

Hara and Honda (201 ) found tha for t he representative consumer, who holds t he 

stock market index ( a proxy of t he market portfolio), rJn/rn must be at least 9.25 and may 

well be higher. Thi. figure is much higher han t he figures obtained in many other works 

for the rcprcscn ativc consumer. For example, Ju and Miao s (2012) calibration shows 

hat rJrJrn is around 4.43. I is worthwhile to attempt to explain where the difference is 

from, bu wi hout our dcfini ion of he morc-ambig11ity-avcrsc-than relation this question 

would have been ill-poscd. 12 

12It is cmp ing o spccula c that the difference arises from the difference in settings, because Harn 
and Honda (201 ) considered a sta ic model with multiple r isky assets while the others considered a 
dynamic model with a single risky asset. But such a speculation may not be consistent with the basic 
tenet of KMM utility func ions, exp lained in Footnote as well, whereby t he second-order belief may 
depend on sc ings bu he ambiguity aversion must not. 
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7 Conclusion 

Given two pairs of cxpcc cd u ility functions we have formalized he s atcmcnt t hat one 

exp ected ut ility func ion is more risk-averse than t he other in the first pair to a greater 

cxtcn han in t he second pair. To do so, we used t he elasticity of the function t hat 

ransforms t he dcriva ivcs of one cxpcc cd utility function to t he dcriva ivcs of the o her. 

As was seen in (5) , (6), and ( ), when we compared the ela..c;;ticitics of 'lj;1 and 'lj;2 , we 

require t he elasticity of 'lj;1 is higher t han he ela..c;;ticity of 'lj;2 , regardless of t he choices 

of he marginal ut ilities, y1 and y2 , of the expected ut ility functions. This makes our 

definition of he even-more-risk-averse-t han relation rather stringent, and wo pairs of 

expected ut ility funct ion may not be comparable according to the relation . One might 

be led o think tha it would be more practical to define the even-more-risk-averse-t han 

relation by choosing he marginal ut ili ics , y 1 and y 2 to be equal. There arc wo reasons 

why t his attempt is unlikely to be successful. First since t he level of marginal ut ilit ies 

may be changed by a , calar multiplication to an expected ut ili y function ( which docs 

not change t he risk at itudcs it represents) , choosing t he same level of marginal ut ilit ies 

for two expected u ili y func ions has , in general , no economic meaning. Second as we 

did in our cxplana ion after Example 6, i might make sense to take y1 and y2 to be t he 

marginal ut ilities at a common consumption level. T his is possible, however only if t he 

expected u ility functions of he two pairs have t he same domain. This would restrict t he 

applicability of our dcfini ion, a..c;; i would exclude cases such a..c;; Example 3. Ye , when 

he domains arc the same, i might be possible to give a less stringcn , more prac ical 

definition of he even-more-risk-averse- han relation . Exploring the implica ion of this 

altcra ion can be a direction of future research . 

Another direction of future research is to find a narrower class of cumulative distri­

bu ion functions Fn hat can be used in t he definitions of the bchavioral cvcn-morc-risk­

avcrsc-t han relation (Definition 2) and he more-ambiguity-averse-t han relation (Defi­

nition 4). In t hese definit ions arbi rary cumulative distribution functions wi h suffi­

ciently small supports arc used, but because of t his arbitrariness we needed to impose a 

rather stringent richness condition (Definit ion 5) on second-order beliefs to establish t he 

equivalence between he bchavioral even-more-risk-averse-t han relation and t he morc­

ambig11ity-avcrsc- han relation. It might be sufficient to consider jus cumulative distri­

bu ion funct ions for binary dis ribu ions, but a careful analysis is in order. 

Finally, t he most importan direction of fu urc research is to extend the morc-ambiguity­

avcrsc-t han rcla ion (Dcfini ion 4) o o her types of ambiguity-averse ut ility functions . As 

explained in Footnote of KMM, two utility functions t hat arc comparable wi h respect to 

the more-ambiguity-averse-t han relations employed for other classes of ambiguity-averse 

ut ility functions, such as a-MEU functions, must also exhibit the same preference over 

purely risky consumption plans. This property, again , significantly narrows down t he 
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scope of comparison of ambiguity atti udes. F inding a general defini ion of he morc­

ambig11ity-aversc- han relation t hat covers these classes is impera ive to increase t he 

usefulness of ambigui y-averse u ility func ions in numerical and empirical analysis. 

A Lemmas and Proofs 

Proof of Proposition 2 By differentia ing both sides of v' (x) = 1j; (11,'(x)) with respect 

ox, we obtain v" (x) = 'lj;1(u'(x))11." (x) . By dividing both sides of t his equality by both 

sides of t he previous one, we obtain 

( ) 'lj;' ( 1l ( X)) 11 ( ) 

a x, v = - 'lj; (7J/(x)) 11, x . 

By substitu ing 11,"(x) by -1l (x) a(x 11.), we obtain (3) . Ill 
We say ha a cumulative distribut ion funct ion on R satisfies the basic condi ions i s 

mean is equal o zero and its variance is finite and greater than zero. 

For each distribut ion func ion F with zero mean write V(F) = JR z2 dz . It is equal to 

the variance of any random variable whose distribut ion coincides with F. The following 

fact is well known. We omi the proof. 

Lemma 1 Let u : I • R be an expected utility functions satisfying the basic conditions. 

For each x E I and each c11,mulative distribution f1mction F satisfying the basic conditions, 

define p(x, F , 11,) by 

and r(x , F , 11,) by 

u(x - p(x F , 11,)) = f 11,(x + z) dF(z), 
.JR 

( ) ( ) a( X 11,) ( ) r X F, 71, = p X' F, 71, - 2 V F . 

(20) 

(21) 

Then, for every x E I and every c > 0, there is a o > 0 such that for every cumulative 

distrilmtion function F satisfying the basic conditions if the support of F is included in 

[-o o], then 
lr(x F 11,)I 

V (F) < c. 

Lemma 2 Let 11, : I • R and v : I • R be two expected utility functions satisfying the 

basic conditions. For each x E I and each c11,mulative distribution function F satisfying 

the basic conditions, define p(x, F , 11,) by 

u(x - p(x F , 11,)) = f 11,(x + z) dF(z) 
.JR 

(22) 

and analogously for p(x, F , v) . Then, for every x E I and every c > 0, there is a o > 0 

such that for every cumulative distribution f1mction F satisftJing the basic conditions, if 
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the support of F is included in [-o o], then 

---- - --- < c. l

p(x Fv) a(x, v) I 
p(x F , n) a(:i; 11,) 

Proof of Lemma 2 By the definit ions of r(x, F n) and r(x F v) 

p(x, F , 1) 
p(x, F, n) 

V(F) 
- 2- a(x, v ) + r(x F 1) 

V(F) 
- 2- a(x , 11,) + r(x, F, 11,) 

( ) r(x, F , v) 
a xv + 2 V(F) 

( ) r(x F n) · 
a x, 11, + 2 V ( F) 

By Lemma 1, by taking a sufficiently small o > 0 for every cumulative distribution 

function F whose suppor is included in [-o o] the second terms of t he numcra or and 

the denominator can be made arbi rarily close to zero. The proof is thus completed. I I I 

Proof of Theorem 1 Suppose hat (n1, v1) [> (n2 vz). Let Xn F n, and En be as in 

Definition 2. Then (8) holds. Write Fn be t he cumulative distribution funct ion defined 

by Fn(z) = Fn(z + x). Then F,. has mean zero and its support is included in [- en cn] ­

By Lemma 2 En can be so small t hat 

Le 

Then 

q1 > p(x1 F 1 n1) 

Tq1 < p(x1 , Fi, v1) , 

qz < p(xz, Fz , nz) 

Tqz > p(:rz Fz , vz). 

Thus, t he four inequalities of Condi ion 2 of Definit ion 2 arc met. 

The inclusion I> ~ • follows from the definit ions of I> and •. 
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Suppose t hat (1.t1 v1)•(u2 v2). Let x 11 E In. For each small en> 0 and each cumula­

tive dis ribution func ion tha have zero mean and support in [-e,., e,.] t here arc qn and 

T such t hat t he four inequalit ies of Condition 1 of Definition 2 hold . T hus 

Thus, 

q1 ~ p(x1 , Fi u1), 

Tq1 ::::; p(x1 Fi v1) 

q2 ::::; p(x2, F2 1.t2) 

Tq2 ~ p(x2, F2, v2). 

By Lemma 1, by taking en > 0 sufficicn ly small, we can make p(xn , Fn , vn)lp(1;n, Fn un) 

arbi rarily clo. c to a(xn vn)la(xn, un)- Thus, 

Ill 

Proof of Theorem 2 Suppose t hat (1.t1 v1)e>(u2 v2) then W1e>W2. Let xn, e,,, c.,., and 

dn be as in Dcfini ion 4. Let en be as in Condition 2 of the definition. Denote by Fn t he 

cumulative distribut ion funct ion of>. o d:;;,1 (which coincides with µno e~1 ). T hen F11 has 

mean Xn and its support is included in [xn - e11 , Xn + en] - By the definition of C>, here 

arc a qn and T such t hat 

Note hat 

1.t1(x1 - q1) < / 1.t1(z) dFi(z), 

v1(x1 - Tq1) > .I v1(z) dF1(z), 

1.t2(x2 - q2) > / u2(z) dF2(z), 

v2(x2 - Tq2) < .I v2(z ) dF2(z) . 

Wn((xn - qn) l,) = Vn(X1 - qn) , 

Wn((xn - Tq11 )1,) = V11 (Xn - Tqn)-

(23) 

(24) 

(25) 

(26) 

(27) 

(2) 



By (16), 

Wn(c,.) = .l Vn (en(7r)) d/1,,i(-rr) = .l, vn(z) dFn(z) (29) 

Wn(dn) = vn (u;/ ( f Un (dn(«;)) dA (<;))) = 7n (u,;.1 (! Un (z) dFn(z))) (30) 
./[0 ,1] . 1,. 

By applying v1 o u11 to both sides of (23), we obtain 

(31) 

By (27), (30) , and (31), W1 ((x1 - q1)L) < W1(d1). By (24), (2 ) and (29) , W1 ((x1 -

rq1)1,) > W1 (c1). We can analogously show hat W2( (x2 - q2)1,) > W2(d2) and W2((x2 -

r q2)1,) < W2 (c2 ). Thus Condi ion 3 of Definit ion 4 is met . Thus W1i>W2. This proves 

that if (1.t 1 v1)t>(u2 , v2 ), hen W 1i>Wz. 

Ill 

Proof of Theorem 3 Suppose t hat vVii>W2 , then (u1, v1)1>(1.t2 v2) . To do so for each 

n = 1, 2 and let Xn E I .. , En > 0 and Fn be as in Definition 2. Let dn be t he generalized 

inverse of F .. , in the sense of Embrccht and Hofcrt (2014) t hen t he cumulative dist ribut ion 

funct ion of d .. coincides wi h Fn. Since 11,n is rich there is a c,. : nx [0 1] • I such tha t he 

cumulative distribu ion func ion of /1,n oe;,1 coincides with Fn where en is defined by (17). 

Then Aod;,1 = 11,noe;,1 and t hey have mean Xn and supports included in [xn - En,Xn+En ] ­

By t he dcfini ion of i>, t he four inequalities in Condition 3 of Definition 4 hold as s rict 

inequalit ies. By reverting the argument of showing that that if (u1 v1 ) C> (u2 v2 ) then 

W1i>W2 we can show t hat hcsc four inequalities imply the four inequalities in Condition 

3 of Theorem 1. This proves ha if W1i>W2 , then (u1, 7 1)1>(7.t2 v2 ). 

We can similarly show t hat if / .Li and µ2 arc rich and W1 • W2 then ( u1 , v1) • ( u2 v2). 

Ill 
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