<table>
<thead>
<tr>
<th>Title</th>
<th>ON UNIVALENCE CRITERIA FOR MEROMORPHIC FUNCTIONS (Coefficient Inequalities in Univalent Function Theory and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sugawa, Toshiyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2005), 1414: 117-122</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/26235</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
ON UNIVALENCE CRITERIA FOR MEROMORPHIC FUNCTIONS

TOSHIYUKI SUGAWA

HIROSHIMA UNIVERSITY

ABSTRACT. We propose a way of deduction of various univalence criteria for meromorphic functions on the outside of the unit circle in terms of the range of their derivatives. This is a summary of the forthcoming joint paper [15] of S. Ponnusamy and the author.

1. INTRODUCTION

Let \mathcal{A} denote the set of analytic functions f in the unit disk $D = \{ z \in \mathbb{C} : |z| < 1 \}$ normalized so that $f(0) = 0$ and $f'(0) = 1$. The set S of univalent functions in \mathcal{A} has been intensively studied by many authors. Let Σ denote the set of univalent functions F in the domain $\Delta = \{ \zeta : |\zeta| > 1 \}$ of the form

$$F(\zeta) = \zeta + \sum_{n=0}^{\infty} b_n \zeta^{-n}.$$

Note that the function $1/f(1/\zeta)$ belongs to Σ for each $f \in S$. The converse is, however, not true in general. More precisely, for $F \in \Sigma$, the function $f(z) = 1/F(1/z)$ belongs to S if and only if F omits 0, namely, $F(\zeta) \neq 0$ for $\zeta \in \Delta$.

In parallel with the analytic case, we consider the set \mathcal{M} of meromorphic functions in Δ with the expansion (1.1) around $\zeta = \infty$. For some technical reason, we also consider the sets $\mathcal{A}_n = \{ f \in \mathcal{A} : f^{(m)}(0) = 0 \text{ for } m = 2, \ldots, n \}$ and $\mathcal{M}_n = \{ F \in \mathcal{M} : b_0 = \cdots = b_n = 0 \}$. Note that $\mathcal{A}_1 = \mathcal{A}$ and $\mathcal{M}_{-1} = \mathcal{M}$.

Practically, it is an important problem to determine univalence of a given function in \mathcal{A}_n or in \mathcal{M}_n. The best known conditions for univalence are probably those involving pre-Schwarzian or Schwarzian derivatives, which are defined by

$$T_f = \frac{f''}{f'} \quad \text{and} \quad S_f = \left(\frac{f''}{f'} \right)' - \frac{1}{2} \left(\frac{f''}{f'} \right)^2.$$
T. SUGAWA

We define quantities for functions $f \in A$ and $F \in M$ by

$$B(f) = \sup_{|z|<1} (1 - |z|^2) \left| \frac{zf''(z)}{f'(z)} \right|,$$

$$B(F) = \sup_{|\zeta|>1} (|\zeta|^2 - 1) \left| \frac{\zeta F''(\zeta)}{F'(\zeta)} \right|,$$

$$N(f) = \sup_{|z|<1} (1 - |z|^2)^2 |S_f(z)|,$$

$$N(F) = \sup_{|\zeta|>1} (|\zeta|^2 - 1)^2 |S_F(\zeta)|.$$

Note that these quantities may take ∞ as their values. For example, if F has a pole at a finite point, then $B(F) = \infty$.

If $f \in A$ and $F \in M$ have the relation $f(z) = 1/F(1/z)$, then we can easily see that

$$(1 - |z|^2)^2 S_f(z) = (|\zeta|^2 - 1)^2 S_F(\zeta)$$

holds for $z = 1/\zeta$. In particular, we have $N(f) = N(F)$.

Theorem A (Nehari [14]). Every $f \in S$ satisfies $N(f) \leq 6$. Conversely, if $f \in A$ satisfies $N(f) \leq 2$ then f must be univalent. The constants 6 and 2 are best possible. The same is true for meromorphic F.

Though $zf'(z)/f(z) = \zeta F'((\zeta)/F(\zeta)$, there is no such a simple relation between $zf''(z)/f'(z)$ and $\zeta F''((\zeta)/F(\zeta)$, and thus, between $B(f)$ and $B(F)$ for $f(z) = 1/F(1/z)$, $\zeta = 1/z$. Nevertheless, it is rather surprising that the formally same conclusions can be deduced for f and F. Compare Theorem B with Theorem C.

Theorem B. Every $f \in S$ satisfies $B(f) \leq 6$. Conversely, if $f \in A$ satisfies $B(f) \leq 1$ then $f \in S$. Moreover, if $B(f) \leq k < 1$, then f extends to a k-quasiconformal mapping of the extended plane. The constants 6 and 1 are best possible.

Here and hereafter, a quasiconformal mapping g is called k-quasiconformal if its Beltrami coefficient $\mu = g_2/g_z$ satisfies $\|\mu\|_{\infty} \leq k$.

The sufficiency of univalence and quasiconformal extendibility are due to Becker [6]. The sharpness of the constant 1 is due to Becker and Pommerenke [8]. The sharp inequality $B(f) \leq 6$ follows from a standard argument in the coefficient estimation (see, e.g., [9, Theorem 2.4]).

Theorem C. Every $F \in \Sigma$ satisfies $B(F) \leq 6$. Conversely, if $F \in M$ satisfies $B(F) \leq 1$ then $F \in \Sigma$. Moreover, if $B(F) \leq k < 1$, then F extends to a k-quasiconformal mapping of the extended plane. The constants 6 and 1 are best possible.

The sufficiency of univalence and quasiconformal extendibility are due to Becker [7]. The sharpness of the constant 1 is also due to Becker and Pommerenke [8]. On the other hand, the estimate $B(F) \leq 6$ lies deeper. Avhadiev [3] first showed the sharp inequality $B(F) \leq 6$ by appealing to Goluzin's inequality (see [10, p. 139]).
ON UNIVALENCE CRITERIA FOR MEROMORPHIC FUNCTIONS

Note that many authors use a different norm for the pre-Schwarzian derivative of $f \in \mathcal{A}$, namely,

$$
||T_f|| = \sup_{|z|<1} (1 - |z|^2)|T_f(z)|.
$$

By definition, we observe $\mathcal{B}(f) \leq ||T_f||$.

Recall that a plane domain $\Omega \subset \mathbb{C}$ is called hyperbolic if $\partial \Omega$ contains at least two points. Let Ω be a hyperbolic plain domain such that $1 \in \Omega$ but $0 \notin \Omega$ and set

$$
\Pi(\Omega) = \{F \in \mathcal{M} : F'(\zeta) \in \Omega \text{ for all } \zeta \in \Delta\}.
$$

Set also $\Pi_n(\Omega) = \Pi(\Omega) \cap \mathcal{M}_n$ for $n = -1, 0, 2, \ldots$. One of our main results in the present paper is an estimate of $\mathcal{B}(F)$ for $F \in \Pi(\Omega)$. The proof is given in [15].

Theorem 1. Let Ω be a domain such that $1 \in \Omega$ but $0 \notin \Omega$. For every $F \in \Pi_n(\Omega)$, $n \geq 0$, the inequality

$$
\mathcal{B}(F) \leq C_n W(\Omega)
$$

holds, where C_n is the constant given by

$$
(1.2) \quad C_n = \sup_{0<r<1} \frac{(n+2)(1-r^2)r^n}{1-r^{2n+4}}
$$

and $W(\Omega)$ is the circular width of Ω with respect to the origin, namely,

$$
W(\Omega) = \sup_{z \in \mathbb{D}} (1 - |z|^2) \left| \frac{p'(z)}{p(z)} \right|
$$

for an analytic universal covering projection p of \mathbb{D} onto Ω.

Note that $W(\Omega)$ does not depend on the particular choice of p. For more details on circular width, see [12]. As one sees easily, $C_0 = 2$ and $1 \leq C_n \leq (n+2)/(n+1)$. If we write $F \in \Pi(\Omega)$ in the form $F = F_0 + b_0$, where $F_0 \in \Pi_0(\Omega)$, the relation $\mathcal{B}(F) = \mathcal{B}(F_0)$ holds. Therefore, the above theorem can be applicable to the whole family $\Pi(\Omega)$. We note that the analytic counterpart of this theorem is known and much simpler to prove (see [11, Theorem 4.1]); $\mathcal{B}(f) \leq ||T_f|| \leq W(\Omega)$ holds for $f \in \mathcal{A}$ with $f'(\mathbb{D}) \subset \Omega$.

As is well known, if $f \in \mathcal{A}$ satisfies $\text{Re} f' > 0$ then f is necessarily univalent (cf. [9, Theorem 2.16]). However, the meromorphic counterpart does not hold (see, for instance, the example given in Section 3). The following univalence criterion is due to Aksent’ev [1] (see also [5, Theorem 11]). Later, Krzyż [13] gave quasiconformal extensions for the functions.

Theorem D (Aksent’ev, Krzyž). Let $0 \leq k \leq 1$. If $F \in \mathcal{M}$ satisfies the inequality

$$
(1.3) \quad |F'(\zeta) - 1| \leq k, \quad |\zeta| > 1,
$$

then F is univalent. Furthermore, if $k < 1$, then F extends to a k-quasiconformal mapping of the extended plane. The radii 1 and k are best possible.

Note that the range of F' cannot be enlarged to $\{w : |w - 1| < a\}$, $a > 1$, for univalence [2].
The following examples can be found in [12].

Example 1 (sectors). For \(S(\beta) = \{ w : |\arg w| < \pi \beta/2 \}, \ 0 < \beta \leq 2 \), we have \(W(S(\beta)) = 2\beta \).

Example 2 (annuli). For the annulus \(A(r, R) = \{ w : r < |w| < R \}, \ 0 < r < R < \infty \), we have \(W(A(r, R)) = (2/\pi) \log(R/r) \).

Example 3 (disks). Let \(\mathbb{D}(a, r) = \{ w : |w - a| < r \} \) for \(0 < r \leq a \). Then
\[
W(\mathbb{D}(a, r)) = \frac{2r/a}{1 + \sqrt{1 - (r/a)^2}}.
\]

Example 4 (parallel strips). Let \(P(a, b) = \{ w : a < \mathrm{Re} w < b \} \) for \(0 \leq a < b < \infty \). Then
\[
W(P(a, b)) = \left[\frac{2t \cos \theta}{1 - t \theta} \right]_{0}^{\pi/2},
\]
where \(t \) is a number with \(0 < t \leq 2/\pi \) determined by
\[
\frac{\pi t}{2} = \frac{b - a}{b + a}.
\]

Example 5 (truncated wedges). Let \(S(\beta, r, R) = \{ w : |\arg w| < \pi \beta/2, r < |w| < R \}, \ 0 < \beta \leq 2, 0 < r < R < \infty \). Then
\[
W(S(\beta, r, R)) = \frac{\log(R/r)}{(1 + t)\mathcal{K}(t)}.
\]
where
\[
\mathcal{K}(t) = \int_{0}^{1} \frac{dx}{\sqrt{(1 - x^2)(1 - t^2x^2)}}
\]
is the complete elliptic integral of the first kind and \(0 < t < 1 \) is a number such that
\[
\frac{\mathcal{K}(\sqrt{1 - t^2})}{\mathcal{K}(t)} = \frac{2\pi \beta}{\log(R/r)}.
\]

3. **Applications**

We apply Theorem 1 and Theorem C to the above examples to obtain several results on univalence of meromorphic functions. As samples, we state a few theorems. Note that the univalence criteria in Theorems 2 and 3 were first given by Avhadiev and Aksent’ev [4].

Let \(x_2 \approx 0.4198 \) denote the unique zero of the equation
\[
\sqrt{x} \log((1 + \sqrt{x})/(1 - \sqrt{x})) = 1
\]
in \(0 < x < 1 \).

Theorem 2. Let \(0 \leq k \leq 1 \). Suppose that a function \(F \in \mathcal{M} \) satisfies the condition
\[
|\arg F'(\zeta)| \leq \frac{k\pi}{8}, \quad |\zeta| > 1,
\]
ON UNIVALENCE CRITERIA FOR MEROMORPHIC FUNCTIONS

then \(F \) must be univalent. Furthermore, if \(k < 1 \), then \(F \) extends to a \(k \)-quasiconformal mapping of the extended plane. As for univalence, the constant \(\pi/8 \) cannot be replaced by any smaller number than \((4/\pi) \arctan x_2 \).

Note that \((4/\pi) \arctan x_2 \approx 0.506057 \approx 1.28866(\pi/8) \). The number \(x_2 \) appears in the following example.

We consider the function \(F_n \in \mathcal{M} \) given by
\[
F_n(\zeta) = \zeta - 2 \sum_{j=1}^{\infty} \frac{\zeta^{1-nj}}{nj-1}
\]
for each integer \(n \geq 2 \), where \({}_2F_1(1, -\frac{1}{n}; 1 - \frac{1}{n}; \zeta^{-n}) - 1 \), \(|\zeta| > 1\),

from that \(F_n \) has the \(n \)-fold symmetry
\[
F_n(e^{2\pi i/n} \zeta) = e^{2\pi i/n} F_n(\zeta)
\]
and belongs to the class \(\mathcal{M}_{n-2} \). Since the function \(h_n \) defined by
\[
h_n(x) = 2 {}_2F_1(1, -\frac{1}{n}; 1 - \frac{1}{n}; x) - 1 \quad (x \in (0, 1))
\]
has the properties that \(h_n \) is monotone decreasing, \(h_n(0) = 1 \) and \(\lim_{x \to 1-} h_n(x) = -\infty \), there is the unique point \(x_n \) such that \(h(x_n) = 0 \) in the interval \(0 < x < 1 \). Hence, the function \(F_n \) has the \(n \) zeros \(e^{2\pi ij/n} x_n^{-1/n} \), \(j = 0, 1, \ldots, n - 1 \), in \(\Delta \) and, in particular, is not univalent in \(\Delta \). On the other hand, we have
\[
F_n'(\zeta) = 1 + 2 \sum_{j=1}^{\infty} \zeta^{-nj} = p(\zeta^{-n}),
\]
where \(p(z) \) is the function given by \(p(z) = (1 + z)/(1 - z) \). It is a standard fact that \(p \) maps the unit disk onto the right half-plane \(\mathbb{H} = \{ w \in \mathbb{C} : \text{Re} w > 0 \} \). Therefore, \(F_n' \) maps \(\Delta \) onto \(\mathbb{H} \) in an \(n \)-to-1 way and thus \(\text{Re} F_n' > 0 \) holds.

In the next criterion, \(F' \) may take values with negative real part.

Theorem 3. Let \(0 \leq k \leq 1 \). Suppose that a function \(F \in \mathcal{M} \) satisfies the condition
\[
|\log |F'(\zeta)|| \leq \frac{k\pi}{8}, \quad |\zeta| > 1,
\]
then \(F \) must be univalent. Furthermore, if \(k < 1 \), then \(F \) extends to a \(k \)-quasiconformal mapping of the extended plane. As for univalence, the constant \(\pi/8 \) cannot be replaced by any smaller number than \(\log((1 + x_2)/(1 - x_2)) \).

Note that \(\log((1 + x_2)/(1 - x_2)) \approx 0.894894 \approx 2.27883(\pi/8) \). In these results, if we assume \(F \) to be in \(\mathcal{M}_n \) for larger \(n \), then we can make the involved constants better.

REFERENCES

T. SUGAWA

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HIROSHIMA UNIVERSITY, HIGASHI-HIROSHIMA, 739-8526 JAPAN

E-mail address: sugawa@math.sci.hiroshima-u.ac.jp