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Abstract We investigate optimal conditions for inducing low-rankness of
higher order tensors by using convex tensor norms with reshaped tensors. We
propose the reshaped tensor nuclear norm as a generalized approach to reshape
tensors to be regularized by using the tensor nuclear norm. Furthermore, we
propose the reshaped latent tensor nuclear norm to combine multiple reshaped
tensors using the tensor nuclear norm. We analyze the generalization bounds
for tensor completion models regularized by the proposed norms and show that
the novel reshaping norms lead to lower Rademacher complexities. Through
simulation and real-data experiments, we show that our proposed methods
are favorably compared to existing tensor norms consolidating our theoretical
claims.
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1 Introduction

Tensor formatted data is becoming abundant in machine learning applications.
Among the many tensor related machine learning problems, tensor completion
has gained an increased popularity in recent years. Tensor completion performs
imputation of unknown elements of a partially observed tensor by exploiting
its low-rank structure. Some of the popular real-world applications of tensor
completion are found in recommendation systems [I126], computer vision [I5]
and multi-relational link prediction [I8]. Though there exist many methods to
perform tensor completion [21], global optimal solutions are obtained mainly
by convex low-rank tensor norms, making them an active area of research.

Over the years, many researchers have proposed different low-rank inducing
norms to minimize the rank of tensors, however, none of these norms are
universally better compared to others. The main challenge in designing norms
for tensors is that they have multiple dimensions and different definitions of
ranks (Tucker rank, CP rank, TT-rank), making it difficult for a single norm to
induce low-rankness with respect to all the properties of tensors. Most tensor
norms have been designed with a focus to a specific rank; overlapped trace
norm [22] and latent trace norms [23] to constrain the multilinear ranks, tensor
nuclear norm [25241[T4] to constrain the CP rank, and the Schatten TT rank
[10] to constrain the TT-rank. However, targeting a specific rank to constrain
may not always be practical, since we may not know the most suitable rank
for a tensor in advance.

Most tensor norms reshape tensors by rearranging its elements as matrices
to induce low-rankness with respect to a mode or a set of modes. However, this
reshaping method is specific to obtaining relevant ranks that a norm constrains.
An alternative view was presented by [16] with the square norm, where the
tensor is reshaped as a balanced matrix without considering the structure of
its ranks. The square norm has shown to have better sample complexities for
higher order tensors (tensor with more than three modes) than some of the
existing norms such as the overlapped trace norm [25]. However, this norm
only considers the special case of reshaping a tensor as a matrix such that
its dimensions are close to each other. Other possibilities of how reshaping
tensors beyond matrices affect the inducement of low-rankness have not been
investigated.

In this paper, we propose generalized reshaping strategies to reshape tensors
and develop low-rank inducing tensor norms. We demonstrate that reshaping
higher order tensors as another tensor and applying the tensor nuclear norm
leads to better inducement of low-rankness compared to applying existing
low-rank norms on the original tensor or its matrix unfoldings. Furthermore,
we propose the latent reshaped tensor nuclear norm that combines multiple
reshaped tensors to obtain a better performance among possible reshaping
tensors. Using the generalization bounds, we show that the proposed norms are
able to give lower Rademacher complexities compared to exiting norms. Using
simulations and real-world data experiments we justify our theoretical analysis
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and show that our proposed methods are able to give better performance for
tensor completion compared other convex norms.

Throughout this paper we use the following notations. We represent a
K-mode (K-way) tensor as T € R™* " *"x_The mode-k unfolding [12] of a
tensor T is given by T} € R™*ILi%x ™5 which is obtained by concatenating
all slices along the mode-k. We indicate the tensor product [6] between vectors
u; € R™, ¢ = 1,...,K using the notation ® as (u1 ® -+ @ Uk )iy, ix =
Hfil uy;, - The k-mode product of a tensor 7 € R™ X X7k XK and a vector
v € R is defined as T X, v = 2?::1 Tivvinsrovip,..ix Vi - The largest singular
value of T is given by (7). The rank of a matrix A € R™*™ is given by
Rank(A).

2 Review of Low-Rank Tensor Norms

Designing of convex low-rank inducing norms for tensors is a challenging task.
Over the years, several tensor norms have been proposed with each norm having
certain advantages over the others. The main challenge with defining tensor
norms is the multi-dimensionality of tensors and the existence of different ranks
(e.g. CP rank, multilinear (Tucker) rank). A common criterion for designing
low-rank tensor norms is to induce low-rankness by minimizing a particular
rank. A commonly used rank is the multilinear rank, which represents the
rank with respect to each mode of a tensor. Given a tensor W € R"™1 % X"k
we obtain the rank of each unfolding 7, = Rank(W()), £ = 1,..., K, and
define the multilinear rank as (r1,...,7k). To minimize the multilinear rank
the overlapped trace norm has been defined [I5,22], which for a tensor 7 €
R™M X XNK g9

K
||T‘|over1ap = ZHT(IC) ”tra

k=1

where || - ||, is the matrix nuclear norm (a.k.a. trace norm) [4], which is the
sum of the non-zero singular values of a matrix. A limitation with this norm is
that for tensors with high variations in the multilinear rank this norm stays at
poor performances [221[23].

The latent trace norm [22] has been proposed to overcome limitations of
the overlapped trace norm, which allows freedom to learn ranks with respect to
each mode unfolding by considering a latent decomposition of the tensor. More
specifically, the latent tensor norm learns latent tensors 7", k=1,..., K as

||T||latent = Z” (k) Htr

T4, +T<K> T4

This norm was shown to be more robust for tensors with high variations in
the multilinear rank compared to the overlapped trace norm [22]. The latent
trace norm has been further extended to develop the scaled latent trace norm
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[23] by considering the relative rank of each latent tensor by scaling using the
inverse squared mode dimension.

Another popular rank for tensors is the CANDECOMP/PARAFAC (CP)
rank [2L[7LOLT2], which can be considered as the higher order extension of the
matrix rank. Recently, minimization of the CP rank has gained attention of
many researchers, who have shown that it leads to a better sample complexity
than multilinear rank based norms [25]. The tensor nuclear norm [2524]14]
has been defined as an approximation to minimize the CP rank of a tensor.
For a tensor 7 € R™**"K with rank R, Rank(7) = R, the tensor nuclear
norm is defined as

R R
7. :mf{zwz S iy - e,

Jj=1 Jj=1
lurll3 = 1,75 = Vi1 > 0}, (1)

where up; e R™ for k=1,...,Kand j=1,...,R.

The latest addition to convex low-rank tensor norms is the Schatten TT
norm [10], which minimizes the tensor train rank [I7] of tensors. The Schatten
TT norm is defined as

1 K-1
1Tl = 2 3 1Qu(T)lls
k=1

where Qp : T — R™2:X"k< ig an operator that reshapes the tensor 7 to a
matrix by combining the first £ modes as rows and the rest of the K — k modes
as columns. This norm has been shown to be suitable for high-order tensors.

It has also been shown that low-rank tensor norms can be designed without
restricting to a specific rank. The square norm [16] reshapes a tensor as a
matrix and apply the matrix nuclear norm as

i K
reshape (7'(1), H, H >

i=1 i=j+1

ITllo =

)

tr

where the function reshape() reshapes 7 to a matrix with approximately equal
dimensions for some j > 1. This norm has shown to have a better sample
complexity for tensor completion compared to the overlapped trace norm.

We point out that all the existing tensor norms except the tensor nuclear
norm reshape tensors as matrices to induce the low-rankness with respect
to two sets of mode arrangements. As a result these norms are focused on
constraining the multilinear rank of a tensor. However, tensor nuclear norm
has shown to lead to a better sample complexity compared to multilinear rank
based tensors norms for tensor completion [25]. Hence, lack of tensor nuclear
norm regularization for reshaped tensors among existing norms may results in
sub-optimal solutions.
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3 Proposed Method: Tensor Reshaping and Tensor Nuclear Norm
In this paper, we investigate on extending the tensor nuclear norm for high

order tensors. We explore methods to combine tensor reshaping with the tensor
nuclear norm.

3.1 Generalized Tensor Reshaping

First, we introduce the following notation to compute the product of tensor

dimensions. For a given vector (n1,...,n,), we present its element-wise product
by prod(ni,...,np) = ning - --np. Next, we define generalized reshaping for
tensors.

Definition 1 (Tensor Reshaping) Let us consider a tensor X' € R *m2xxnx
and its mode dimensions as D = {nj,ne,...,nk}. Given M sets D; C D, i =
1,..., M, that are disjoint, D; N D; = () for i # j, the reshaping operator is
defined as

H(Dh___7DM) . R’I’Ll Xng X XNk N ]:R[.‘)I’Od(Dl)X”-><pl'0€|(D1p[)7

and the inverse operator is represented by I1 (—Ll D)’ Further, we present
the reshaping of X by the set (D1,...,Dy) as X(p, ... .py)-

We point out that when |D;| = --- = |Dys| = 1, there is no reshaping of the
tensor, X(p, .. p,) = &. Unfolding of a tensor along the mode k [12] is equiva-
lent to defining two sets with D; = ny and Dy = (n1,...,nk—1, Nkt1,. -, NK)-

Further, we can obtain reshaping of a tensor as a matrix for the square norm
[16] by specifying two sets Dy and Dy with prod(D;) = prod(Ds).

3.2 Reshaped Tensor Nuclear Norm

We propose a class of tensor norms by combining generalized tensor reshaping
and the tensor nuclear norm. We name the proposed norms Reshaped Tensor
Nuclear Norms. In order to define the proposed norms, we consider a K-mode
tensor X € R™1*n2XXnK and a set of D;, ¢ = 1,..., M, adhering to Definition
1. We define the reshaped tensor nuclear norm as

H‘X(D17u~;DAI)||*7

where || - || is the tensor nuclear norm as defined in (). It is understood that
this norm is a convex norm, since the tensor nuclear norm (J) is convex.
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3.3 Reshaped Latent Nuclear Norm

A practical limitation in applying reshaping the proposed tensor norm is the
difficulty to select the most suitable reshaping set out of all possible reshaping
combinations. This is critical since we would not know the ranks of the tensor
prior to training a learning model. To overcome this difficulty we propose the
Reshaped Latent Tensor Nuclear Norm by extending the latent trace norm [22]
for reshaping tensors.

Let us consider a collection of G reshaping sets Dy = (D(l), .. .,D(G))
where each D(®) = (Dgs)7 e DS,SLZ), s=1,...,G consists a reshaping set for a
mg-mode reshaped tensor. Further, we consider the YW as a summation of G
latent tensors W@, g=1,...,G as W = Zszl W) We define the reshaped
latent tensor nuclear norm as

k
HW”r,latent(DL) = Z || ( )(k) . DS*I:I)C)”* (2)

W .. +W<G> W

We point out that the above norm differs from the latent trace norm [22] since
it considers reshaping sets defined by the user where the latent trace norm
considers all the mode-wise tensor unfolding. Furthermore, the above norm
uses the tensor nuclear norm while the latent trace norm is build using the
matrix nuclear norm.

3.4 Completion Models

Now, we propose tensor completion models for the proposed norms. Let us
consider a partially observed tensor X € R™*m2X X"k Given that X has m
observed elements, we define the mapping of the observed elements from X by
2 Rruaxnexeexnk _ R™ Given a reshaping set (D1, ..., Dys), the completion
model that is regularized by the reshaped norm is given as

1 )
min - |2(%) - 20W) 3
St Wips,.opanlle <, (3)

where )\ is a regularization parameter. For a selected set of reshaping sets
Dy, = (DW, ..., D), a completion model regularized by the reshaped latent
tensor nuclear norm is given as

i - ) (@)y)2
W<1>+I$11/1v<6>w2” (&) = LW+ W)

s.t. ||W||r,latent(DL) S )\7 (4)

where A is a regularization parameter.
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4 Theory

We investigate theoretical properties of our proposed methods to identify
the optimal conditions for reshaping of tensors. For our analysis, we use
generalization bounds based on transductive Rademacher complexity analysis
[3L,20].

We consider the learning problem in (3)) and we denote the indexes of
the observed elements of X by S, where each index (i1, - ,ix) of observed
elements of X is assigned as an element a;; € Sforsome 1 < j < |S|. We consider
observed elements as the training set denoted by Styain and the rest belonging
to the test set denoted by Srest. For the convenience of deriving the Rademacher
complexity, we consider the special case of |Sttrain| = [STest| = |S]/2 as in [20].

Given a reshaping set (Di,...,Djs), we consider the hypothesis class
W = {W||W(p,....p)ll+ < t} for a given t. Given a loss function [(-,-) and a
set S, we define the empirical loss as

1
Ls(lOW) = @ Z Z(Xil,...,iK»Wi1.,...,iK)‘|'

(1,...,iK ) ES

Given that max;, i, wew (X, i Wiy..ix)| < by, it is straight for-
ward to extend generalizing bounds for matrices from [20] to tensors, which
holds with probability 1 — ¢ as

11+ 4, /log §
Lspe (1o W) = L, (Lo W) < ARs (Lo W) + by :

\V4 ‘S'I‘rain‘

where Rg(l o W) is transductive Rademacher complexity theory [3l20] defined
as

Is|
1
Rs(loW) = EJ[ sup Zajz(xaj,waj)], (5)
S Lwew =
where o; € {—1,1}, j = 1,...,|S| with probability of 0.5 are Rademacher

variables.
The following theorem gives the Rademacher complexity for completion
model regularized by a reshaped tensor nuclear norm.

Theorem 1 Consider a K-mode tensor YW € RMXn2X"XNK - [et ys con-
sider any M reshaping sets (D1,...,Dp) with a hypothesis class of W =

WIIWD,....Du) I+ < t}. Suppose that for all (i, ... ix), (X, ix,") is
A-Lipschitz continuous. Then,
(a) given that W has a multilinear rank of (r1,...,7k), we obtain
cA 1, re
Rs(l <= k=1
sltoW) < S| (maxj—17...,M [Lico, 7“%‘)71(W(Dl"“’DM))

M
log(4M) Z H N,

j=1 pGDJ‘
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Table 1: Rademacher complexities for convex norm regularized comple-
tion models for a K-mode tensor 7 € R™ " *" with a multilinear rank
(r1,...,rx). 71(X) is the largest singular value of X', G reshaping sets of
D) = (DES), .. .,Dsz), g=1,...,G, and ¢, A, and By are constants.

Norm Rademacher complexity Rg(l o W)
Overlapped norm % Ele VBT (VnE-1 4+ /n)
Latent trace norm % minj—1,... x /T, BT (\/ ni-1 4 \/ﬁ)
Scaled latent trace norm % minj—1,.. K 1/ %BT(\/ nf + n)
A K-1_ . k K
Schatten TT norm TSI(K—T) 2ok Min (ITizy v s s vT9)
ByVnlK/2]
A 5,
Square norm fsj (malekz—l—w)’ﬂ Wb, ,p,))
log(8) (\/ nlD1l + vV nlD2 ‘)
K
Tensor nuclear norm % (%)'yl(m}) log(4K)VKn
A iy e

Reshaped tensor nuclear norm Icsil (man=1,.,}i1\; Mico, ™ )'yl W(Ds,...Da))

log(4M) S M /nlPil

cA s I 7
Reshaped latent tensor nuclear norm [§] Mingec (maX] Y HzeD(g)
(W((D)<g) """" P )) maxgeq log(4Mg)
9
Z;Viql Vn!Mgl

(b) given that W has a CP rank of rcp, we obtain

cA
Rs(l o W) < Ercp'Yl(W(Dl, DM)) IOg 4M Z H Tp,

j=1\ peD;
where ¢ is a constant.

Using the Theorem 1, we can obtain the Rademacher complexities for tensor
nuclear norm by considering |D1| = |Dz| = -+ = |Dg| = 1 and the square
norm by two reshaping sets of |D1| and [Ds| such that [[,cp, np = [1,ep, 7g-
We summarize Rademacher complexities of convex low-rank tensor norms in
Table 1| for a tensor with equal mode dimensions (n; =ns = ... =ng =n).

From Table [I] and Theorem 1, we see that norms constructed using the
tensor nuclear norm lead to better bounds compared to the overlapped trace
norm, latent trace norm, and the scaled latent trace norm. Further, we see that
the mode based components of the Rademacher complexity would have the
smallest value with the tensor nuclear norm (log(4K)vEKn). It is also clear
that for any reshaping set, we find that log(4K)vEKn < log(4M) Z]M:1 VnlPil,
This observation might lead us to conclude that the tensor nuclear norm is
better than all the other norms. However, considering the multilinear rank
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such that 1 < 7 < ry < --- < rg, we can always find M < K reshaping
K K
sets Dy, Do, ..., Dy such that [Limy > [l —. In other

maXj=1,....K Tj — max]-:1,...,MHi€D, i

words, we can reshape the tensor such that the Rademacher complexity for the
reshaped tensor nuclear norm is bounded with a smaller rank based component
compared to the tensor nuclear norm.

It is not known how reshaping a tensor changes the CP rank of original tensor
into the rank of the reshaped tensor except that Rank(X(p, .. p,,)) < rep ([16]
and Lemma 4 in appendix). However, Theorem 1 shows that reshaping results
in a mode based component of log(4M) Z;ﬁl VnlPil for the Rademacher
complexity, which indicates that selecting a reshaping set that gives a lower
mode based components can lead to a lower generalization bound compared
the square norm or the tensor nuclear norm. Furthermore, it is clear that the
reshaping a tensor and regularization using the tensor nuclear norm lead to a
lower generalization bound compared with multilinear rank based norms such
as the overlapped trace norm, latent trace norm, and scaled latent trace norms
and tensor train rank based Schatten T'T norm.

The next theorem provides the Rademacher complexity for completion
models regularized by the reshaped latent tensor nuclear norm.

Theorem 2 Let us consider a K-mode tensor YW € R™ > X"k Let us con-
sider a collection of G collection of reshaping sets Dy, = (DM ..., D)) where
each D) = (D%s), ceey DE\Z), s=1,...,G consists a reshaping set for a M-
mode reshaped tensor. Consider the hypothesis class Wy = {W\W(l) 4+
W =w, IWlli aatent(pr) <t} for a given set of reshaping set (D1, ..., Dar).
Suppose that for all X;, i, (X, ix,) is A-Lipschitz continuous. Then,

(a) when W has a multilinear rank of (r1,...,7x), we obtain
cd [T 7 ) )
Rg(loW) < — min =1 w
s )= S| gec (maxj—l,...,M [Lepw i m (Dgg)wwDﬁi,))
. "
max log(4M,) 4 H Np.
j=1 pEDg»g)
b) when W has a CP rank of r,, we obtain
P
A o
c .
Rs(loW) < rgrep m;n’yl(W((g)§g>w7D§&)))r;leaéclog(llMg) _ IT -
9 j=1 pEDﬁg)

where ¢ is a constant.

Theorem 2 shows that latent reshaped tensor nuclear norm bounds the
Rademacher complexity by the largest mode based component that results
from all the reshaping sets. Further, with the multilinear rank of the tensor the
Rademacher complexity is bounded by the smallest rank based component that
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results from all the reshaping sets. This observation indicates that properly
selecting a set of reshaping sets to use with the latent reshaped tensor nuclear
norm can lead to a lower generalization bound.

We want to point out that the largest singular values (v1(-)) that appear in
both Theorems 1 and 2 can be upper bounded by taking the largest singular
value with respect to all possible reshaping sets for a tensor. However, we do
not use such a bounding to keep the Rademacher complexities small.

4.1 Optimal Reshaping Strategies

Given that we have an understanding of the ranks of the tensor, Theorem 1
can be used to select a reshaping set such that reshaped tensor has a smaller
rank and relatively smaller mode dimensions. However, since we do not know
the rank in advance, selecting a reshaping set such that the reshaped tensor
does not have large mode dimensions would lead to a better performance.

To avoid the difficulty in choosing a single reshaping set, we can use the
reshaped latent tensor nuclear norm by choosing several reshaping sets that
agree with our observation in Theorem 1. However, since the Rademacher
complexity if bounded by the largest mode based components as shown in
Theorem 2, it is important not to select reshaping sets that result in a tensor
with large dimensions. A general strategy to create the reshaping sets by
selecting the original tensor and other reshaping sets that do not result in large
mode dimensions compared to the original tensor.

5 Optimization Procedures

It has been shown that learning by constraining the tensor nuclear norm is
the NP-Complete problem [8], which makes solving the problems and
computationally difficult. In [24] an approximation method have been proposed
to compute the spectral norm by computing largest singular vectors on each
mode, which is combined with Frank-Wolfe optimization method to solve ({3)).
We adopt the approximation methods [24] to solve our proposed completion
models with reshaped tensors and . We found that solutions using
the approximation methods provide agreements with our theoretical results
related to excess risk bounds as we show in the Section 7. However, there is
no theoretical analysis available to understand how well the approximation
method results in a solution compared to a exact solution.

The optimization method proposed in [24] uses an approximation method
for the spectral norm using a recursive algorithm based on singular value
decomposition with respect to each mode. However, we adopt a more simpler
approach as given in Algorithm |1} which we believe is more easier to implement.
Using the approximation method, we provide an optimization procedure to
solve the completion model that is regularized by a single reshaped norm in the
Algorithm [2} The optimization procedure in Algorithm [2is also similar to the



Reshaped Tensor Nuclear Norms for Higher Order Tensor Completion 11

Frank-Wolfe based optimization procedure proposed in [24]. The additions in
Algorithm [2| to [24] are the computation of the spectral norm of the reshaped
tensor in step 7 and the conversion of the reshaped tensor to the original
dimensions in step 12. Here, we want to recall Definition 1 to refer to the
reshaping operator II(p, . p,,)() and its inverse operator H(—;Dh'_"DM)() for
any given reshaping set (D1, Da, ..., D).

: Input: A € RM1Xn2 XNK
: Output: wy,...,wg, sv
y=A
fork=1,..., K —1do
M = reshape(Y, [ng, ng41 -+ 1K)
(Wi S5 vg) = svd(M, 1)
Y=Y x1wg
Y =reshape(Y, [ng+1,...,nK])
end for
wi

QRN D I W

_ X1WK —1
Yx1wk _1ll2
P sv=A X1 wy Xowa - XK WK

Algorithm 1: ApproxSpectralNorm(.A)

— =
—

[y

: Input: X € R"1X"2"X"K with observed indexes {2, Regularization parameter \.
Initial W9, Maximum iterations T, Reshaping dimensions (D1, Da, ..., Das)
: Output: WT
t=20
repeat
t=t+1
POV = L) — ()13
w1, ..., wk,sv = ApproxSpectralNorm(IT(p, ... p,,) (Vwfiw (W)
W;escent = _Awl ® wa, - ®wk
9: if linesearch == True then
10: Using an appropriate line search method (e.g.Yuan et al (2016))
11: else
12: Wt+1 = Wt + t-&-i?H(TDl,“.,DM)(thiescent)
13: end if
14: untilt =T
Algorithm 2: A Frank-Wolfe optimization method for a regularization
with a reshaped tensor norm

Next, we give an algorithm to solve the completion model regularized by the
reshaped latent tensor nuclear norm. The Frank-Wolfe optimization method
has also been applied to efficiently solve learning models regularized by the
latent trace norms [5]. We follow their approach to design Frank-Wolfe method
for the reshaped latent tensor nuclear norm and Algorithm [3| shows the steps
for optimization. From Lemma 1, we know that we need to find the reshaping
with the largest spectral norm each ¢ step to update the Frank-Wolfe procedure.
This is shown in the lines 7-11 in the Algorithm [3]
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1: Input: X € R?M1X"2X"K with observed indexes {2, Regularization parameter \.
Initial W°, Maximum iterations 7', G Reshaping sets (D1, ..., D()) with
Do) = (Dg-‘”,...,D%), g=1,...,G

2: Output: WT
3:t=0
4: repeat
5: t=t+1
6: fwWh = 12 — 2(X)|E
7 forg=1,...,G do
8: w1, ..., W, , sV = ApproxSpectralNorm(IT, () @) (VY wfw(Wh)))
(D{?,...D{))
9: sv_array(g) = sv
10: end for
11: ¢ = argmax;(sv-array)
12: wi,...,wpr,, sv = ApproxSpectralNorm (I, _(;) @ (Vw v (Wh))
i (01", D5p)
13: Wctlescent = _>\H(-I—D§i>v~-<aD§\jI>,)(w1 R wz, - & ’LU]\L‘,)
14:  if linesearch == True then
15: Using an appropriate line search method (e.g.Yuan et al (2016))
16: else
17: WL = W 2o (WE )
18: end if

19: untilt =T
Algorithm 3: A Frank-Wolfe optimization method for a regularization
with the reshaped latent tensor nuclear norm

6 Experiments

In this section, we give simulation and real-data experiments.

6.1 Simulation Experiments

We created simulation experiments for tensor completion using tensors with
some fixed multilinear rank and CP rank. We create a K-mode tensor with
the multilinear rank of (r1,--- ,7x) by generating a tensor T € R™1> " *nK
using the Tucker decomposition [12] as 7 = C x1 Uy XoUs X3+ X ¢ U, where
C € R™*" XK ig a core tensor whose elements are sampled from a normal
distribution specifying the multilinear rank (r1,--- ,7x) and Uy € R™+*" k=
1,..., K are orthogonal component matrices. We create a tensor with the CP
rank of r using the CP decomposition [I12] as 7 = >, c;u1; @ ug; @ - - - @ ug;
where ug; € R, k= 1,...,K, i« = 1,...,r are sampled from a normal
distribution and normalized such that ||uy;||3 = 1 and ¢; € R*. From the total
number of elements in the generated tensors, we randomly selected 10, 40,
and 70 percentages as training sets, and from the remaining we selected 10
percent of elements as validation set, and the rest were taken as test data. We
conducted 3 simulations for each randomly generated tensor.

For all simulation experiments, we tested completion using our proposed
completion models with the reshaped tensor nuclear norm (abbreviated as
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g x10°
0.07 T —RTNN
< —RTNN 50 ~*=~RLTNN
0.06 - ~*=RLTNN < e TNN
—o-TNN
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0.05 N <4+ OTN
w AN “%e SLTN w
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0.03 2r
0.02 T
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0 0.2 0.4 0.8 0 0.2 0.4 0.6 0.8
Fraction of training samples Fraction of training samples
(a) Multilinear rank (9,9, 3, 3) (b) CP rank 3

Fig. 1: Performances of completion of the tensors (a) Tensor 7 € R10x10x40x40
with a multilinear rank (9,9,3,3) and (b) 7 € RI0X10x10x10x10 with 4 CP
rank 3

0.3 0.02
—RTNN
0.25 ~#=RLTNN
—»=TNN
0.015 1 —e-SN
0.2
% 0.15 @ 0.01
2o. .
0.1
0.005
0.05
0 L L L I} O L I L L I}
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
Fraction of training samples Fraction of training samples
(a) Multilinear rank 83, 3,35,35) (b) CP rank 243

Fig. 2: Performances of completion of the tensors (a) Tensor 7 € R10x10x40x40
with a multilinear rank (3,3,35,35) and (b) 7 € R10x10x10x10x10 with 5 CP
rank 243

RTNN) and with the reshaped latent tensor nuclear norm (abbreviated as
RLTNN). Additionally, we performed completion using the tensor nuclear norm
(abbreviated as TNN) without reshaping and the square norm (abbreviated as
SN). As further baseline methods, we used tensor completion with regularization
using the overlapped trace norm (abbreviated as OTN), scaled latent trace
norm (abbreviated as SLTN), and the Schatten TT norm [I0] (abbreviated as
STTN). As the performance measure of completion, we calculated the mean
squared error (MSE) on the validation data and test data. For all completion
models, we performed cross-validation of regularization parameters in power of
2% with x ranging from —5 to 15 with intervals of 0.25.

For our first simulation experiment, we created a 4-way tensors T; €
RrixneXnsxns with n; = ngy = 10,n3 = ny = 40 with a multilinear rank of
(r1,re,73,74) = (9,9,3,3). From [I6] we can reshape T by using a reshaping
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set of (D1, Ds2) = ((n1,n3), (n2,n4)) such that it creates a square matrix
for the square norm. From Theorem 1, we see that the rank components
in the Rademacher complexity for the nuclear norm and the square norm
are Hszl ri/(max;—1 ar;) = 243 and HkK:1 r/(max;—1 9 HieDj r;) = 27,
respectively. Further, Theorem 1 shows that the mode based components
for the nuclear norm and the square norm are log(4 - 4)(22:1 V) ~ 53
and log(4 - 2)(y/nins + /n2na) ~ 83, respectively. This leads to a lower
generalization bound for the nuclear norm compared to the square norm
justifying its better performance as shown in the Figure 1 (a). However, Theorem
1 indicates that the lowest generalization bound is obtained by using the
reshaping set (D1, D}, D%) = ((n1, ng), n3, ng), which combines the high ranked
modes (mode 1 and mode 2) together resulting in a rank based component
of Hle 7%/(max;j—123[[;cp 7:) = 9 and a mode based component of log(4 -

3)(/ning + /N3 +\/g) = 56. Figure 1 (a) agrees with our theoretical analysis
showing that our proposed reshaped tensor nuclear norm obtains the best
performance compared to other norms. For the reshaped latent tensor nuclear
norm, we combined the two reshaping sets ((ny,ns, nz, n4), ((n1,n2),n3,14)).
Applying Theorem 2, we see that this reshaping set combination leads to a lower
Rademacher complexity. However, this combination only gave a comparable
performance to the reshaped tensor nuclear norm.

As our second simulation, we created a 5-mode tensor 7o € Rn1>n2XxXns
where ny = no = ... = n5 = 10 with a CP rank of 3. From Theorem 1, we
know that we can only consider the mode based component of the Rademacher
complexity to obtain a lower generalization bound. For the square norm we can
use a reshaping set such as (D1, D2) = ((n1,n2), (n3, n4, ns5)), which results in
the mode based component as log(4 - 2)(\/n1n2 + /n3ngns) =~ 86. The tensor
nuclear norm leads to a mode based component of log(4 - 5)(22:1 V) ~ 4T
As an alternative reshaping method, we propose to combine any two modes
together to create a reshaping set such as (D7, D5, Ds) = (n1, na, ns, (n4, ns))
for the reshaped tensor nuclear norm, which lead to a mode based component
of log(4-4)(\/n1 ++/nz ++/n3+/nans) ~ 54. Comparing the Rademacher com-
plexities using the mode based components we see that the lowest generalization
bound is given by the tensor nuclear norm. Figure 1 (b) shows that our theoret-
ical observation is accurate since the tensor nuclear norm gives the best perfor-
mance compared to other two reshaped norms. For the reshaped latent tensor nu-
clear norm we used all the 10 combinations of two modes combinations, which re-
sulted in reshaping sets of D = (((n1,n2),n3, n4, ns), (n1, (N2, n3g), N4, ns), . . .,
(n1,n2,n3, (n4,n5))). Figure 1 (b) shows that the reshaped latent tensor nuclear
norm has outperformed the tensor nuclear norm.

The next simulation again focuses on a different multilinear rank for the
4-way tensor T € RM*n2XnsXn4 with ny = ny = 10,n3 = ng = 40. Figure
2 (a) shows the simulation experiment with multilinear rank of (3, 3, 35, 35).
Again from [I6] we can reshape 7 by using a reshaping set of (Dy, D3) =
((n1,n3), (n2,m4)) or (D1, D2) = ((n1,n4),(n2,mn3)) to create a square ma-
trix to use with the square norm. From Theorem 1, the square norm will
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result in a rank based component of HkK:1 ri/(maxj—12 [[;ep, ri) = 105 and
a mode based component of log(4 - 2)(\/nins + /n2na) ~ 63. However, if we
combine the high ranked modes 3 and 4 together to create a reshaping set
(D1, D4, D%) = (n1,na, (n3,ng)) for the reshaped tensor nuclear norm, then

the rank based component will decrease to Hszl e/ (maxj—123][;cpr i) =9
J

and mode based component will decrease to log(4 - 2)(\/ni/n3 + /nana) ~ 55.
Furthermore, the tensor nuclear norm leads to a rank based component
of Hszl ri/(max;=1 _a7;) = 315 and mode based component of log(4 -
4)(2?21 /1) ~ 53 resulting in a larger generalization bound compared to the
proposed reshaped set (D7, Db, D) = (n1,n2, (ng,n4)). This analysis is also
confirmed with the experimental results as shown in Figure 2 (a) where the
reshaped tensor nuclear norm gives the best performance. Using the Theorem 2,
we find that if we use reshaping sets ((n1, n2,n3,n4), ((n1,n2), N3, ng)) for the re-
shaped latent tensor nuclear norm, the Rademacher complexity will be bounded
by the smaller rank based component from the reshaping set (n1,ng, ng, ng) and
the mode based component from ((ni,n2),ns, ny). However, the reshaped la-
tent tensor nuclear norm was not able to perform better than the tensor nuclear
norm or the proposed reshaped norm with (D7, D5, D%) = (n1, na, (n3, n4)).

The final simulation result shown in Figure 2 (b) is for a tensor T €
R10X10x10x10x10 with CP rank of 243. For this experiment, we used the same
reshaping strategies as in the previous experiment with CP rank in Figure 1
(b). We see that when the fraction of training samples is less than 40 percent
the tensor nuclear norm has given the best performance. When the fraction
of the training samples increases the reshaped latent tensor nuclear norm has
outperformed the tensor nuclear norm.

6.2 Multi-View Video Completion

We performed completion on multi-view video data using the EPFL data
set: Multi-camera Pedestrian Videos data [I]. Videos in this data set capture
sequentially entering a room and walking around of four people from 4 views
using 4 synchronized cameras. We down-sampled each video frame to a height of
96 and width of 120 to obtain a frame as a RGB-color image with dimensions of
96 x 120 x 3. We sequentially selected 391 frames from each video. Combining
all the video frames from all views resulted in a tensor of dimensions of
96 x 120 x 3 x 391 x 4 (height x width x color x frames x views).

To evaluate completion, we randomly removed entries from the multi-
view tensor and performed completion using the remaining elements. We
randomly selected percentages of 2, 4, 8, 16, 32, and 64 of the total num-
ber of elements in the tensor as training elements. As our validation set
we selected 10 percent of the total number of elements. The rest of the
remaining elements were taken as the test set. For the square norm, we
considered the reshaping set ((height, width), (color, frames, views)). For the
reshaped tensor nuclear norm, we experimentally found that the reshap-
ing set ((height, views), (width, color), (frames)) gives the best performance.
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Fig. 3: Tensor completion of the multi-video tensor.

To create the reshaping set for the reshaped tensor nuclear norm we com-
bined the reshaping sets for the square norm and the reshaped tensor nu-
clear norm with the unreshaped original tensor. The resulting set is D =
((height, width, color, frames, views), ((height, width),(color, frames, views)),
((height, views),(width, color), (frames))). We cross-validated all the completion
models with regularization parameters out of 10~, 10797 10795, ..., 107.

Figure [3| shows that when the training set is small (or the reshaped tensor
nuclear norm is sparse) the reshaped tensor nuclear norm and the tensor nuclear
norm have given good performance compared to the square norm. When the
percentage of observed elements increases more than 16 percent, the square
norm outperforms the other norms. However, the reshaped latent tensor nuclear
norm has shown to be adaptive to all fractions of training samples and has
given the overall best performance.

7 Conclusions

In this paper, we generalize tensor reshaping for low-rank tensor regularization
and introduce the reshaped tensor nuclear norm and the reshaped latent tensor
nuclear norm. We propose tensor completion models that are regularized by
the proposed norm. Using generalization bound analysis of the proposed com-
pletion models we show that the proposed norms lead to smaller Rademacher
complexity bounds compared to exiting norms. Further, using our theoretical
analysis we discuss optimal conditions to create reshaped tensor nuclear norms.
Simulation and real-data experiments confirm our theoretical analysis.
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Our research opens up several future research directions. The most impor-
tant research should be focused on developing theoretical guaranteed methods
for optimization of completion models regularized by the the proposed tensor
nuclear norms. Though the approximation methods we have adopted for com-
puting the tensor spectral norm to be used with the Frank-Wolfe from [24]
provide performances that agrees with our generalization bounds we do not
know its approximation error. We believe that future theoretical investigations
are needed to understand qualitative properties of the proposed optimization
procedures using the approximation method. Furthermore, optimization meth-
ods for nuclear norms that can scale for large-scale higher order tensors would
be another important future research direction. Another important research
direction is to further explore the theoretical foundation of tensor completion
using the reshaped tensor nuclear norm. In this regard, recovery bounds [25]
would provide us with stronger bounds on sample complexities for our proposed
method.
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Finland.
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A Dual Norms of Reshaped Tensor Nuclear Norms

In this section, we discuss the dual norm of the proposed reshaped tensor nuclear norm. The
dual norm is useful in developing optimization procedures and proving theoretical bounds.

The dual norm the tensor nuclear norm [2425] of a K-mode tensor 7 € R"1 %X " X"K jg
given by

1T lop = (T, 1 QY2 @ -+ QYK ). (6)

max
lyill2=1,1<i<K

This definition applies to all the tenor nuclear norms including reshaped norms.
The next Lemma provides the dual norm for the reshaped latent tensor nuclear norm.

Lemma 1 The dual norm of the reshaped latent tensor nuclear norm for a tensor W €
R™M % XK for a collection of G reshaping sets Dy, = (DM, ..., D(G)) s

”WHrJatent(DL)* = mgaX IIW(D(Q))HOP'
Proof Using the standard formulation of the dual norm, we write the dual norm for
”W”r,latent(DL)* as
G

G
— Z (k) ; Z (k)
IIW”rJatent(DL)* = Sup < o X 7W> s.t. X(1)+<--lil».f/Y(G):X = HX(D()C)) ”* <1 (7)
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The solution to (7)) resides on the simplex of infym .y x@—x Zk 11X D(’@))H* <1 and

one of the edges of the simplex is a solution. Then, we can take any g € 1,...,G such that
X(9) = X and all X(*#9) = 0, such that we arrange @ as

IIW”rJatent(DL)* = eslup o <X(D(g))7W(D(9))> s.t. HX(D(Q))”* <1,
g yeeey

which results in the following

HW”Llatent(DL)* = ger{liai(G HW(D(Q)) ”OP'

B Proofs of theoretical analysis

In this section, we provide proofs of the theoretical analysis in Section 4.
First, we prove the following useful lemmas. These lemmas bound the tensor nuclear
norm and the reshaped tensor nuclear norms with respect to the multilinear rank of a tensor.

Lemma 2 Let X € R"1 % X"K pe g random K-mode tensor with a multilinear rank of
(r1,...,7K). Let rcp be the CP rank of X, then

Tep Tep
X = {Z’MX Z’Yjulg ®uaj - Quky, [[ursllz = 1,95 > vj41 > 0}
K
< =1 7%
Tomaxj=1,... KT
where ~y; is the ith singular value of X.
Proof Let us consider the Tucker decomposition of X as
2R u ()
=D D D Gy, @y @ Buy
ji=1j2=1  jk=1

where C € R™1 X" "XTK is the core tensor and ugi) € R", H'LL‘ZOHQ =1,i=1,...,75, j =
1,..., K are component vectors.
Following Chapter 8 of [6], we can express the above Tucker decomposition as

T2 TK T1
X = Z Z < Z le, 7JK ;1)) ®u(2) ® ®u;i)7 (8)

jz=1  jr=1 \j1=1

@M [ja,...,j k] ER™L

where we have taken summation over the multiplications of core tensor elements with
component vectors of the mode 1. It is easy to see that we can consider the summation over
component vectors of any other mode.

4, ik]

A (il oy i ] =
el sl Pere V2o Jx]

By considering @ [j2,...,jx] = Y[j2,- .-, jk]
H§=1 Tk
max;j—1 .. . KTi
By arranging v[j2, . . ., x| in descending order along with component vectors a® g2, -, JK]
and renaming them as y1 > 2 > ... and u1;, respectively, we obtain

16 [z, ..., jx]|l2, it leads to a CP decomposition with rank of 7¢, =

Tep Tep
X0 = {Z%Vf Z%ulg ® ugj - ®@uky, [lug; 3 = 1,75 > Y41 > 0}7
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where uy; € [ugm, .. ui’fj] are component vectors from foreach k=2,..., K.

Then the final bound is trivial

Tep Tep
X[ = {Z%‘Vf =Dy Qug; - Quicy, [uglly = 1,795 = 41 > 0}
j=1 j=1
K
< Hk:1 Tk
T omaxj=1,.. KTi
O

Lemma 3 Let X € R"*-X" pe a random K-mode tensor with multilinear rank of
(r1,...,rK). We consider a set of M reshaping modes D;, i =1,..., M. Let rcp be the CP
rank of X, then

Tep Tep
1XD.,...0) I« = { Z'Yj\X(Dl,...,DM) = Z'Yj“lj ® ugj -+ ® upgy,
Jj=1 j=1
K
2 [Tpe1ms
llukillz = 1,7 = 741> 0p < k 7,
max;j=1, . .M [Liep, 7i
where y; is the ith singular value of X(p, .. Dy)-
Proof Let us consider the Tucker decomposition of X as
1 72 TK
— ) (D) (2 o ... (K)
X=30 3 D0 Gy, ®uyy) @@y,
j1=1jo=1  jp=1
where C € R"1 %" XTK jg the core tensor, (71,...,7k) is the multilinear rank and uZ
R™J, Huz lo=1,4=1,...,7, j=1,..., K are component vectors. We rearrange the Tucker

decomposition for the reshaped tensor X(p, .. p,,) as

b
X(Dy,.sDy) = Z < Z ( Z Ci1,ir Dy (u§.:) ®u;b)~-
S2n

i’ .3 . ja,Jb,--- €D
Jorsdprse-€D2 3707230 €D Ja>Jbs---€D1

a

.)>

@1 [D},...,D ]€RPrO(DP1)

®HDM(U(C,L/>®U<,Z)/)"‘)> Q.

J J,
Taking @1 [DY, ..., D] = A[Dhy ..., Dy | —2alP2ss Dyl poranipr DL = a1 (DY, ..
2t TM 2000 T M4 [DY,..., DYy lll2 2t TM 2
We can consider the about summation over any reshaping set and it is easy to see that the
n£<=1 Tk

max;—1, ... M Hing [

By arranging y[Da2, ..., D] in descending order order along with component vectors
a®) Da,...,Djps] and renaming them as 1 > 2 > ... and uy 4, respectively, we obtain

g v v J Yy

arrangement takes a CP decomposition with a CP rank of r¢p =

Tep Tep

-, Dhyllle.

XDy ,... D) lx = { > XDy D) = D Vit ®u; - ®uary, uks 13 = 1,795 > v41 > 0}»

j=1 j=1

a

) g )

where ux; € [IIp, (uga/) ® ugbl) ~ )y Ipy (u( .. +++)] are components for each
b

”
k=2,...,M and a',V,... € Dy,.
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The following inequality is trivial,

Tep Tep
1XDy,...00) Ik = { D VX Dy D) = D ViU @ g - @ Uy,
j=1 Jj=1

Hszl Tk

maxj;—1,...,M HieDj T

lukill3 = 1,75 > vj41 > 0} < 1,

O

Lemma 4 Let X € R" X X"K pe g random K-mode tensor with CP rank of rcp. We
consider a set of M reshaping sets Dy, i =1,...,M. Then

HX(DIP-~1DM)H* < Tepm,
where ~y; 1is the ith singular value of X(Dly--»vD]M)'

Proof Let us consider X as

Tep

X = yjuny @ugj - @ uk,
Jj=1

with Huk]H% =1,v; > ~vj+1 > 0. For the reshaping set (D1, ..., Dpr), we rearrange the X as

Tep

X(Dy,...Dy) = Z')’j(oileDluilj) ® (OigeDyWing) @ (0ip, €Dy Wingi)s
=1

where a0 b = [a1b,azb,...,anb] " is the Khatri-Rao product [12]. It is easy to verify that
vec((aob) ® (cod)) = vec(a ® b® c® d), which indicates that vec(X) = vec(X(p,,... Dy))-
Using the fact that Rank(a ® b) < Rank(a)Rank(b) from [12], we have

Rank(X<D17_”7DM)) < Rank(X) = rep.
This lead to the final observation

HX(Dl,...,DM) H* < Trepi-

|
In order to prove Rademacher complexities in Theorem 1 and 2, we use the following
Lemma form [I9].

Lemma 5 (Raskutti, Chen and Yuan,2015) Consider a K-mode tensor X € R™1 % " XnK
with random samples from an i.i.d. Gaussian tensor ensemble. Then

K
E[|X]lop < 4log(4K) > v/nx.
k=1

Given a tensor X € R"1 %" X"K with Gaussian entries, we can write
EX =FE E Xilinyoin€iy @ €ip @ - @€y
11,82, 0K

where e;, is the vector with 1 at the kth element and rest of the elements are zero. Due to
each &Xj, i,,... s being a Gaussian entry, we have

EX = E/E, E €i1,in,ipe | Xitin, . ig €] ® €ip @ @ €y,

01,82, 0K
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where €, 4,,....ix € {—1,1}. Using the Jensen’s inequality, we have

K
EgEe E €ipyinipe | Xt in, i |€iy @ €in @ -€ip
11,82, ,0 K

> E. E €i1yinnip Bg|Xiy oo, igc |€i ® €1 @ - €4

11582,

> V2rEe E €iyyinynipCiy @ €ip €y

11,82, ,0 K
This shows that we can use the Lemma 3 to bound tensors with Bernoulli random variables.

Next we give the detailed proof of Theorem 1.
Proof of Theorem 1: We expand the Rademacher complexity in as

1
Rs(low):@ﬂia{ sup Z Sitein Xil,“.,iKvwil,m,iK):|7
1

where X, .. i, =05 when (i1,...,igx) =0; € S and 3;,,... i, =0, otherwise.
We analyze the Rademacher complexity

1
Rg(loWw) = 5 U{SUP Z Zit ik Xil,...,iK,Wil,...,iK)],

wew,
/1 .
< —Es| sup Z Siteig Witsire | (Rademacher contraction) (9)
1817 Lwew,
A . . .
< BBy sup Wby, 0a) 4150y )l (Duality relationship)
ISI" wew
(a) Given that tensor has a multilinear rank of (r1,...,7x), using the Lemma 3, we
know that

H?:l "k

max;—1,...,.M Hiepj Ti

Weor....panlle < ( )mwwl,m,DM)). (10)

Using Lemma 5, we can bound Eq||¥(p, ... p,,)ll+ as

EollS(n,,...pppllex < 4log@M) D> [T np. (11)

By substituting and to @, we obtain the following bound

K M
Rs(loW) < CA( [l )m(wwl,.‘,,DM))log(zxM)Z 1 (2

S| \max;j=1, .. m HiEDj Ti j=1\/ peD;

(b) Given that tensor has a CP rank of rp, using the Lemma 4, we have

IWDs,....Da) I L Tepr1Wi(Dy,....Du))- (13)

From Lemma 5, we have

M
EolS(py,....0p) I < 4log(@M) >~ [T no- (14)
j=1\ pED;
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By substituting (13]) and (14)) to @ we obtain the desired bound

Rs(loW) < E ‘rcpqq(W(Dh .Dap)) log(4M) Z H nlDil. (15)

Next, we give the proof for theorem 2.

Proof of theorem 2: We expand the Rademacher complexity in using latent tensors
1/\/(1)7 Cey W(S) for the reshaped latent tensor nuclear norm as

Rg(lo WM ... 4 WGy =

1
?EU[ sup Z Zil,.“,ixl(xil,...,il(yWil,.“,iK):|7
S| WO 4 WD =WeW, 4, ige

where X, .. i, =05 when (i1,...,ix) =0; € S and X, ... i, = 0, otherwise.
We can analyze the Rademacher complexity as

1
Rs(lO(W(l) ++W(G))) = §E0-|: sup Z Eilv-wiKl(Xily-»-yiK’Wilv
IS L) oo (@ —wew, 1, i
A
< §]E { sup Z Sig,igWin,ix }7
S| W) o WG =WeW, 4| i
(Rademacher contraction)
A

> ? o sup HW”rJatent”EHLlatent*
‘ | W) 4. WG =wew,,

(Duality relationship).

(16)
(a) For tensor with multilinear rank, using Lemma 4, we obtain
”WHLlatent = Wb 4. +W(G)— Zl H (D(g) .,Dﬁ,i’;)“*
0 (17)
=1"k (9)
< min k=1 )71(1/\7 ).
g€G (maszl,...,M HieD(w i (D{?,.. Dgﬂl)
J
Using Lemma 1 we can bound Es ||X||;_jatent* as
M,
Eo ||Z]r1atent* = max ||W (q) (9) H* < 4maX10g(4Mg) Z H Tp- (18)
(Dy DMQ) geG

Jj=1 (9)
pEDj
By substituting (17 and ( . ) to , we obtain the following bound

ed iy @

Rs(loW) < 2 mi ( =1 )Vlwg
( ) |S| max;—1, .. M HieD<_g) T ( (Dgg)v‘Dg\Z;))
J

My

I;%aé( log(4My) Z H np.

Jj=1 peDgg)

K)}
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(b) For tensor with CP rank, using Lemma 4, we obtain

WL . — wk) < minr, w) .
e WD 4. +W(G>, Z I Dgg),...,DL%_}J)H* ~ gea e (D§9>,4.4,D§§;))
(19)
By substituting (19]) and ) to , we obtain the following bound
MQ
Rs(loWw) < |S\ mm rcp*yl(W;i))gg) D<‘7) ))maxlog 4Mg) Z H Np.
1 (9)
J= peD!s
O

Finally, we derive the Rademacher complexity for the tensor completion model regularized
by the Schatten TT norm.

Theorem 3 Consider a K-mode tensor VW € RMX--X"K qith a multilinear rank of
(r1,...,7K). Let us consider the hypothesis class Wor = {W)|||T||s,r < t}. Then Rademacher
complexity is bounded as

Rs(loWw) < me(Hf H \/7>B7— 1minK_1< lHni—&-
j=k+1 e i<k

where |W|lr < By and ¢’ is a constant.

K
I1 ”a')v
jizk

(20)

Proof For this case we consider the hypothesis class Wt for the Rademacher complexity
follows as

1
Rg(loW) = — |: sup Z it eine Xilﬁu-aiK?Wilw“viK):|’
|S‘ WTTGW ik

where Xj, .. i, =0 when (i1,...,ig) =0; € S and X, ... s, = 0, otherwise.
Now we analyze the Rademacher complexity for the hypothesis class Wpr. We have

1
RS(ZOW):*llEa{ sup Z Zil,...,iKl(Xil,...,ikvWil,...,iK):|7

IS WEWTT ;) g
A .

< §]Ea sup Z SitsenigWin,eire | (Rademacher contraction)
S| WEWTT 4y e

A
< —Es sup [[W|srl|3lls,7+, (Duality relationship)
IS] WEWrpT
(21)

where || - ||s,7+ is the dual norm of || - ||s,7. The last step can be obtained by applying the
Holder’s inequality to the sum of trace norms in the Schatten TT norm.
Considering ||W)||s,7, we can expand it as

K—-1 K-1 +
1 k

Vllsr = = ; 1Rk (T ller =

i (Qi(T)),

k=1 ip=1
where Q, : T — R"™2k*™k< is a reshaping operator, and vi), () and 7y are the iyth singular

value and the rank of the reshaped tensor by Qp, respectively. Using the Cauchy-Schwarz
inequality, we have

Wlls,r <

K-1
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where || T|lp = B7. Using Lemmas 1 and 2, we can infer that

Wlls,z <

(H\F I1 r>BT, (22)

Jj=k+1

Similar to the overlapped trace norm [22], the Schatten TT norm also sums nuclear
norms of the the same tensors reshaped into different matrices. Hence, we can extend the
dual norm of the overlapped trace norm in [22] to the Schatten TT norm. Using [22], it is
easy to the dual norm of Schatten T'T norm as

Ssr = (x)
Slre = f }j Qi (8 op-
We want to bound

K—
E|X « =E »(k ) ,
Il ||s,T SO +2(K)7 Z:: ‘Qk( ||0p

and since we can take any of (®), k =1,..., K to be equal to &, we have

E||X x < i % .
1l <, min 1Qk(S)lop

We apply Latala’s Theorem [I3l20] for the reshaping by the Qi operator and bound
EllQk () llop as

B Qi (D) llop < cl< [1n+

i<k

K
[1n+ v |Qk(2)|>7

Jjzk

and since v/|Qw(X)| < \4/]_[2-[(:1 n; < %(\/Hz<k n; + \/H]sz nj), we have,

3Cq
E||Qk(X)lop < -

(23)

By combining and with , we obtain

K-1 k K
A . . |
Rs(loWw) < m E mln(H\/n, 1__[ \/7’]->B7-m13n< an"‘r
k=1 i=1 j=k+1 i<k
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