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Abstract: Based on the relationship between two sets with respect to a
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timization problems. By using a nonlinear scalarization method, we obtain
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1 Introduction

In recent study on set-valued optimization problems, some solution concepts are defined by
the efficiency of vectors as elements of set-valued objective functions based on a preorder
which is a comparison between vectors with respect to a convex cone; see, [4] and [6]. In
this paper, based on the comparisons between two sets introduced in [2], we introduce
six different solution concepts on the same problem but by defining six types of efficiency
on images of set-valued objective functions directly. By using a nonlinear scalarization
method involving he(y; k) := inf{t : y € tk — C'} where C # Y is a convex cone with
nonempty interior in a real topological vector space Y and k € int C, we obtain optimal
sufficient conditions for efficient solutions of set-valued optimization problems.
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2 Relationships Between Two Sets

In this section, we introduce relationships between two sets in a vector space. Throughout
this section, let Z be a real ordered topological vector space with the vector ordering <¢
induced by a convex cone C : for z,y € Z,

z<cyify—zeC.

First, we consider comparisons between two vectors. There are two types of comparable
cases and in-comparable case. Comparable cases are as follows: for a,b € Z,

(1) a€b~C (ie., a <¢b), (2) a€eb+C (ie, b<ca).

When we replace a vector b € Z with a set B C Z, that is, we consider comparison
between a vector and a set, there are four types of comparable cases and in-comparable
case. Comparable cases are as follows: for a € Z,B C Z,
(1) Ac (b-C), 2) An(-C) #9,
(3) An(b+C) # ¢, (4) AcC(b+0).
By the same way, when we replace a vector a € Z with a set A C Z, that is, we consider
comparison between two sets with respect to C, there are twelve types of some what
comparable cases and in-comparable case. For two sets A, B C Z, A would be inferior to
B if we have one of the following situations:
(1) AC (Mes(b—C)),  (2) AN(Nees(b—C) # ¢,
(3) (Ugea(a+C)) D B, (4) (Ugea(a +C)) U B,
(5) (Naea(a+C)) > B,  (6) (Naeala +C)) N B) # ¢,
(7) AC (Uper(b=C)),  (8) (AN (Ues(b = C)) # ¢).
Also, there are eight converse situations in which B would be inferior to A. Actually
relationships (1) and (4) coincide with relationships (5) and (8), respectively. Therefore,
we define the following six kinds of classification for set-relationships.

Definition 2.1 (Set-relationships in [2]) Given nonempty sets A, B C Z, we define six
types of relationships between A and B as follows:
1) A<P Bby ACresb—C), (2) A<® Bby AN (Neen(b—C)) # ¢,
(3) A<® Bby Useala+C) > B,  (4) A< Bby (Naeala+C))NB # 6,
(5) A<D Bby AC Uen(b—C),  (6) A<E B by AN (Usen(b - C)) # 4.

Proposition 2.1 For nonempty sets A, B € Z and a convez cone C in Z, the following
statements hold:

A 58) B implies A S(g) B; A Sg) B implies A g(é) B;

A 5‘9 B implies A Sg') B; A 58’ B implies A _<_(c§) B;

A<D B implies A<® B;  A<Y B implies A<% B.
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3 Nonlinear Scalarization

At first, we introduce a nonlinear scalarization for set-valued maps and show some prop-
erties on a characteristic function and scalarizing functions introduced in this section.

Let X and Y be a nonempty set and a topological vector space, C a convex cone in
Y with nonempty interior, and F : X — 2Y a set-valued map, respectively. We assume
that C # Y, which is equivalent to

intCN(—clC)=10 (3.1)

for a convex cone with nonempty interior, where int C' and clC' denote the interior and
the closure of C, respectively.
To begin with, we define a characteristic function

he(y; k) :=inf{t: y € tk — C}

where k € int C and moreover —hc(—y; k) = sup{t : y € tk + C}. This function hc(y; k)
has been treated in some papers; see, [5] and [1], and it is regarded as a generalization of
the Tchebyshev scalarization. Essentially, ho(y; k) is equivalent to the smallest strictly
monotonic function with respect to int C defined by Luc in [3]. Note that hc(-;k) is
positively homogeneous and subadditive for every fixed k¥ € int C, and hence it is sublinear
and continuous.

Now, we give some useful properties of this function hc.

Lemma 3.1 Let y € Y, then the following statements hold:
(i) Ify € —int C, then he(y; k) < 0 for all k € int C;

(ii) If there exzists k € int C with he(y; k) <0, then y € —int C.

Proof. First we prove the statement (i). Suppose that y € —int C, then there exists an
absorbing neighborhood V4 of 0 in Y such that y+V, C —int C. Since V} is absorbing, for
all k € int C, there exists tg > 0 such that tgk € V. Therefore, y+tok € y+ Vo C —int C.
Hence, we have

inf{t:yeth—-C} < -t <0,

which shows that hc(y; k) < 0.

Next we prove the statement (ii). Let y € Y. Suppose that there exists k € intC
such that ho(y; k) < 0. Then, there exist ¢ > 0 and ¢g € C such that y = —tpk — ¢p =
—(tok + o). Since tok € int C and C is a convex cone, we have y € —int C. |

Remark 3.1 By combining statements (i) and (ii) above, we have the following: there
exists k € int C such that hc(y; k) < 0 if and only if y € —int C.

Lemma 3.2 Let y € Y, then the following statements hold:
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(i) If y € —clC, then he(y; k) <0 for all k € int C;

(i) If there exzists k € int C' with hc(y; k) < 0, then y € —clC.

Proof. First we prove the statement (i). Suppose that y € —clC. Then, there exist
a net {yn} C —C such that y, converges to y. For each y,, since yy € 0- &k — C for all
keintC, he(ya; k) < 0 for all k£ € int C. By the continuity of he(+; k), he(y; k) < 0 for
all k €intC.

Next we prove the statement (ii). Let y € Y. Suppose that there exists k € intC
such that ho(y; k) < 0. In the case he(y; k) < 0, from (ii) of Lemma 3.1, it is clear that
y € —clC. Then we assume that he(y; k) = 0 and show that y € —clC. By the definition
of hg, for each n = 1,2,..., there exists ¢, € R such that

1
ho(y; k) < tn < ho(y; k) + — (3.2)
and
y €tk —C. (3.3)
From condition (3.2), lim, o t, = 0. From condition (3.3), there exists ¢, € C such that
y = tpk — cp, that is, ¢, = t,k — y. Since ¢, — —y as n — oo, we have y € —clC. |

Remark 3.2 By combining statements (i) and (ii) above, we have the following: there
exists k € int C such that hc(y; k) < 0 if and only if y € —clC.

Lemma 3.3 Let y € Y, then the following statements hold:

(i) If y € int C, then ho(y; k) > 0 for all k € int C;

(i) Ify € clC, then he(y; k) > 0 for all k € int C.

The following lemma shows (strictly) monotone property on he(:; k).

Lemma 3.4 Let y,§ € Y, then the following statements hold:

(i) Ify € §+intC, then he(y; k) > he(y; k) for allk € intC;

(ii) Ify € §+clC, then he(y; k) > he(g; k) for all k € int C.
Lemma 3.5 Lety,7 € Y and k € int C, then the following statements hold:

(i) If he(y; k) > ho(3; k), then he(y — g5 k) > 0;

(ii) If he(y; k) > he(F; k), then he(y — g5 k) > 0.

Remark 3.3 In the above lemma, we note that each converse does not hold.
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Now, we consider several characterizations for images of a set-valued map by the
nonlinear and strictly monotone characteristic function hc. We observe the following four
types of scalarizing functions:

(1) é(x;k) :=sup{hc(y; k) : y € F(z)},
(2) @e(z; k) :=inf {hc(y; k) : y € F(z)},
(3) —yc"(z;k) =sup{—hc(—y;k) :y € F(z)},
(4) —vg"(z;k) = inf {~hc(—y; k) : y € F(z)}.

Functions (1) and (4) have symmetric properties and then results for function (4)
—1p5F can be easily proved by those for function (1) 1&. Similarly, the results for function
(3) —pgF can be deduced by those for function (2) f. By using these four functions we
measure each image of set-valued map F' with respect to its 4-tuple of scalars, which can
be regarded as standpoints for the evaluation of the image with respect to convex cone

C.

Proposition 3.1 Let z € X, then the following statements hold:
(i) If F(z) N (=int C) # 0, then w&(z;k) < 0 for all k € int C;
(ii) If there exists k € int C with ok (z;k) < 0, then F(z) N (—int C) # 0.

Proof. Let z € X be given. First we prove the statement (i). Suppose that F(z) N
(—int C) # 0. Then, there exists y € F(z) N (—intC). By (i) of Lemma 3.1, for all
k €intC, ho(y; k) < 0, and hence, pE(z; k) < 0.

Next we prove the statement (ii). Suppose that there exists £ € intC such that
©E(z; k) < 0. Then, there exist g > 0 and yo € F(z) such that

h k) < inf he(y; k) +e0 <O0.
c(¥o )_yelg(z) c(y; k) + o

By (ii) of Lemma 3.1, we have yo € —int C, which implies that F(z) N (—=intC) # 0. §

Remark 3.4 By combining statements (i) and (ii) above, we have the following: there
exists k € int C such that @& (z;k) < 0 if and only if F(z) N (=intC) # 0.

Proposition 3.2 Let x € X, then the following statements hold:
(i) If F(z) C —intC and F(x) is a compact set, then Y&(z;k) < 0 for all k € int C;
(ii) If there ezists k € int C with y&(z;k) < 0, then F(z) C —intC.

Proof. Let z € X be given. First we prove the statement (i). Assume that F(z) is a
compact set and suppose that F(x) C —intC. Then, for all k¥ € int C,

F(z) C U(-tk—intC).

t>0
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By the compactness of F(z), there exist ¢1,...,%» > 0 such that
F(z) € U (~tk — int C).
i=1

Since —t,k — int C C —t,k —int C for t, < t,, there exists to := min{ty,...,tm} > 0 such
that F(z) C —tok —int C. For each y € F(zx), we have

ho(y; k) =inf{t: y € tk — C} < —to.

Hence,
YE(z;k) = sup he(y;k) < —to < 0.
YEF ()
Next, we prove the statement (ii). Suppose that there exists k& € int C' such that
WE(x; k) < 0. Then, for all y € F(z), he(y; k) < 0. By (ii) of Lemma 3.1, we have
y € —int C, and hence F(z) C —intC. |

Remark 3.5 By combining statements (i) and (ii) above, we have the following: there
exists k € int C such that ¢&(z;k) < 0 if and only if F(z) C —intC. When we replace
F(z) in (i) of Proposition 3.2 by cl F(z), the assertion still remains.

Moreover, we can replace (i) in Proposition 3.2 by another relaxed form.

Corollary 3.1 Let z € X and assume that there erists a compact set B such that B C
—intC. If F(z) C B - C, then ¥&(z; k) <0 for all k € intC.

Proof. Let z € X, and assume that there exists a compact set B such that B C —int C
and F(z) C B — C. By applying (i) of Proposition 3.2 to B instead of F(z), for all
k €intC,

sup he(y; k) < 0.

yEB
Since F(z) C B — C, it follows from (i) of Lemma 3.1 and the subadditivity of hc(-; k)
that

ho(y; k) < sup heo(z; k)
z€B

for each y € F(z). Therefore, ¥&(z;k) < 0 for all k € intC. [
Proposition 3.3 Let z € X, then the following statements hold:
(i) If F(z) N (—clC) # 0, then p&(z; k) < 0 for all k € int C;

(i) If F(z) is a compact set and there ezists k € int C with ¢¢(z;k) < 0, then F(z) N
(—clC) # 0.
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Proof. Let z € X and we prove the statement (i). Suppose that F'(z) N (—clC) # 0.
Then, there exists y € F/(z)N(—clC). By (i) of Lemma 3.2, for all k € int C, hc(y; k) < 0,
and hence ¢&(z; k) < 0.

Next, we prove the statement (ii). Suppose that there exists k¥ € intC such that
oE(z;k) < 0. In the case p&(z;k) < 0, from (ii) of Proposition 3.1, it is clear that
F(z) N (—=clC) # 0. So we assume that p&(z;k) = 0 and show that F(z) N (—clC) # 0.
By the definition of %, for each n = 1,2,.. ., there exist ¢, € R and y, € F(z) such that
Yn € tok — C and

Lpg(x; k) <t, < c,og(ac; k) + % (3.4)

From (3.4), lim,_,s t, = 0. Since F(x) is compact, we may suppose that y, — yo, for
some Yo € F(x) without loss of generality (taking subsequence). Therefore, y, —t,k — yo
and then yy € —clC, which shows that F(z) N (—clC) # 0. |

Remark 3.6 By combining statements (i) and (ii) above, we have the following: under
the compactness of F(z), there exists k € intC such that ¢E(z;k) < 0 if and only
if F(z) N (—clC) # 0. Otherwise, there are counter-examples violating the statement
(ii) such as an unbounded set approaching —clC asymptotically or an open set whose
boundary intersects —clC.

Proposition 3.4 Let z € X, then the following statements hold:
(i) If F(z) C —clC, then y§(z;k) <0 for all k € int C;
(i) If there exists k € int C with Y& (z; k) < 0, then F(z) C —clC.

Proof. Let z € X be given. First we prove the statement (i). Suppose that F(z) C
—clC. Then, for each y € F(z), it follows from (i) of Lemma 3.2 that he(y; k) < 0 for all
k € int C, and hence ¥E(z; k) < 0 for all k € int C.

Next, we prove the statement (ii). Suppose that there exists k¥ € intC' such that
YE(z;k) < 0. Then, for all y € F(x), he(y;k) < 0. By (ii) of Lemma 3.2, we have
y € —clC, and hence F(z) C —clC. i

Remark 3.7 By combining statements (i) and (ii) above, we have the following: there
exists k € int C such that ¥&(z; k) < 0 if and only if F(z) C —clC.

4 Optimality Conditions

In this section, we introduce new definitions of efficient solution for set-valued optimization
problems. Using the sclarization method introduced in Section 3, we obtain optimal
sufficient conditions on such efficiency. Throughout this section, let X be a nonempty set,
Y a real ordered topological vector space with convex cone C. We assume that C # Y
and intC # 0. Let F : X — 2" be a set-valued map. A set-valued optimization problem
is written as
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(SVOP) min F(x) subject to z € V, where V = {x € X : F(z) # ¢}.
In this problem, we were defined an efficient solution as follows ever. Vector o € V' is an
efficient solution of (SVOP) if there exists yo € F(z,) such that F(z)\{zo} N (v —C) = ¢
for all z € V. This type of solution is defined based on a comparison between vectors.
However F is a set-valued map, so it is natural to define efficient solution concepts based
on direct comparisons between sets given in Definition 2.1.

Definition 4.1 (Efficient solution of (SVOP)) zo € V 1s said to be an efficient (resp.
weakly efficient) solution for (SVOP) with respect to < )for i = 1,...,6 if there exists
no z € V\{zo} satisfying F(z) _<_() F(zo) (resp. F(z) <§rztc F(ro)) for i = 1,...,6,
respectively.

Using sclarization functions introduced in Section 3, we obtain the following optimal
sufficient conditions for (SVOP).

Theorem 4.1 Let zg E V. If there ezists k € intC such that either 5 (zo; k) < v&(z; k)
or =gt (zo; k) < — 95 F(z;k) for any x € V, then zq is a weakly efficient solution for

L
(SVOP) with respect to <; 4 .

Proof. Suppose that there exists k € intC such that either ¢f(zo;k) < ¥&(z; k) or
—aF (zo; k) < —pg" (z;k) for any z € V. Assume that g is not a weakly efficient
solution with respect to <%, . Then there exist Z € V such that F\(z) < <M P(z)

X intc =intc .
(that is, § € NypeF(zs) (¥o — Int C) for any § € F(Z)). From condition (i) in Lemma 3.4, it
follows that for any k € int C, he(7; k) < he(yo; k) and —he(—7; k) < —he(—yo; k) for g
and Yo satisfying with § € F(Z) and y, € F(xo). Hence we get ¥&(Z; k) < p&(xo; k) and
—pF (2 k) < —g" (zo; k), which are contradictions to the assumption.

Theorem 4.2 Let zp € V.If there erist k € intC such that either ¢E(zo;k) < pE(z; k)
or =gt (zo;k) € —v5F (z;k) for any z € V, then xq is a weakly efficient solution for

(2)
(SVOP) with respect to <; ¢ .

Theorem 4.3 Let 1o € V.If there ezist k € intC such that either oE(zo; k) < p&(z; k)
or —5F (zo; k) < —p (x;k) for any x € V\{zo}, then xq is a weakly efficient solution
for (SVOP) with respect to <§n)t o
Theorem 4.4 Let zo € V.If there ezist k € intC such that either Y& (zo; k) < »E(2;5k)
or —ogF (zo;k) < —pg’ (z;k) for any z €V, then zo 15 a weakly efficient solution for
(SVOP) with respect to <§n)t o
Theorem 4.5 Let z, € V.If there erist k € intC such that either Y& (zo; k) < Y& (x; k)
—pzF (x0s k) € —pgF (3 k) for any z € V\{zo}, then zo is a weakly efficient solution

()
for (SVOP) with respect to <.t .
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Theorem 4.6 Let zo € V .If there ezist k € intC such that either Y& (zo; k) < 0E(z;k)
or —pgf (29 k) < —gF (x; k) for any z € V\{zo}, then zo is a weakly efficient solution

: (6)
for (SVOP) with respect to Sintc-
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