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Abstract 

This study investiga es optimal minimax rates for specification testing when the 

alterna ive hypothesis is built on a se of non-smooth functions . The set consists 

of bounded func ions t hat a.re not necessarily differentiable with no smoothness 

cons mints imposed on their derivatives. In the instrumental variable regression set 

up wi h an unknown error variance structure we find that the optimal minimax rate 

is n-1/4, where n is the sample size. The rate is achieved by a simple test based on 

the difference between non-parametric and parametric variance estimators. 

Keywords: optimal minimax rate; specification test· instrumental variable regression 

model; nearest neighbor method 

JEL C lassification: Cl2· Cl4 

1 Introduction 

This study investigates uniform power of specification testing for a regression function 

using the minimax approach. In the minimax approach t he alternative hypothesis is a 
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set of functions with certain smoothness . This approach reveals how the smoot hness and 

model dimensionality are related to t he achievable uniform power ( optimal minimax rate) 

of tests . T he optimal minimax rate against smooth alternatives is investigated by Guerre 

and Lavergne (2002) and subsequent works , such as Horowitz and Spokoiny (2001) and 

H. Li, Li, and Liu (2016) . While these tests achieve t he fastest possible uniform power 

against smooth alternatives, t hey may not perform well when t he alternative includes 

non-smooth functions .The optimal minimax rate against such non-smooth alternatives 

is an open question. 

In economics, there are several important applications in which a smooth model is 

applied to a possibly non-smooth function. For example, in empirical estimations of 

aggregate demand curves (see, e.g., Ball , ankiw, & Romer, 1988) , pr ice level may be 

modeled as a smooth function of output (real GDP), although t he true curve might 

be non-differentiable in t he presence of a liquidity trap or if investment is not elastic to 

changes in the interest rate. Another example is kinked demand curves in an oligopolistic 

market with price rigidity (Sweezy, 1939). In t he estimation of demand curves how­

ever the price of a good may be modeled as a smooth function of its quantity. Kinks 

in demand curves are also caused by consumer behavior, such as asymmetric consumer 

reactions to price increases and decreases (see Dossche, Heylen, & Van den P oel, 2010 

for empirical evidence). Another important example is Engel curve estimation. If pref­

erences are structured in a hierarchical manner, the result ing Engel curve will exhibit a 

kink at points that reflect changes in the capacity of a good to satisfy needs as income 

increases (Drakopoulos, 1994). For example, basic food expenditure increases as income 

increases, but after the basic need is satisfied, a higher proportion of income may be 

spent on less-necessary goods. In t his case, the commonly used Working- Leser Engel 

curve specification may not fit t he data well. 

Alternative hypotheses in this study include non-differentiable fun ctions and func­

tions such t hat no smoothness constraints are imposed on t heir derivatives. We find that 
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the optimal minimax rate against such non-smooth alternatives is n-1/ 4 in the frame­

work of instrumental variable (IV) regression with an unknown error variance structure, 

where n is the sample size. The rate is achieved by a simple test based on the difference 

between non-parametric and parametric variance estimators. Simulation studies illus­

trate that the test has reasonable power against various non-smooth alternatives . The 

power performance is compared with that of a kernel smoothing test that is rate optimal 

against smooth alternatives {Zheng, 1996, Hitomi, Iwasawa, & ishiyama, 2020). The 

empirical application to Engel curves for food emphasizes the good applicability of the 

test. The alternative hypothesis in this study is called a non-smooth alternative because 

it includes less-smooth functions compared with the existing alternative. 

The literature on t he minimax approach is focused on testing signals in a Gaus­

sian white noise model. 1 Ermakov (1991) , Ingster (1993), and Lepski and Tsybakov 

(2000) show the optimal minimax rates against alternatives within a Holder class, while 

Spokoiny (1996) and Lepski and Spokoiny (1999) do so against alternatives within a 

Besov class. Ingster and Sapatinas (2009) extend this approach to testing a multivari­

ate non-parametric regression model with Gaussian noise against alternatives within an 

ellipsoid in the Hilbert space with respect to the tensor product of the Fourier basis. 

Other studies , such as Abramovich, Feis, Italia, and Theofanis {2009), show the opti­

mal minimax rate of testing the additivity assumption of a response function against 

alternatives within a Besov class. 

The optimal minimax rates of specification testing for a non-linear regression model 

against alternatives within a Holder class is provided by Guerre and Lavergne (2002). Let 

us denote t he dimension of the regressor by l. The alternative consists of k-t imes differen­

tiable functions with its kth derivative being Holder continuous with index s . Then, the 

optimal minimax rate against the smooth alternative (s + k > l/4) is n-2(s+k)/[l+4(s+k)]_ 

In addition to the test of Guerre and Lavergne (2002), this rate is achieved by the 

1 For a recent review of specification tests for regression models, see Gonzalez-Manteiga and Crujeiras 
(2013). 
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K-nearest neighbor tests proposed by H. Li et al. (2016) . 

When the alternative is not smooth relative to the model dimensionality (s+k ~ l/4) , 

no tests have non-trivial uniform power against the alternative that approaches the null 

faster than n-1/ 4 (lower bound). Guerre and Lavergne (2002) point out the difficulty 

of dealing with such irregular non-smooth alternatives. A test that achieves the lower 

bound may exist if the structure of the error variance conditional on the regressor is 

known. Without this additional stmcture, however, it is not known whether any test 

exists that has non-trivial uniform power against the non-smooth alternative. This study 

contributes to the literature by showing the set of non-smooth functions against which 

the optimal minimax rate is n-1/ 4 _ The non-smooth alternative in this study differs 

from those considered previously. 

The rest of this paper is organized as follows. Section 2 describes the model and 

testing framework. Assumptions are given in Section 3. The main results for the optimal 

minimax rate are summarized in Section 4. Section 5 presents Monte Carlo experiments. 

Section 6 describes the application of the proposed test to Engel curve specifications. 

Section 7 concludes the text . The proofs of the primary results are provided in the 

Appendix. 

2 Framework 

Let{"½, X i, Zi}i~l be a sample from a random variable (Y , X Z ) E IR xJR1x xIR1. Consider 

a parametric model 

(1) 

where g(Xi , 0) is a known function up to parameters 0 E 8 and 8 is a compact subset 

of JR10 . A vector of regressors Xi may include endogenous variables t hat are correlated 

with ui, where u i is an error term. 

Let m(Zi) = E ("½J Zi) and Wi = "½ - m(Zi) , where E(wiJ Zi) = 0 by definition. We 
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set the following assumptions on observations at hand. 

A ssumption 1. {Yi, X i, ZiH~1 are a random sample on (Y, X , Z) E lR x JRl:i: x IR1, where 

lx and l are finite. A positive constant M < 

probability 1 (w.p.1) . 

A ssumption 2. The density of Z , denoted as f (-) : JR1 • lR, has compact support 

(without loss of generality [O, 1]1) and at least one element of Z is continuou on [O, l ]. 

For any z E [O, 1]1, bounds exist such that O < f_ ~ f( z) ~ f < and lliz f (z)II < 7'. 

As in Assumption 2, we focus on the case in which at least one element of Z is 

continuous. The primary reason to assume continuity comes from the minimax approach , 

in which alternatives consist of functions with some smoothness. When a model is 

discrete, its support is concentrated on some points , implying that it makes less sense to 

restrict the shape of the model outside its support. Thus, investigating power properties 

using the minimax approach is inappropriate for models with only discrete variables. 

The compactness of the instruments in Assumption 2 is not restrictive at all because it 

can be achieved by an appropriate monotone transformation. 

The fourth moment restriction of the error term in Assumption 1 is required to guar­

antee the consistency of estimators for the asymptotic variance of the non-standardized 

test st atistic. This is a standard assumption, which corresponds to, for example, the 

finite fourth moments condition for the estimation of asymptotic variance of generalized 

method of moments (GMM) est imators. 

Let 60(-) = m(·) - E[g(Xi, 0)1 ·]. The null hypotheses is 

H0 : 00 E 8 exists such that 600 (Zi) = 0 w.p.l. 

Note that the test considered in this study is t he specification of E [g(Xi, 0)1·] rather 

than t hat of g(-, 0). 

5 



The alternative hypothesis is defined as a set of functions belonging to a smoothness 

class . Let M c be a class of bounded functions f(·) : !R,l • lR, such that: 

M c = { f( ·): for E such that llx - YII < E, IJ(x) - f(Y)I = o(E¼- 1 llx - YII) as E • 0} , 

where we suppress the subscript and denote M E = M if no confusions occur. Then, the 

alternative is 

Functions in J\11. (pn) are separated from the parametric model by L2-distance but 

the distance can approach Oat a rate p~. The alternative hypothesis H n,I enables us to 

investigate the uniform power of testing, which is called the minimax approach (lngster, 

1993). The minimax approach finds the fastest rate at which Pn approaches O while 

assuring the test uniformly detects alternatives. A test is called rate optimal when it 

has prescribed minimax power uniformly against a set of alternatives that approaches 

the null hypothesis at a rate faster t han any other tests can detect . This rate is t hen 

called the optimal minimax rate. 2 

The class M restricts the smoothn ss of functions depending on the dimension l of 

instruments. To see this , let us consider a function f E M : IR,l • !R,. This function 

satisfies that lf(x) - f(Y) l/ llx- yl l = o(E¼-1 ). Thus, f is differentiable when l 2'. 4 and it it 

not necessarily differentiable when l < 4. Indeed, without changing the results below, the 

smoothness condition in t he class M can be replaced with lf(x) - f(Y) I = o( llx - Ylll/4 ) 

as x • y for the case of l 2'. 4. 

To the best of our knowledge, t his is t he first study that investigates the optimal 

minimax rate against such non-smooth functions. Let [s] be the greatest integer less 

2 A formal definition of the optimal minimax rate is given in Definition 1 of Guerre and Lavergne 
(2002). 
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than or equal to s. The opt imal minimax rate for the non-linear regression model is 

close to n-1/ 2 when alternative consists of functions that are at least [l / 4] times differ­

entiable and [l / 4]th derivative of these functions are Lipschitz of order l/4 - [l/4] where 

l, now, indicates the dimension of the regression model (see, Guerre & Lavergne, 2002). 

In literature, however, the optimal minimax rate is not investigated when alternative 

includes any functions whose [l/4]th derivatives are not Lipschitz of order l/ 4 - [l /4]. 

Furthermore, although the lower bound against set of functions t hat are not [l/4] t imes 

differentiable is shown to be n - 114, it is not known whether any test exists that has 

non-trivial uniform power against such non-smooth alt ernative. ot all but some of 

non-smooth functions that are not considered in literature are covered in t his study, 

such as non-differentiable functions with l < 4 and functions whose first derivatives may 

not Lipschitz. To emphasize t he difference, Hn,1 in t his study is called non-smooth 

alternative. 

3 Assumptions 

Assumptions are imposed on t he parametric model g(x, 0). The following Assumptions 

are standard in literature (Guerre & Lavergne, 2002, Hitomi et al. , 2020). 

A ssumption 3. For all x, g(x, 0) is twice continuously differentiable with respect to 

0 E 0 , where 0 is a compact subset of IR10 . 

A ssumption 4. E [sup0E0 II ff0 g(X i, 0) 112] < oo. 

A ssumption 5. E [sup9E0 llm&,g(Xi 0)112] < 

Assumption 6 . For each 0 Ee, E[ llffog(Xi,0) ll21Zi] < w.p.1. 

Assumption 7 . For each 0 E 0 , E[g(X i, 0)21 Zi] < w.p.1. 

A ssumption 8. For each 0 E 0 , E[g(X i, 0)1 Zi = z] E M f for some constant Lg '.S L. 
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A ssumption 9. For each 0 E 0 , Go = E[10g(Xi, 0)1Zi = z] is continuous with respect 

to z on the support of Z and E( G0G0) is non-singular. 

ext, assumptions on parameter estimators are imposed. 

A ssumption 10. Under the null hypothesis, we have an -Jn-consistent estimator Bn = 0 

of 0o . 

Assumption 11. For each m( ·) E \II , a unique p eudo-true value 0;1 = 0* with respect 

to the estimator 0 exi ts such that 

(i) -Jri,(0 - 0*) = Op(l) uniformly with respect tom(·) EM. 

For all m( ·) E M , a positive constant c exists such that 

(ii) 110~ - Bol l ~ clE{m(Zi) - E[g(Xi, 0o)IZi]}I. 

Assumptions 10 and 11 restrict t he behavior of estimator 0 under t he null and alter­

native hypotheses. Uniform consistency in Assumption 11 (i) is essential for developing 

the minimax approach that considers uniform power of testing. When all regressors 

are exogenous (regression model) , non-linear least squares estimator may satisfy these 

assumptions (see, Guerre & Lavergne, 2002 for a sufficient condition) . When X includes 

endogenous variables (IV regression model) , identification assumptions as well as other 

sufficient conditions for GMM estimator and estimator using continuum of unconditional 

moment restrictions (Carrasco & Florens, 2000· Dominguez & Lobato , 2004) to satisfy 

Assumptions 10 and 11 are considered in Hitomi et al. , 2020. 

Let u; = }"i - g(Xi , 0*) . Assumption 7 along with t he boundedness of the error term 

in Assumption 1 guarantees E(uflZi) < as well as E(u; 2 1Zi) < 

4 Optimal Minimax Rate 

The proposition below shows a lower bound Pn against which no specification tests 

demonstrate non-t rivial uniform power. 
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Proposition 1 (Lower Bound) . Suppose Assumptions 1, 2, 3, 4, 8, and 9 hold. Let 

Pn = n-114 , each Wi is N(0 1) conditional on Zi , and Zi is uniformly distributed. For 

any test tn with SUPm(-)EHo P (tn > Za) S a+ o(l) , 

sup P(tn S z0 ) 2: 1 - a +o(l), whenever Pn = o(pn) , (2) 
m (•)EM (pn) 

where Za indicate the a level critical value of test tn-

Proposition 1 shows that no test has non-trivial uniform power when alternative 

includes any functions in M that satisfy infoEe E[o0 (Zi)2] = o(n-114 ). 

Proposition 1 is proved by replacing the minimax problem with a Bayesian problem, 

which the conventional technique to show the lower bound of the optimal minimax rate 

(e.g. , Ingster , 1993· Spokoiny, 1996· Lepski & Spokoiny, 1999; Lepski & Tsybakov, 

2000; Guerre & Lavergne, 2002; Abramovich et a l. , 2009· Ingster & Sapatinas, 2009). 

The proof is given in Appendix A. 

We propose a test statistic that uses the feature of the nearest neighbor observations. 

Let K i,j denote the indicator function , which takes 1 if the observation j is the nearest 

neighbor of observation i and 0 otherwise. Formally, Ki,j = 1(IIZi - Z1 II S IIZi -

Zkll, Vk f= i) if i f= j and K ij = 0 if i = j , where II· II is the Euclidean norm. The 

nearest neighbor i* of i is the observation that satisfies K i,i* = 1. Let Yi* and X i• be the 

observations of individual i* that satisfies K i,i* = 1. We also define Ui• = Yi• - g( X i*, 0). 

Let Ui = Yi - g(Xi, 0) be the residuals from t he parametric estimation. Then, the 

test statistic is 

(3) 

where µ2 = n -l I::l~2 I::j<i Wl/f1,f u; appears for the standardization. The weighting 

term Wi,J is defined as Wi,J = K iJ + K J,i· 

The test statistic is the sample analogue of E ( UiUi* ) with normalization. Since 
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nearest neighbors are determined by instruments, ui and ui* are independent conditional 

on Z for all i . This implies E (uiUi•) = E[E(uil Zi)E (Ui• IZi* )], which is zero under 

Ho. Under H 1, however , E [E (uil Zi )E(ui• IZi• )] = E [80( Zi )80(Zi• )] ~ E[80(Zi)2] > 0 

which represents the source of testing power. The proposed test is simple and easily 

implementable with small calculation cost. 

The proposed test is based on t he difference between non-parametric and parametric 

variance estimators with bias correction. To observe this, we decompose the t est statistic: 

*1, Tn = a-~ - a-J + B, where 3-~ = 2~ I:f=1 ( u'f + u'f..,) estimates the variance of error t erm 

in the parametric model (1) under t he null hypothesis and 3-~ = 2~ I:f=1 (½ - ½• )2 is 

t he non-parametric difference-based estimator for t he variance of }'i - E (½IZi), denoted 

as CY2 . The third term B is the bias correction for the non-parametric difference-based 

estimator: 3-~ - CY2 = 2~ I:f=1 (l'i - l'i* )2 - CY2 = [ 2~ I:f=1(Ui - Ui* )2 - CY2] +B, where B = 

i L ~=l (ui - ui* )[g(Xi, 0) - g(Xi*, 0)] + 2~ I:f=1[g(Xi, 0) - g(Xi* 0)] 2 . 2~ I:f=1 (ui - ui* )2 

can be shown to converge to the true variance CY2 when the model is true.3 Thus, Tn is 

modification of Yatchew s {1988) test wit h bias correction. This feature is not shared 

with the K-nearest neighbor specification test with increasing K , which is known to be 

rate optimal for t he regression function against smooth alternative (H. Li et al. , 2016) . 

Since at least one instrum nt is assumed cont inuous, t ies do not exist t heoretically. 

However , in practice, ties often exist, for example, when observed variables are rounded. 

In this case, the number of nearest neighbors may be greater than one and bounded from 

above, t hat is , 1 :S: I:;/ci K iJ :S: . When t ies exist, the proposed t est can be modified 

as follows 

(4) 

h ( Atie)2 - (,;;---n ,;;--- T.( )-1 ,;;---n ,;;--- w2 A2A2 s· th b ft" w ere µ = u i=l u jfi 1· i,j u i=2 u j <i i,j ui uj . mce e num er o 1es are 

3See, e.g., the proof of Theorem 1 of Yatchew (19 ). The difference-based estimator is first provided 
by Von Neumann, Kent, Beilinson, and Hart (1941) and developed by Gasser, Sroka, and Jennen­
Steinmetz (19 6) , Hall, Kay, and Titterinton (1990), and MWlk Bissantz, Wagner and Freitag (2005), 
among others. 
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asymptotically negligible, the asymptotic distribution, size, and power of the modified 

test are t he same as those of Tn . Thus, in the following, discussion are focused on Tn. 

The following proposition shows t hat t he proposed test converges to t he standard 

normal distribution under the null hypothesis. 

Proposition 2 . Suppose Assumptions 1, 2, 3, 4, 5, 6, and 10 hold. Then, under the 

null hypothesis, 

d 
~i -+ N(O, 1). (5) 

The test is asymptotically one-sided because under t he alternative, the source of 

positive values when Zi = Zi* .4 Thus, the null is rejected when t he test statistic lies 

above the (1 - a) quantile of the normal distribution, where a is a significance level. 

P roposition 3 below shows that t he proposed test has non-trivial uniform power 

against H n,l that approach the null hypothesis at t he rate ,.,,n-114 for a constant "'· 

Proposition 3 . Suppose Assumptions 1, 2, 3, 4, 5, 6, 7, 8, and 11 hold. Let Pn = n-1/ 4 . 

For any prescribed bound {3 E (0, 1 - a) and any 0 E 8 , a constant"' exists such that 

sup P (Tn :S za) :S: /3 + o(l ). (6) 
m(·)EM("Pn) 

Together with t he lower bound in P roposit ion 1, this result indicates that the pro­

posed test is rate optimal and t he optimal minimax rate of the specification tests for IV 

models against non-smooth alternative Hn,1 is n-1/ 4 _ 

5 Monte Carlo Experiments 

Simulations are used to investigate the finite-sample performance of Tn against various 

non-smooth alternatives. We compare the power performance of Tn wit h that of a kernel 

4The continuity of Z in Assumption 2 is one of the sufficient conditions to make Z,* approach Z; as 
t he sample size increases (see, e.g. Lemma 14.l of Q. Li & Racine, 2007). 
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smoothing test (Zheng, 1996). Hitomi et al . (2020) shows that t he kernel test for the IV 

regression model is rate optimal against the set of smooth alternatives and the power 

can outperform that of other existing tests for IV regression models, including integrated 

conditional moment tests of Bierens (Bierens, 1982 and Bierens & P loberger, 1997) and 

Horowitz (2006) and t he exponential tilting test of Donald , Imbens, and ewey (2003). 

We test null hypotheses that 

(7) 

(8) 

and 

(9) 

Following Horowitz (2006), we use the following data generating processes (DGP): 

X = <I> (pv1 + (1 - p2)112v2) , Z = <I>(v1), and U = 0.2<l>(7JV2+( l - 772)112v3) , where 

<I> (·) denotes the standard normal distribution function. Realizations of (X, Z , U) are 

obtained by sampling v1, v2, and V3 randomly from N(0, 1) . Included exogenous variables 

W1 , W2 ,- .. , W9 are drawn randomly from U[0, l] . 

We consider three sets of DGPs, called DGP 1, DGP 2, and DGP 3: DGP 1: p = 0.8 

and 77 = 0.1; DGP 2: p = 0. and 77 = 0.5; DGP 3: p = 0.7 and 77 = 0.1. 

The outcome is generated by 

Y = g(·) + /3zh(Z) + U, (10) 

where g(·) represents one of (7), (8), and (9) . Misspecification is introduced by the 

term f3z h(Z) , where the function h(-) is a Haar wavelet function: h(z) = 8 if z E (0, a] 

h(z) = - 8 if z E (a, 2a], and h(z) = 0, otherwise. Because the form of misspecification is 

determined by a and /3, we run simulations for multiple values of a in the range (0, 0.5]. 
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Then, r5 is given such that <Sa = 0.05. For illustrative purposes, Figure 1 shows h(·) for 

a = {0.035, 0.260, 0.485}. In all experiments, 0o = 01 = · · · = 010 = 1, f3z = 0.5 . 

The parameters are estimated by an efficient GMM (two-stage least squares) . In­

struments for X are Zand included exogenous variable(s) under the null model. Sample 

sizes are set ton = {200, 500, 1000} and the results are based on M = 1 000 simulation 

runs. 

Table 1 shows the size of ~i at the 5% significance level. The test tends to under­

reject the null hypothesis in most cases, indicating that the t est is conservative. Although 

under-rejection may be remarkable when the model is (9) , the estimated sizes become 

closer to the nominal sizes for all DGPs as the sample size increases. 

Figure 2 displays the probability of rejecting the null hypothesis for several values 

of a. For all DGPs, t he power performance improves as the sample size grows. Overall, 

power is high for all a except its boundaries . This indicates that the test has less power 

when t he misspecification of a function is concentrated on a narrow range ( a small) or 

is distributed on a wide range (a large) on its support. When a is not at its boundaries 

power is close to one even when the dimension of instruments is 10 when n = 1000 (third 

row). 

Figure 3 displays the power performance of the kernel smoothing test. The kernel 

smoothing test and the proposed test (Figure 2) share similar features such that power 

is lower at the boundary of a. A remarkable difference is that the kernel smoothing 

test does not have reasonable power when the dimension of instruments is 10 ( third 

row). Simulation results support the theoretical results that the rate optimality of the 

proposed test does not depend on the dimension of instruments , while that of the kernel 

smoothing test depend on the dimension of instruments. The kernel smoothing test is 

rate optimal when the alternative is smooth relative to the dimension of instrument . The 

alternative models employed in this simulation may not smooth enough for the kernel 

type test to have reasonable power . 
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Overall , simulation results indicate t hat the proposed test offers an alternative choice 

when t rue regression function might be non-smooth relative to its dimension. 

6 Application 

This section test s the specification of Engel curves (consumer expansion paths) . Empiri­

cal analyses of Engel curves ar e important in understanding consumer behavior, because 

the shape of it illustrates the elasticity of commodities toward total exp enditure (inferior, 

normal, or luxury). 

The t rue Engel curve for foods may be non-smooth (non-differentiable). The ex­

pendit ure for basic foods is likely to increases as income increases but after the basic 

need is satisfied , higher proportion of income may spend on less necessary goods. When 

households' preferences are structured in a hierarchical manner like this, the resulting 

Engel curve is known to exhibit kinks at points t hat reflects t he change in t he capacity 

of the good as income increases (Drakopoulos, 1994) . In the following application, we 

use the modified test statistic ( 4) when ties exist. 

The baseline model is t he Working- Leser specification of Engel curves, a structural 

model originating in consumer t heory (Muellbauer , 1976, Deaton & Muellbauer, 19 0, 

and Jorgenson , Lau , & Stoker , 19 2). Let Yi,j be individual i's exp enditure on good j , 

X i = I:j Yi,j be total expendit ures, and W be a vector of exogenous variables. Then, 

t he Working- Leser specification of Engel curves is 

YiJ I w /3 1 X K = aoJ + a1,j i,j + j og i + Ei,j 
i 

(11) 

where Eis unobserved regression error and a 0 , a 1 and /3 are unknown parameters to be 

estimated. 

We adapts t he data and application strategy of Battistin and De adai (2015) .5 The 

GWhen expeniliture data mare measured with errors, t he conventional IV approach fails to obtain 
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data are the 2010 wave of the Bank of Italy's Survey on Households' Income and W ealth 

(SHIW). To est imate Engel curves for food, the model is estimated for each demographic 

group ( couples without children, couples with one child, and couples with more than one 

child). Exogenous variables Ware t he household regional variation represented by macro 

area dummies (North, Center, and South) . Instruments for t he total expenditure are 

the average of male logged wages across micro areas (over 100) . Mean wages are likely 

to be uncorrelated with household unobserved characteristics and strongly correlated 

with total expenditures. The detailed explanation for data sets, estimation results , and 

sensitivity of t he choice of instruments are given in Battistin and De adai (2015). 

Table 2 presents Tn values. The null hypothesis is t hat t he specification of the model 

is true. The null is rejected at the 1 o/c significance level for households with one child 

and more t han one children. 

7 Conclusion 

This study investigated the optimal minimax rate when an alternative hypothesis is 

defined on t he set of non-smooth functions M. The set consists of bounded functions 

that are not necessarily differentiable when l < 4 with no smoothness constraints imposed 

on their first derivative when l ~ 4. The optimal minimax rate against such non-smooth 

alternatives is n-1/ 4 for any model dimension l . The rate is lower than the optimal 

minimax rate reported in literature because the set of alternatives in t his study consists 

of non-smooth functions. 

The simple nearest neighbor test Tn is rate optimal. Simulation results show that 

power of the proposed t est can be higher than that of t he existing kernel smoothing 

test when the alternative is non-smooth relative to the model dimensionality. Empirical 

consistent parameter estimates because measurement errors are non-linear in Engel curves. A consistent 
estimator under the measurement error is proposed in Battistin and De adai (2015). In Appendix C, 
t he model specification of their consistent estimator is al o tested. 
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applications of Engel curves illustrate the good applicability of the proposed test. 

A possible extension of this study, on which we are cunently working, is rate optimal 

specification testing under many weak instruments. The body of literature on t he esti­

mation and inference of paramet ers in linear IV regression models with many or many 

weak instruments is growing (e.g. , Andrews & Stock , 2007, ewey & Windmeijer , 2009, 

Anatolyev & Gospodinov, 2011, Lee & Okui, 2012, Chao, Hausman, ewey, Swanson, 

& Woutersen , 2014, and references therein). For specification t esting, this study shows 

that the optimal minimax rate for IV regression models is n - 1/ 4 for any dimension l of 

instruments. Although t he results of this study hold for any fixed l , optimal minimax 

rates are not obvious under many instrument setups, in which l grows with n. Asymp­

t otic properties of specification testing and rate optimality under many weak setups have 

not been investigated sufficiently. 
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Tables 

Table 1: Size of t he proposed t est wit h 5% significance level. 

DGP l DGP 2 DGP 3 

n (7) (8) (9) (7) (8) (9) (7) (8) (9) 

200 0.041 0.040 0.015 0.034 0.030 0.019 0.034 0.031 0.018 
500 0.042 0.030 0.010 0.042 0.037 0.023 0.043 0.031 0.024 

1000 0.041 0.037 0.025 0.054 0.040 0.02 0.049 0.040 0.033 

Note: DGP 1: {p,77} = {0. , 0.1}; DGP 2: {p 77} = {0. 0.5}; DGP 3: {p, 77} = {0.7, 0.1}. 

Table 2: Test for Engel curve specification (11) using SHIW 2010 data. 

No children One child More than one child 

Sample size 

0.414 
(0.339) 

345 

2.765 
(0.003) 

709 

3.193 
(0.001) 

1257 
Note: Presented are the test statistics Tn in equation (3) . P-values are given in parentheses. 

22 



Figures 

N 

s::t 
I 

0.0 0.2 0.4 

X 

alpha=0.035 
alpha=0.26 
alpha=0.485 

0.6 0.8 1.0 

Figure 1: Haar wavelet functions that introduces misspecification. 
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Figure 2: Power functions of proposed t est: P robabilit ies of rejecting t he null hypothesis 
are shown. Significance level is 5%. DGP 1: {p, 77} = {0.8, 0. 1}; DGP 2: {p, 77} = 
{0.8 0.5} ; DGP 3: {p, 77} = {0.7, 0.1}. 

24 



DGP 1: N II (7). emative (10) 

1.or=:;::::=========:=;:--i 
0.9 

§ 0.8 
~ 0.7 
·eo.s 
~ 0.5 
~ 0.4 

1 03 
a. 0.2 

0.1 
0.0 

samplesize 
-· 200 
... 500 

- 1000 

0.1--~0.2 -~0.3 -~0.4 
alpha 

OGP1: N II (8). emative (10) 

0.5 

~ .~ ' ;-;::_, •.. = ...... :;: .. ===.=-= .. =.=-.=.= .. =.==:::::::::::-1 
5 0.8 
~ 07 
eo.s 
~ 0.5 
E DA 
i •.3 
£ 0.2 

0.1 
0.0 

1.0 
0.9 

§ 0.8 
i o.7 
Eo.s 
~ 0.5 
~ 0.4 

~ 03 
a. 0.2 

0:1- 0:2 o'.3 o'.5 
alpha 

DGP 1: Null (Q). emative (10) 

0.1 ~ 

0.0 '-----~--~--~---0.1 0.2 0.3 0.4 0.5 
alpha 

DGP2: Nul ( . Al~e.rn stive (10) 

1.or=============-i 
0.9 

§ 0.8 
i o.1 
eo.s 
~ 0.5 
~ 0.4 

1 03 
a. 0.2 

0.1 
0.0 ~----~ 

0.1 0.2 0.3 
alpha 

OGP2: Nul (8), Al~em stive (10} 

§ ~~ / / 

~ 07 
·eo.s 
~ 0.5 
~ 0.4 
i o.3 
£ 0.2 

0.1 
0.0 

0:1 

OGP2: Nul (9). Al~e.rnstive (10) 

1.0 
0.9 

§ 0.8 
i o.1 
Eo.s 
~ 0.5 
~ 0.4 
~ 03 
a. 0.2 

0.4 0.5 

0.5 

0.1 ~ 

0.0 '--~--~--~--~----c,->_ 
0.1 0.2 0.3 0.4 0.5 

alpha 

OGP3: N I (7). ems1ive ( 10) 

1.or=::::===========--i 
0.9 

§ 0.8 
~ 0.7 
·eo.s 
~ 0.5 
~ 0.4 
p 3 
a. 0.2 

0.1 
0.0 

- 0~.1-- 0~2 0~3 0.5 
alpha 

OGP3: N I (8). ems1ive ( 10) 

~.~• r--== ___ ,= .... =- ========:;::::::::::-.... 7 
§ 0.8 

~ 07 
·eo.s 
~ 0.5 
~ 0.4 
2 0.3 

£ 02 
0.1 
0.0 

1.0 
0.9 

5 0.8 
~ 0.7 
Eo.s 
~ 0.5 
~ 0.4 
~ 03 
a. 0.2 

0.1 0.2 0.3 0.4 0.5 
alpha 

OGP3: N I (9). ems1ive (10) 

0.1 ~ 

o.o'--~--~--~--~--~-
0.1 0.2 0.3 0.4 0.5 

alpha 

Figure 3: P ower functions of kernel smoothing t est: P robabilities of reject ing t he null 
hypot hesis are shown . Significance level is 53/c. DGP 1: {p, 77} = {0.8 0. 1}· DGP 2: 
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APPE DIX: P roofs 

Appendix gives proofs of propositions. Proofs for lemmas are given in the supplemental 

material A. Let the variance of ui conditioned on Zi be denoted by a-2 (z) = E(uf IZi = z) . 

A-1 P roofs of P roposition 1 

Proof of Proposition 1. 

Let 1/Jj,r;,(z) = 21il2w(2i z - "') = 21i/21/)(2i z1 - "'1 ) · · · 1/J(2i z1 - "'l) for some j E Z and 

"' = ("'1, ... , "'l)' be a k-times continuously differentiable orthonormal wavelet function 

defined on [0, 2p - l jl for some integer p t hat satisfies 11/Jj,r;,(z)I ~ 21i l 2C for some constant 

C. The orthonormality implies that 2-lj E['l/Jj ,r;, (Z)'!j)j, ,11: ' (Z)] = ]. {j = j'}]. {"' = "''} , 

when random variable Z is assumed to be uniformly distributed, where ]. {j = j'} is an 

indicator function taking 1 if j = j' and zero otherwise. 

The wavelet series 1/Jj,11:(z) defined above can be constructed by using, for example, 

Daubechies's orthonormal wavelets (Daubechies, 1992) .6 Let '!/Jn(·) be Daubechies's or­

thonormal wavelet with support on [- p + 1, p] for some integer p 2 1. The wavelet func­

tion becomes 1/Jj,11:(z) = 21il21/JD(2iz1 - 11;1) · · ·1PD(2izt - "'t) - By defining an appropriate 

collection of"' for each j, the support of 1/Jj,11:(z) becomes [0 2p - 1f Let Kj denote the 

collection of all possible distinct values for 11; such t hat K,j = {"' E ~l : "'i = (p- 1) +c(2p­

l), c = 0, 1, ... , 2i - 1, 1, = 1, 2, ... , l}. Then, Kj includes 2i 1 elements for each j. Then 

dyadic cubes, lj,r;, = rr~=l ((- p + 1 + "'i)2-j , (K,i + p)ri], satisfy u,_Ex:,j l j,11: c [0 2p - 1f 

Since 1PD(2i Zi - K,i) is zero if Zi lies outside of ( (- p+ 1 + 11;i)2-j , ("'i + p)2-i], 1/Jj,11:(z) is zero 

if z ~ Ij,,_. Thus, the support of 1/Jj,11:(z) with 11; E Kj is [0, 2p - ljl. Any intersection of 

two different cubes is always empty; t hat is., Ij,11: n Ij,11:' = 0 for any "', 11;' E Kj ("'-/= "'') , 

which implies 1/Jj,11:(z)'l/Jj,11:'(z) = 0. Our wavelet function is orthonormal, because it is 

the tensor product of Daubechies's wavelets. Furthermore, Daubechies s wavelets are 

GConstruction of a wavelet function with support (0, 1] is also possible by using, for example, the 
method proposed by Cohen, Daubechies, and Vial {1993). 
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known to be I/P times continuously differentiable, where v R;:; 0.2. Thus, VJj,,-,.(-) can 

be constructed to be k-times continuously differentiable by taking p to be sufficiently 

large and satisfying [VJj,,..(z )[ :S 2lj/Zc for some constant C which implies W(·) :S C by 

definition. 

Let B ,-,. be any random sequence with [B,._[ = 1. We define for a positive constant A 

such that 

On,00 (-) = mn(-) - E[g(X , Bo)[·], 

where E[g(X, 00)[·] EM. The resolution level of wavelets is chosen by j = llog(n)/Z log(2)J , 

where l ·J is the floor function such that lxJ = max{z E ~[z :S x} , implying 2il = O(n). 

Let 0mn satisfy inf0E0 E[oo(Zi) 2 ] = E[o0 (Zi)2]. A constant C exists such that 
mn 

[l0mn - 0o[I :S CE[on(Zi) I under Assumptions 2, 3, and 9 (see Hitomi et al. , 2020 for the 

derivation). Then, we obtain the following result. 

Lemma 1. Under Assumptions 1, 2, 3, 4, 8, and 9, mn(·) belongs to the class of 

alternatives M (pn) when n is sufficiently large. 

We construct a Bayesian a priori measure by using the result of Lemma 1 and show 

that even the optimal Bayesian test with t he smallest enors does not have non-trivial 

power. Replacing the minimax problem by a Bayesian problem is a standard argument 

to show the lower bound of testing power (see, e.g. , lngster , 1993; Spokoiny, 1996; Lepski 

& Spokoiny, 1999; Lepski & Tsybakov, 2000; Guene & Lavergne, 2002 ; Abramovich et 

al., 2009; Ingster & Sapatinas, 2009) . 

A sufficient condition of P roposition 1 is Ln = L ,-,.EKJ [A2 p; 2-jt L~=l VJj,,-,.(Zi)2] 2 ~ 

0, which can be derived t hrough straightforward calculations (for the derivation see 

Guerre & Lavergne, 2002).7 

7 An a priori Bayesian measure over HoU Hn,t can be constructed as follows. The a priori distribution 
llo defined on Ho has Dirac mass: llo[880 (-) = OJ = llo{m(-) = E[g(X, Bo)I·]} = l. Let K be an 
i.i.d. Rademacher random variable independent of the observations with P(B"- = 1) = P(B"- = -1) = 

2 



Using t he orthonormality and boundedness of the wavelet function, we obtain 

E(Ln) 
n n 

n 

::; A P!2-il L L E ['1Pi,it(Zi)2] + A4p!n(n - l )T2i12i1 

i=l itEK.3 

Because Pn = o(pn) = o(n-114 ) by asswnption , Ln converges to zero in probability. 0 

A-2 P roof of P roposition 2 

Proof of Proposition 2. T he frequency that an observation is assigned to be the neaJ:'est 

neighbor of other observations is finite because of the boundedness of t he kissing number , 

that is , E ~=l K i,j < . Under Ho, fiTn can be decomposed as follows. 

(A.l) 

where An is op( l ) which comes from t h Jn-consistency of 0, t he smoothness and finite 

moment assumption imposed on g(-) , and t he bow1dedness of the number of nearest 

neighbors, E~h K i,j ::; 

The following lemmas show the asymptotic behaviors of t he first and second terms 

of equation (A.l ). T his result cannot be deduced from Lemma B6 of J un and Pinkse 

(2012) because t he boundedness of t he condit ional expectation of parametric function is 

not assumed. 

1/2. The a priori distribution Iln. 1 defined on H n, t is Iln, 1[1500 (-) = >.pnT3112 I:"EK: b,,,J,3," (-)] = 
1 

TI KEK:; P (B I< = b"), bi< E { -1 , 1 }, where Lemma 1 guarantees that Iln, 1 is an a priori measure over 
H n,l• Then Iln = Ilo + Iln,t is the a priori Bayesian measure over Ho U H n,l • 

3 



Lemma 2 . Under Assumptions 1, 2, 3, 4, 5, and 10, we have Jn I:~=i[g(Xi*, 00 ) -

g(Xi•, 0) ]Ui = op(l). 

Lemma 3 . Under Assumption 1, 2, we have Jn I:::~1 ui ui* .!; N(0,µ2) , where µ 2 is 

asymptotic variance of Jn I::~~1 Ui'Ui* . 

~X T h A2 p 2 h A2 -1 '\'n '\'n w2 A2 A2 . h C 11 . 1 vve s ow µ • µ , w ere µ = n L.,i=2 L.,j<i i,jui ui*, m t e 10 owmg emma. 

Lemma 4 . Under Assumptions 1, 2, 3, 4, 5, 6, and 10, we have µ2 I!.+ µ 2 under the 

null hypothesis. 

• 

A -3 P roof of P roposition 3 

Proof of Proposition 3. The following lemma holds for t he asymptotic behavior of fl 

under Hn,l• 

Lemma 5. Let Assumptions 1, 2, 3, 4, 5, 6, 7, and 11 hold. Let 

n i-1 

µ = 1f!.+m l L L Wi~ E ( u;2
J Zi) E ( u;2

J Zi), (A.2) 
i=2 j=l 

where u; = 1'i - g(Xi, 0*). Then, under Hn,1, µ2 = µ + op( l ) andµ is bounded from 

above uniformly in m(·) E M f • 

ext, we consider t he asymptotic behavior of the test statistics under Hn,l · We 

decompose P,Tn as follows: 

where T~ = fo I::~=i[1'i - g(Xi,0*) ][1'i* - g(Xi*, 0*) ], C1 = fo I:~=1 80.(Zi) [g(Xi*, 0) -

g(Xi•, 0*)], and C2 includes terms consisting of t he vanishing term g(Xi•, 0) - g(Xi*, 0*) 

times a random variable whose expectation conditioned on instruments is zero. It is 
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straightforward to show that C2 = op(l) uniformly in m(-) E M(,.,-,n- 114 ). Le1mna 6 

below shows that C1 = Op( l ). 

Lemma 6 . Under Assumptions 1, 3, 5, 6, 8, and 11, supm(-)EM (1,;n- 1/4) C1 = Op(l ) . 

There is a constant C > 0 such that P(Tn ~ za- ) ~ P (T~ ~ z~ + C) + o(l), where 

z~ = P,za- is bounded uniformly by Lemma 5. Further , 

var(T~) 
P (T~ ~ z~ + C) = P (- [T,~ - E(T,~)] 2: E (T~) - z~ - C) < 2 , 

- {E(T; ) - z~ - C} 

if E(T~) - z~ - C > 0. It is then sufficient to show that ,.,-, can be chosen so that 

E(T~) - z~ - C > 0, 

var(T~1
) 

{E(T; ) - z~ - C} 2 ~ /3, 

(A.4) 

(A.5) 

E(T~) = ../nE [80. (Zi )80. (Zi* )l 2: ../nE [80. (Zi )2] - ../nE[l80. (Zi ) - 80. (Zi• ) I 180. (Zi )I] 

> r=E [<5 (Z·)2] [l -E[l80• (Zi ) - 80. (Zi• ) l2]112 ] _ vn 0* i 1/ 2 

E [l80. (Zi )12) 

c 2 2 [ o(nf -¼)E[IIZi - Zi• ll2]1/ 2 ] 2: y,oK, Pn 1 - ---------
K,Pn 

= ,.,-,2 [1 - o(l)] , 

where the last equation is derived from E[IIZi - Zi* II] = O(n-111) under Assumption 2 

(see, for example, Lemma 14.1 of Q. Li & Racine, 2007) . Thus, E(T,~,1) is positive for a 

sufficiently large n. Then we obtain 
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A large value of K, makes the last term in the above equation arbitrarily close to one. 

Therefore, (A.4) holds by taking a sufficiently large K, . 

To prove (A.5), we definer:;, = }n I::~=l 7Ji, where 7Ji = I::#i Ki,j[l'i - g(Xi, 0*)][Yj ­

g(Xj, 0*)]. Let Z = {Z1, Z2, ... , Z11}. From the law of total variance, we obtain 

1 (n ) l n 1 [n l var (T,:) = ;:;var ~ 1Ji = ;:; ~ E [var ( 7Jil Z )] + ;;var ~ E ( 7Jil Z ) , 

where the last equality holds b cause 7Ji's are uncorrelated given Z ; that is, 7Ji s are 

i.i.d. condit ional on Z . Let iii = E [g(Xi, B*)IZi] - g(X i, 0*) + Wi- Then, it is obvi­

ous that E(ryil Zi) = o and E(ry; IZi) ::::; E[g(Xi, 0*)1 Zi] 2 + E [g(X i 0*)21 Zi] + o-2(Zi) is 

bounded by Assumptions 1 and 7. By using t hese and the boundedness of 80.(Zj) , 

we can show that E(77flZi) = I:#i Ki,jE{ [80*(Zi) + 11iJ2I Zi}E{[80•(Zj) + ihJ2I Zj} 

is bounded from above by a constant A. Similarly, there is a constant A such that 

ivar[I: f= 1 E(7Jil Zi)] ::::; A2. This yields var(T:;,) ::::; A + A2. For a sufficiently large n that 

satisfies [1 - O(n-111)] > 0, we obtain 

(A.6) 

Because this upper bound is bounded and decreasing in K,, (A.5) holds uniformly in 

• 
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Supplemental material for t he paper ent it led 

)) Opt imal Minimax Rates against on-smooth Alternatives ' 

Sup plemental Material A : P roofs 

S.A-1 P roof of Lemma 1 

Proof. Since E [g( X , 0o) I·] E M , it is enough to show (i) l<>n,00 (-)I < , (ii) l<>n,o0 (x) -

<>n,Bo(Y)l 2 = o(E½-2 llx - yl l2) as E ---+ 0, and (iii) inf0Ee E [<>n,0(Zi)2] 2 P~-

(i) Let z belongs to I j ,K- without loss of generality. T hen, 

where l'l/Jj,K-(z)I :::; 21i l 2C for some constant C is used for t he derivation . 

(ii) Let x belongs to I j,K-' and y belongs to Ij,K-" wit hout loss of generality (;,,' may be 

equivalent to ;,," ) . T hen , 

2 

l<>n,Bo (x ) - <>n,B0 (Y) l2 = ApnTjl/2 L B K- ['l/Jj,K- (x) - 'lpj,,;;(y)] 
K.EKi 

= >-..2p; IB,,,,[wj,K.'(2jx - ;,,' ) - Wj,1,,'(2iy - ;,,' )] - B ,,,,,[wj,1,,"(2iy - ;,,") - Wj,K-"(2jx - ;,,")]1 2 

:::; 2>-..2p~22j llx - y ll20 (1) = O(nf p;l lx - Yl l2 ) = o(nt-½ llx - Yll2) , 

where 2j = O(n111) and Pn = o(n-114 ). Thus , setting n = E-l yields (ii). 

(iii) We have infoEe E[8o( Zi)2] = E[80 (Zi)2]. T hen , Minkowski 's inequality and Tay-
mn 

lor expansion of g(Xi, 0mn) at 00 under Assumptions 3 and 4 yields 

1 



(S.A.1 ) 

for some positive constant C and C' . With respect the the second term , 

(S.A.2) 

Let lCj,i be the set of lth element in lCj for l = 1 ... , l. Let f[ (z) = 8~J(z) be 

t he part ial differentiation of f (z) with respect to the lth element of z, which is 

bounded from above by Assumption 2. Then, we obtain for some u = ( u 1 , ... , u1)' , 

l . . 

= 2Jl f (O) + 2J(l-l) 11 L luil + z2J(t- 2) l'(2p - 1) (21 ~ 1)21 + z2J(t-2) J12J (p - 1) 
i=l 

l -

= 2Jl f (O) + 2J(t-1) f' L luil + l(2p; l )f' (2jl - 2J(l-l)) + l]'(p - 1)2j(l-1) 

i=l 

2 



Substituting this into equation (S .A.2) yields 

·t r """"' (u+K;) E [l <>n,00 (Zi) I] S >..pn2-J J-p+l l'lr (u)I t..~ ; f ~ du 

S APn [t(O) + l (2p - l)l'] [P l'lr(u)ldu 
2 1-p+l 

[P l 
+ >..pnT j Jt }_ l'lr(u)I L lui ldu 

-p+l L=l 

- >..pnT j [l(2p - l)l' + lj' (p - l)] [P l'lr(u)ldu 
2 1-p+l 

(S.A.3) 

for some positive constant C" because J~P+l liir (u)ldu is bounded and 2-J shrinks 

by the definition of wavelet. A positive constant f' is defined in Assumptions 2. 

Since rlJ'l/;J,t..(Zi) is orthonormal and Lj includes 2Jl location shifts, we obtain 

E[<>n,00 (Zi)2] = >..2p;2-jl L E ['l/;j,t..(Zi )2] = >.. 2p; 2jl _ (S.A.4) 
K.EK; 

Equations (S.A.l), (S.A.3) , and (S.A.4) yields {E [<>0mn (Zi)2]}1/ 2 > >..pn(2Jt/2 -

C'C"). Thus , E[<>n,00 (Zi)2] 2'. p; when n is large enough. 

• 

S .A-2 Proof of Lemma 2 

Proof. From the mean value theorem, we obtain 
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n n 
A ,l L A ,l L A ' A = fa(0 - 0o) - µ . + fa(0 - 0o ) - µi + fa(0 - 0o ) µnfa(0 - 0o), 

n -i n 
i=l i=l 

(S.A.5) 

where .fii,(0 - 0o ) = Op(l ), fa = L j<i J(iJfog(Xj,0o)ui , µi = L j>i Ki,jf0 g(X j, 0o )ui, 

and µn = nfo "r'..l~1 L j11J<i,j 80i0, g( X j, 0) I B=OUi for an interior point 0 between 0 and 

0o. Note thatµ . and Tii are martingale difference sequences with resp et to o--fields gen-
- i 

erated by {X1 , X2 , ... , Xi-l, Z1 , Z2 , ... , Zn}, and {Xi+1 , Xi+2, ... ,Xn, Z1 , Z2, ... , Zn}, 

respectively. The variances of ¾ '£l~1 fa and ¾ L j=l µ,i can be straightforwardly shown 

1 n P 1 n P to be 0 (1/n). Thus, n L i=I 1:!:.i • 0 and n L i=l Tii • 0 from the Chebyshev s inequal-

ity. We can also show µn = op(l) by using the bounded second moments for Uj and 

• 

S .A-3 Proof of Lemma 3 

P 1 ,x r d fi 1 '\"""'n 1 '\"""'n ,;;-'i -1 W _ '\"""'n h W _ roo . vve e ne yn L.,i=l uiui* = vn L.,i=2 L.,j=l i,juiuj = L.,i=2 En,i, w ere i,j = 

Ki,j + K j,i- Let Fn,i be a o--field generated by {Yi, Y2, ... , 1'i, X1 , . .. , Xi, Z1 , ... , Zn}- It 

is obvious that Fn,i form a filtration, that is , Fn,k C Fn,k+I holds , and En,i is a martingale 

difference with respect to Fn,i· ote that µ 2 = limn• ¾ "r'.,~ 2 '£~:,\ WljuJa-2(Zi) < 

because E (u;J Fn,i-1) = o-2 (Zi) < oo by Assumption 1 and "r'.,~ 1 WlJ ::; . Fur-

thermore, '£~~1 E [c~,i ].{ Jcn,il 2: c}] ::; ~E [Jcn,i l3 ] ::; O(n-112), by the boundedness 

of E (u4 JZ ). Thus, applying Theorem 35.12 of Billingsley (2012) yields "r'.,f=2 En,i ~ 

• 
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S.A-4 Proof of Lemma 4 

Proof. We show that µ,2 converges to µ 2 defined above almost surely and µ 2 is equivalent 

t 1. 1 °"n °"i- 1 w 2 2(z ) 2(z ) ~2 · . t d c 11 . o 1mn• n u i=2 u j=I i,jCT j CT i . µ 1s represen e as 10 ows. 

(S.A.6) 

where B includes terms t hat converges to zero in probability. The convergence can 

be shown straightforwardly by using the Jn-consistency of paramet er estimates in As­

sumption 10, uniform convergence of the first and t he second derivative of g(x , 0) with 

respect to 0 E 8 under Assumpt ions 1, 3, 4, 5, and 10, and t he boundedness given in 

Assumptions 1 and 6. 

We apply Theorem 2.17 of Hall and Heyde (1980) to show the probability limit of 

t he first term of equation (S.A.6) . We define ¾ I:f=2 L J<i Wi:ju;u; = I:f=2 Vn ,i, where 

Vn,i = ¾ I:}:i Wi:ju;uj is a martingale with respect to Fn,i· According to Theorem 2. 17 

of Hall and Heyde (1980) , I::~2 Vn,i converges to limn• I:~=2 E (vn,il Fn,i-1) almost 

surely because limn• I:f=2 E(lvn,il l-hi,i-1) < oo. 

Let I:~ 2 E (vn ,i lFn,i-I) = I:11: J Vn,j, where Vn,j = ¾ L ~=Hl WljCT2 (Zi)u;- Let F n,j 

be a CT-field generated by {Yj , YJ+i , ... , Yn, X j, X j+l , .. . , X n, Z1, Z2, ... , Zn} - Then , Vn,j 

is a reversed martingale with resp et to F n,j. By applying Theorem 2.17 of Hall and 

Heyde (1980), '£;:[ Vn,j converges almost surely to liIDn• L ~=2 E (vn,j lF n,HI) = 

liIDn• oo ¼ I:;:f I:f=Hl Wi:tCT2(Zi )CT2 (Zj) because straightforward calculation leads to 

L f=2 E (lvn,jl lF n,Hl)::; ¾ L,~=2 L :~j+l Wi:tCT2 (Zi )CT2 (Zj) < D 

S.A-5 Proof of Lemma 5 

Proof. Under t he alternative, we can show 

(S.A.7) 
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uniformly in m(-) E M E. Indeed , E (u;21Zi) can be decomposed into m(Zi)P, E (wfl Zi), 

E [g(X , 0)Pl z] for p = 2, and cross products of t hem with p = 1. Since m(·) belongs to 

t he class of bounded functions M E where m(Zi)P is bounded uniformly m(·) E M E for 

any n under t he alternative. E (wf IZi) and E [g(X, 0)Plz] are bounded by Assumption 1 

and 7, respectively. Since L}:;,i W?j is bounded by a constant, P, is bounded from above 

uniformly in m(-) E M E· 

ote that we obtain µ' 2 = .!. ~ n ~ n . W~ .u'!'2u "'. 2 + D where D includes terms n L.., i =2 L..,J<i i,J i J 

that converges to zero in probability. This equation is a version of equation (S.A.6) 

in Lemma 4, and differs from (S.A.6) in points that it has 0* instead of Bo and error 

term under t he pseudo t rue value u; instead of ui. Thus, the limiting behavior of 

µ2 can be shown by going along with t he proof of Lemma 4 except points on which 

asymptotic behavior of parameter estimates under t he alternative affects. Especially, the 

convergence can be shown straightforwardly by using the .Jn-consistency of paramet er 

estimates in Assumpt ion 11 , uniform convergence of the first and t he second derivative of 

g(x, 0) with respect to 0 E E> under Assumpt ions 1, 3, 4, 5, and 11, and t he boundedness 

in Assumptions 4 and 6. The boundedness for t he conditional expectation of error terms 

is now guaranteed by equation (S.A.7) under Assumpt ions 1 and 7. • 

S .A-6 P roof of Lemma 6 

Proof. Since .jn(0 - 0*) = Op(l) uniformly in m(-) E M E from Assumption 11 , we have 

C1 = Op(l )(C~ + C~), where 

First, applying the Schwarz inequality yields C~ = op(l) , since E [lc5o*(Zi)l2] is 
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bounded by Assumption 8 under H 11,1 and the second derivative of g converges to its 

expectation uniformly in 0 E 8 under Assumptions 1, 3 5, and 11. 

Second, by Assumption 6, there is a constant c > 0 such that 

E(I IC~ II) :S ~ E { KiJ l80*(Zi)I E [II :0g(Xj, 0*)11 1 Zj]} :S cE (l80*(Zi) I) < oo. 
J;-1, 

(S.A.8) 

From the arkov 's inequality, P (supm IIC~ II > c) < E (supm l80(Zi)I) < , which 

indicates C~ is stochastically bounded. Therefore, we yield supm(•)EM(im- 1/4 ) C~ 

• 
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Supplemental Material B: Simulation 

Tables S.B.1 and S.B .2 show Monte Carlo results for the power of t he t est . The results 

correspond to power functions illustrated in Figures 2 and 3, respectively. 
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Table S.B.1: Monte Carlo results: power of the proposed test. 

0.035 0.06 0.11 0.135 0.16 0.1 5 0.21 0.235 0.26 0.285 0.31 0.335 0.36 0.3 5 0.41 0.435 0.46 0.4 5 

Null (7), Alte rn ative (10) DG . 1 
n = 200 0.96 1. 00 1.00 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.9 0.95 0.88 0.73 0.50 
n = 500 1.00 1.00 1.00 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0. 9 

n= 1000 1.00 1.00 1.00 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1. 00 0.99 
Null (7), Alte rn ative (10) G. 2 
n = 200 0.96 1. 00 1.00 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.94 0.87 0.73 0.56 0.36 
n = 500 1.00 1. 00 1.00 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.91 0.72 

n= 1000 1.00 1.00 1.00 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.93 
Null (7), Alte rn ative (10) DGP3 
n = 200 0.96 1.00 1.00 1.00 1.00 1. 00 1 00 1.00 1.00 1.00 1.00 1.00 0.99 0.9 0.96 0.90 0.80 0.65 0.44 
n = 500 1.00 1.00 1.00 1.00 1.00 1. 00 1 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.94 0. l 

n= 1000 1.00 1.00 1.00 1.00 1.00 1. 00 1 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1. 00 0.97 
Null (8), . lten1 ative (10) DGP l 
n = 200 0.06 0.10 0.28 0.58 0.84 0.94 0 98 0.9 0.99 0.99 0.99 0.98 0.96 0.93 0.86 0.74 0.56 0.37 0.23 
n = 500 0.08 0.41 0.92 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 o. 6 0.63 

n= 1000 0.19 0.93 1.00 1.00 1.00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.91 
Null ( ), Alt rn ativ (10) DG F'2 
n = 200 0.05 0.09 0.2 0.57 o. 2 0.92 0.97 0.9 0.9 0.99 0.9 0.95 0.91 o. 3 0.72 0.5 0.42 0.26 0.16 
n = 500 0.0 0.42 0.92 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.9 1 0.72 0.49 

n= 1000 0.20 0.93 1.00 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.7 
Null (8), Alt rn ative (10) DGF'3 
n = 200 0.06 0.09 0.2 0.5 0.83 0.93 0.97 0.9 0.9 0.99 0.9 0.97 0.94 o. 0.7 0.65 0.47 0.32 0.19 
n = 500 0.0 0.41 0.92 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.9 0.94 o. 0 0.56 

n= 1000 0.19 0.93 1.00 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.9 o. 
Null (9), Alte rn ativ (10) DGF' l 
n = 200 0.02 0.03 0.03 0.04 0.05 0.05 0.07 0.10 0.12 0. 13 0.14 0.15 0.14 0.11 0.0 0.06 0.04 0.02 0.02 
n = 500 0.04 0.05 0.05 0.07 0.10 0.18 0.28 0.39 0.47 0.57 0.62 0.62 0.57 0.4 0.36 0.26 0.16 0.10 0.07 

n= 1000 0.04 0.05 0.0 0.10 0.26 0.45 0.67 o. 4 0.93 0.97 0.9 0.97 0.97 0.92 0.81 0.65 0.42 0.24 0. 14 
Null (9), Alternativ (10) DG F'2 
n = 200 0.02 0.03 0.03 0.04 0.05 0.05 0.07 0.09 0.10 0.12 0.11 0.11 0.11 0.09 0.06 0.04 0.03 0.02 0.02 
n = 500 0.04 0.05 0.05 0.07 0.10 0.17 0.25 0.36 0.43 0.52 0.54 0.53 0.46 0.3 0.27 0. 19 0.13 0.0 0.07 

n= 1000 0.04 0.06 0.0 0.10 0.24. 0.4 1 0.64 o. 1 0.90 0.94 0.95 0.94 0.92 0.83 0.6 0.49 0.29 0.17 0.11 
Null (9), It rn ativ (10) GP3 
n = 200 0.02 0.03 0.03 0.04 0.05 0.05 0.07 0.09 0.11 0. 12 0.13 0.13 0.12 0.10 0.0 0.05 0.03 0.02 0.02 
n = 500 0.04 0.05 0.05 0.07 0.11 0.18 0.27 0.37 0.45 0.55 0.5 0.56 0.51 0.42 0.30 0.21 0.14 0.10 0.07 

n= 1000 0.04 0.05 0.09 0.10 0.25 0.43 0.66 o. 3 0.92 0.95 0.96 0.95 0.94 o. 6 0.75 0.57 0.36 0.20 0.12 

Note: Thi tab! corr pond to F igur r 2. DGP 1: {p,77} = {0. , 0. 1}; DGP 2: {p , 71} = {0. , 0.5} ; DGP 3: {p , 71} = {0.7, 0.1}. 



Table S. .2: Monte Carlo results : power of the kernel smoothing test . 

0.035 0.06 0.11 0. 135 0.16 0. 1 5 0.21 0.235 0.26 0.285 0.31 0.335 0.36 0.3 5 0.41 0.435 0. 46 0.4 5 

Null (7), Alten1 ative (10) DG . 1 
n = 200 0.82 1.00 1.00 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 
n = 500 1.00 1.00 1.00 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

n= 1000 1.00 1.00 1.00 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Null (7), Alte l' na t ive (10) GP2 
n = 200 0. 81 0.99 1.00 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.91 
n = 500 1.00 1.00 1.00 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

n= 1000 1.00 1.00 1.00 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Nu ll (7), AlteL"native (10) DGP3 
n = 200 0.77 0.99 1.00 1.00 1.00 1.00 1 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.93 
n = 500 0.99 1.00 1.00 1.00 1.00 1.00 1 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1. 00 1.00 

n= 1000 1.00 1.00 1.00 1.00 1.00 1. 00 1 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1. 00 1.00 
Null (8), . lteL" native (10) DGP l 
n = 200 0.07 0. 16 0.39 0.63 0.80 0.89 0 95 0.97 0.97 0.97 0.96 0.97 0.95 0.89 0.82 0.70 0.55 0.38 0.23 
n = 500 0.34 o. 0 0.97 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.9 1 0.71 

n= 1000 0.79 1.00 1.00 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1. 00 0.9 
I-' Null ( ) , Alt L'l1 ativ (10) DGP2 0 

n = 200 0.06 0. 15 0.3 0.64 0.77 o. 8 0.94 0.96 0.96 0.96 0.94 0.93 o. 9 o. 1 0. 71 0. 5 0.44 0.2 0. 1 
n = 500 0.32 0.75 0.95 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.95 o. 0 0.57 

n= 1000 0.75 0.99 1.00 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1. 00 0.92 
Null ( ) , Alt L'l1 ative (10) DG F'3 
n = 200 0.06 0. 12 0.33 0.56 0.73 0.85 0.92 0.95 0.96 0.96 0.95 0.95 0.93 o. 5 0.76 0.64 0.4 0.32 0.20 
n = 500 0.26 0.63 0.91 0.99 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 o. 6 0.66 

n= 1000 0.72 0.97 1.00 1.00 1.00 1. 00 1. 00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 
Null (9), Alt L'!1 ativ (10) DGP l 
n = 200 0.0 1 0.0 1 0.01 0.00 0.0 1 0.0 1 0.01 0.01 0.01 0.02 0.01 0.Ql 0.01 0.01 0.01 0.01 0.0 1 0.01 0.01 
n = 500 0.02 0.02 0.01 0.02 0.03 0.03 0.04 0.04 0.05 0.05 0.05 0.06 0.06 0.04 0.04 0.03 0.03 0.03 0.03 

n= 1000 0.04 0.03 0.02 0.03 0.04 0.06 0.09 0.10 0. 13 0. 14 0.14 0.13 0. 13 0.10 0.10 0.0 0.07 0.06 0.05 
Null (9), Alte l' nativ (10) DG F'2 
n = 200 0.01 0.0 1 0.00 0.00 0.00 0.0 1 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0 1 0.0 1 0.01 
n = 500 0.02 0.02 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.03 0.03 

n= 1000 0.04 0.03 0.02 0.04 0.04 0.06 0.08 0.09 0.12 0.12 0.12 0.11 0.10 0.0 0.0 0.07 0.05 0.04 0.05 
Nu ll (9), It rn ative (10) GP3 
n = 200 0.01 0.01 0.01 0.Ql 0.0 1 0.0 1 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.Ql 0.0 1 0.01 0.01 
n = 500 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.03 0.04 

n= 1000 0.04 0.03 0.02 0.03 0.04- 0.05 0.08 0.09 0.11 0.12 0. 11 0.11 0.10 0.0 0.0 0.07 0.05 0.05 0.05 

Note: Thi table corr pond to Figur r 3. DGP 1: {p, 77} = {0. , 0.1}; DGP 2: {p, 71} = {0. ,0.5}; DGP 3: {p, 71} = {0.7, 0.1}. 



Supplemental Material C: Empirical Application 

In the estimation of Engel curves, two possible sources of endogeneity exist. F irst, total 

expenditure seems to be simultaneously determined with expenditure for each good. 

Second , expenditure data may be measured with errors. T he conventional IV approach 

applied to ( 11) fails to obtain consistent parameter estimates because measurement errors 

are non-linear in ( 11). 

IV estimator is consistent under the model specification (assumption) proposed by 

Lewbel (1996) and Battistin and De Nadai (2015) , In t his Appendix , their approaches 

are explained and t heir specifications are tested by t he proposed test. 

S .C-1 Model 

Three estimation approaches are considered : IV , Lewbel 's (1996) , and Battistin and 

De Nadai's (2015) approaches. Alt hough all of these approaches aim to estimate the 

same parameter /3j , they differ in assumptions on the source of endogeneity, which lead 

to different model specifications . 

Let Zi be a vector of instruments that includes exogenous variables WiJ. In the IV 

approach, it is assumed t hat 

The parameters are ident ified through a 2SLS regression of y / X on constant W and 

log X , where log X is instrumented by Z . 

We assume additive measurement errors such t hat Yi ,j 

and xi = L j Yi ,j are the real expenditures, and Vi is a mean zero random variable 

independent of xi, Wi, Ei ,j, and Zi . ote that equation (11) holds under the real 
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expenditures, which implies 

Yi,j ili ,j; x i + Vj 
X i V 

ao,j + a~ ,j w i,j + /3j log x i + Ei,j + Vj 
V 

where V = 1 + I:j Vj and thus xi = xiv. 

(S.C.l) 

The independence and zero mean of vi implies that E (Xi lZi) = E (Xil Zi)E (V) = 

E (Xi lZi), E (Wi,jX il Zi) = E (Wi,jX il Zi), and E (Xdog Xi lZi) = E [XiV(logXiV)IZi] = 

E[XdogXil Zi] + E (Xil Zi)E(VlogVIZi) - Thus, multiplying either side of equation 

(S.C.1) by Xi and taking conditional expectations with respect to Zi yields 

where ao,j = ao,j - /3j E(V log VIZi)- In Lewbel's (1996) approach, it is assumed that no 

endogeneity caused by simultaneity exists so that E(Ei,jl Xi) = 0. Then, the parameters 

are identified through a 2SLS regression of y on X , W X , and X log X without a constant 

and Z as instruments. 

To address the violation of E(XiEi,jl Zi) = 0 assumed in Lewbel (1996), Battistin 

and De adai (2015) use a control function approach. Let T/i be t he residual term from 

the regression of log X i on the set of instrum nts Zi and iii be the residual using log X i 

instead of log X i. The authors set a parametric assumption that E ( Ei,j IZi, ih) = Pi'Tli, 

which yields E(XiEi,jl Zi) = E[XiE(EiJI Zi, '17i)I Zi] = PiE(Xi77ilZi)-

Since E(XiTJil Zi) = E(Xi77il Zi) + cov(V log V) by using T/i = '17i + log V - E(log V) , 

we obtain 

where ao,j = aoJ - /3j E(V log V IZi) - Picov(V, log V) . By replacing TJ with its fitted 

values iJ , parameters , including pj, are identified through a 2SLS regression of yon X , 
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W X , X log X , and X iJ without a constant and Z as instruments. 

In summary, each of IV Lewbel 's (1996), and Battistin and De adai s (2015) ap­

proaches has its own econometric specification for Engel curves. They are represented 

in the following moment restrictions: 

(S.C.2) 

where 

Er; = Yi,j I x i - ao,j - a~,j w i,j - /3j log x i 

Eb = Yi,j - ao ,j X i - a~ ,jwi,j x i - /3j XdogXi 

Erj = Yi,j - ao ,jXi - a~ ,jwi,j x i - /3j Xdog X i - Pix i'r/i,j• 

When Ei,j is exogenous to both X i and Zi, all moment restrictions in (S.C.2) hold. 

Consider that the source of endogeneity is only t he simultaneous determination ( or 

omitted variables). Then, moment restriction of the IV approach holds, while that of 

Battistin and De adai 's (2015) approach holds only if the parametric specification for 

E ( Ei,j I Zi, 1Ji) is correct . The moment restriction of Lewbel 's (1996) approach may not 

hold , since E (Ei,jl i \) = E(Ei,j lXi) -/- 0. By contrast, when endogeneity arises only from 

the measurement error of the form discussed above, moment restrictions of Lewbel's 

(1996) and Battistin and De adai 's (2015) approaches hold while those of the IV 

approach fail. When both simultaneity and measurement e1Tors are present, only the 

moment restrictions of Battistin and De Nadai 's (2015) approach hold under the correct 

parametric assumption for E(Ei,j lZi, 1Ji) -
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Table S.C.1: Test for Engel curve specification using SHIW 2010 data. 

IV Lewbel (1996) B (2015) 

No children 0.414 (0 .339) 5.161 (0 .000) 2.230 (0 .013) 
One child 2.765 (0 .003) 3.801 (0 .000) 4.929 (0 .000) 
More than one child 3.193 (0 .001) 5.612 (0 .000) 5.595 (0 .000) 

Note: Presented are t he test statistics Tn in equation (3). Sample size for groups " o children" ' One 
child," and "More t han one child" are 345, 709, and 1257, respectively. P-values are given in parentheses. 
B (2015) denotes Battistin and De adai (2015). 

S .C-2 Test R esu lts 

Table S.C.1 presents T,i values. The null hypothesis is that the specification of the model 

is true. For households without children (the first row) , the test rejects Lewbel 's (1996) 

specification at the 1 % significance level. This result coincides with the suggestion of 

Battistin and De adai (2015) that total expenditure endogeneity caused by simultane­

ity might be a more serious problem than measurement error , at least in these data. 

For households with one child and more than one child (the second and third rows, 

respectively) , all model specifications are rejected even at the 1 % significance level. 
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