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1. INTRODUCTION

Let X be a Banach space, let A: D(A) € X — X be a closed linear operator, and let {Aq}

and {B,} be two nets of linear operators on X satisfying:

(1) ||[Aall £ M for all a;

(2) R(B,) C D(A) and BoA C ABy =1 — A, for all o

(3) R(Aq) € D(A) for all @, and AA, — 0 strongly (resp. uniformly).

Then {A,} is called a strong (resp. uniform) A-ergodic net and {B,} its companion net.
For some z € X, if {A,z} converges, the limit is called the ergodic limit at z. For given y € X,
if {Bay} converges, the limit z is a solution of the linear functional equation Az = y; thus
{Ba,y} are approximate solutions of Az =y.

In this talk, we discuss results concerning convergence of A, and B, including strong
convergence theorems, uniform convergence theorems, theorems on rates of optimal and non-
optimal convergence, and the sharpness of non-optimal convergence. The general results provide
unified approaches to investigation of strong convergence, uniform convergence, and convergence
rates of ergodic limits of various operator families and of the approximate solutions of the
associated linear functional equations.

II. RESULTS ON A-ERGODIC NETS

Let X be a Banach space and B(X) be the Banach algebra of all bounded linear operators
on X.

Definition. Given a family A of closed linear operators on X, a net {A,} in B(X) is called
an A-ergodic net if the following conditions hold:

(a) There is an M > 0 such that ||A,ll < M for all a;

() |(Aq—I)z|| — Oforallx € (44 N(A), and there is ag such that R(Aa—1I) C Y 4cq R(A)
for all @ > ag;

(c) Forevery A € A, thereis a a4 such that R(A,) C D(A) forall@ > a4 and w-lim AAqz = 0
«a
for all z € X, and ||A,Az|| — O for all z € D(A).

Note that when A = {T — I;T € S} for some semigroup S C B(X), {Aq} becomes the
so-called a right, weakly left S-ergodic net in [7, p. 75], which was first studied by Eberlein [5].

Theorem. (8] Let {Ay} be an A-ergodic net. Then the operator P, defined by

D(P) = {z € X;s-lim A,z ewists},
{ Pz = s—lignAa:r,x € D(P),

is a bounded linear projection with norm ||P|| < M, range R(P) = NacaN(A), and null space
N(P) =3 4e 4 R(A).
11I-1. Strong Ergodic Theorems

In the following, we consider A-ergodic nets for the case where A consists of a single closed
operator A.

Definition I1-1.1. Let A : D(4) € X — X be a closed linear operator, and let {Aq} and
{B,} be two nets in B(X) satisfying:
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(C1) || Aall <M for all o;
(C2) R(B,) C D(A) and B,A C AB, =1 — A, for all o
(C3) R(A,) C D(A) for all , and ||AA4,]| = O(e(a));
(C4) Biz* = p(a)z* for all z* € R(A)*, and [p(a)| — oc;
(C5) [|Aazl| = O(f(a)) (resp. of(a))) implies || Bazll = O(£2}) (resp. o(L{2)),
where e and f are positive functions satisfying 0 < e(a) < f(a) — 0. We shall call {4,} 2
uniform A-ergodic net and {B,} its companion net.

The functions e(a) and f(a) are to act as estimators of the convergence rates of {A,z}
and {Bay}, which, in practical applications, approximate the ergodic limit and the solution z
of Az = y, respectively. The assumptions (C4) and (C5) play key roles in the proofs of our
theorems and prevail among practical examples.

{A.,} is said to be strongly (resp. uniformly) ergodic if D(P) = X and A,z — Pz for all
z € X (resp. ||[Aq — P|| — 0).

The following strong convergence theorems for the systems {A4,} and {B,} are proved in
[20].

Theorem II-1.2 (Strong Ergodic Theorem). Under conditions (C1) - (C4), P is a bounded

linear projection with range R(P) = N(A), null space N(P) = R(A), and domain

D(P)= N(A)® R(A) = {z € X;{Asz} has a weak cluster point}.

Theorem II-1.3. Under conditions (C1) - (C4), the following conditions are eguivalent:
(i) y € A(D(A) N R(A);
(i) z = s-lim B,y exists;
a4
(iii) There is a subnet {Bg} of {Ba} such that z = w-lim B,y ezists.
Q

The z in (i) is the unique solution of Az =y in R(A).
D(B,) := {y € X;lim B,y exists};
o

Let B; be the operator defined by .
Bjz :=lim B,y for y € D(B,).
o

Theorem II-1.4 Under conditions (C1) - (C4), By is the inverse operator AT" of the restriction
Ay = A|R(A) of A to R(A); it has range R(By) = D(A;) = D(A) N R(A) and domain
D(B,) = R(A;) = A(D(A) N R(A)). Moreover, for each y € D(B1), By is the unique solution

of the functional equation Az =y in R(A).
Theorem II-1.5 Under conditions (C1) - (C4), {Aa} is strongly ergodic if and only if N(A)

separates R(A)*, if and only if R(A) = D(By) = A(D(A) N R(A)), if and only if {Aqz} has a
weak cluster point for each x € X. These are true in particular when X 1is reflexive.

Theorem II-1.6. The following relations hold:

R(A;) = {y € X;lim B,y emists} = {y € X;{Bay} has a weak cluster point}

C R(A) C {z € X;sup||Baz|l < 00} C R(A).

It is known [20, Remarks 1.5 and 1.7] that the first inclusion in Theorem II-1.6 is an equality,
i.e., R(A) = R(A1), if (and only if, when A is densely defined) {A,} is strongly ergodic. As the
following Uniform Ergodic Theorem (II-2.1) shows, the last inclusion is an equality if and only
if {A,} is uniformly ergodic, and, in this case, the other two inclusions are also equalities.

I1I-2. Uniform Ergodic Theorems
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The next two theorems are proved in [22].

Theorem II-2.1. (Uniform Ergodic Theorem). Under conditions (C1) - (C4), the following
are equivalent:
(i) {Aq)} is uniformly ergodic, i.e., D(P) = X and [[Aa — P} — 0.
(ii) R(A)(or R(A1)) is closed.
(iii) R(A?)(or R(A?)) is closed.
(iv) X = N(A) ® R(A).
(v) {Balr(a)} is uniformly bounded.
(vi) By is bounded.
(vit) {z € X;sup ||Baz| < 00} = R(A).

(viii) {z € X;sup||Baz| < oo} is closed.
21

Moreover, in this case, we have D(By) = R(A1) = R(A), [[4a — P|| < (M + 1||BIIlAAGl =
O(e(a)), | Balra) — Bill < (M + 1)|B|*| Adall = Ole(a))-

The equivalence of the first six conditions is proved in [22]. Because of Theorem II-1.6, (i)
obviously implies (vii), and (viii) implies (v) by the uniform boundedness principle.

Theorem II-2.2. Let X be a Grothendieck space with the Dunford-Pettis property. Then under
conditions (C1) - (C3), {Aa} is uniformly ergodic if and only if it is strongly ergodic.

II-3. Condition (*) and Uniform Ergodicity

It follows from Theorem II-2.1 that if {A,} is uniformly ergodic, then the following solv-
ability condition for the functional equation Az =y holds:

*) R(4) = {z € X;sup | Baz|l < oo}

But the converse implication is in general not true. In this section we first give some conditions
which are equivalent to or sufficient for (*), and then discuss when (*) and uniform ergodicity
are equivalent and when they are not. The results in this section are proved in [26].

Theorem II-3.1. Under conditions (C1) - (C4), the following three conditions are equivalent:
(i) {z € X;sup||Baz| < o} = R(4);
o1

(ii) A(D(A)nU) C R(A).

(iii) R(A) is an Fy set.

When A € B(X), we also have the next equivalent condition:

(iv) There is an equivalent norm in X, with closed unit ball U ' such that A(U’) is closed.

In view of the equivalence of (i) and (i) in Theorem II-3.1, the closedness of A(D(A)NU)
is a sufficient condition for (*) to hold. The following are some examples with this property.

Corollary II-3.2. If, in Theorem II-8.1, X 1is a dual space (with its dual norm), say X =Y*,
and A is the dual operator of a closed operator B, i.e., A = B”, then A(D(A)NU) is closed
and (*) holds.

In particular, the conclusion of Corollary II-3.2 holds when A is a densely defined closed
operator on a reflexive space.

Corollary I1-3.3. In Theorem II-3.1, if I + A is either o contraction of X = Ly(p), with p a
o-finite measure, or an irreducible Markov operator on X = C(K), with K a compact Hausdorff
space, then A(U) is closed and (*) holds.

Theorem 11-3.4. Let {A,} be a strongly ergodic A-ergodic net on a Banach space X, and sup-
pose all operators in {A, Ag, Ba;a} are commutative. If A € B(X), (*) is satisfied, and {Aq}

is not uniformly ergodic, then R(A) contains a separable infinite dimensional closed subspace
isomorphic to a dual Banach space.
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Corollary II-3.5. Let X be a Banach space which does not contain any infinite dimensional
separable closed subspace isomorphic to a dual Banach space, let {Ay} be an A-ergodic net,
with A € B(X), and suppose all operators in {A, Aq, Bo; o} are commutative. Then {A,} is
uniformly ergodic if and only if it is strongly ergodic and satisfies (*).

I1-4. Rates of Ergodic Limits
We first specify the required notations. Let X; := R(A) and X, := D(P) = N(4) & X;.
Since the operator By : D(B;) C X; — X; is closed, its domain D(B;) (= R(A:)) is a Banach

space with respect to the norm ||z||g, := ||z|| + || B1z||.
Let By : D(By) C Xo — Xg be the operator By := 0 ® B;. Then its domain

D(By) (= N(A) ® D(B1) = N(A) @ A(D(A) N R(4)))
is a Banach space with norm ||z| g, := ||z|| + || Boz||, and [D(Bo)]'x, = N(A) & [D(B1)[x,-

Now we can state the following theorem from [24], which is concerned with optimal con-
vergence and non-optimal convergence rates of ergodic limits and approximate solutions.

Theorem II-4.1. Under conditions (C1) - (C5) the following statements hold.

(i) For z € Xo = N(A) ® R(A), one has:
[ 4az — Pz|| = O(f(a)) & K(e(o), z, Xo, D(Bo), | - lz,) = O(f(a))
&z € [D(Bo)]x, (in case f =e).

(ii) For z € R(A), one has:

[Aazll = O(f(e)) & K(e(a),z, X1, D(B1), || - | 3;) = O(f(e))
&z € [D(B1)]x, (in case f =e).

(ili) For y € D(By) = R(A;) one has:

1Bay — Biyll = O(f(a)) & K(e(a), Biy, X1, D(B1), || - || 5,) = O(f())
&y € A(D(A)N[D(B1)x,) (in case f =e).

The saturation case (f = e) was proved in [23]. It was also shown there that
(1) for x € Xo, ||Aqz — Pz|| = oe(a)) & z € N(A);
(2) for z € X ||Baz|| = 0o(1) & z = 0;
(3) for y € D(B1) = R(A1), ||Bay ~ Bry|| = o(e(a)) & y = 0.
Thus, when A # 0, the rate of optimal convergence of | A,y|| = O(e(c)) is sharp everywhere

on [D(B1)[x, \ {0}-

The sharpness of non-optimal convergence rate: ||Ayyll = O(f(a)) with f satisfying
f(a)/e(a) — oo is shown in the following theorem.

Theorem 1I-4.2. Suppose that A, {Aa}, and {Ba,} satisfy conditions (C1) - (C5), with
f(a)/e(a) — oo. Then R(A) is not closed if and only if there erists an element y; € X,

= O(f(a));
such that || Aqys|| { 4 o((ff((a)))).,

I11. SPECIALIZATIONS TO DISCRETE SEMIGROUPS

In this section we deduce from the general results in the previous section their specializations
for discrete semigroups.

Let T be a power bounded operator. It is routine to verify that A := T — I, A, :=
n~1 Z,’:;S Tk By :=—-n"? 22;11 f;é T satisfy conditions (C1) - (C5) with e(n) = n™?, ¢(n) =
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(n—1)/2, and f(n) =n"?, 0 < § < 1. Therefore Theorems II-4.1 and II-4.2 yield the following
theorem.

Theorem III-1. Let T be a power bounded operator. Then we have:

(i) The mapping P : £ — limp_oon™? ZZ;& Tkz is a bounded linear projection with

R(P) = N(T ~I), N(P) = R(T—1I), and D(P) = N(T-I)® R(T—1I). For 0 < 5 <1
and z € D(P), we have

n-1
[nt ZT’% - Pz|| = O(nP) & K(n™ %, z,X0,D(Bo), |l - lIB,) = O(n™*).
k=0

Moreover, ||n? 22;3 Tkz — Pz|| = O(n~?! (resp. o(n')) if and only if z e N(T - I) & (T —
I)(T — I)X]AE—T:‘;)? (T‘esp. T e N(T - I))

(i) The mapping B : y — —limn™! 22;11 Z;:é Ty is the inverse operator of (T —
D)|z—r; for each y € (T — I)(T — I)X, Byy 1s the unique solution of the functional equation

(T-DX

(T-DNz=yin (T—-I)X. For0< B8 <1 we have |n~* Sl f;; Tiy 4+ Byl = O(n™7)
& K(n™}, By, (T =~ DX, D(B1), |-l3,) = O(n™?). Moreover, ||n™" 321 3252, T?y+Buyll =
O(n™) (resp. o(n™')) & y € (T~ D(T — ) X[ 7% (resp- y=0).

(iii) (T = I)X is not closed if and only if for every 0 < B < 1 there is an element y €

— _ =0(n"
(T — )X such that fn™? Snzo Trysll { ” o(iﬁﬁ))

Remark. (i) was originally proved by Butzer and Westphal 3].

(n — o0).

o0
Let {)\»} be a sequence of numbers satisfying 0 < A, < 1 and An(1 = Ap) = 00. Let
n=1
An = H?:][(l - Az) + A,‘T], Bl - )\1], Bn+1 = An—{»lI + [(1 - )\n+l) )\n+1T]Bn, n = 1, 2, e
1t is easy to see that Bn(T —I) = A, — I for n > 1 (cf. [20]).
If T is power bounded, then {4,} is uniformly bounded and ||An(T — I)|| — 0 as n — oc.
For z,y € X define fo(z) = z, go(y) = 0, fa(z) = [(1 = An) + AT ] fn-1(2), and gn(y) =
Ay + [(1 = An) + Anlgn-1(y), n=1,2,.... Applying Theorems II-4.1 and II-4.2 we obtain the
following theorem.

Theorem III-2. Let T be a power bounded operator. Then we have:
(i) The mapping P :  — limp_o0 fn(x) is a bounded linear projection with R(P) = N(T —

I, N(P) = R(T—1), and D(P) = N(T — N®R(T~-I). For0<pB<landz€ D(P), we
have

| fn(z) — Pzll = O(n™) & K(n™*,z, X0, D(Bo), || - Il8,) = O(n™").

Moreover,
| fa(z) — Pz| = O(n~1) (resp. on N eze NT-Ne|(T-I)T- I)er
(resp. z € N(T —I)).

(ii) The mapping By : y — — limn_.c0 gn(y) %8 the inverse operator of (T — I)I(T—_I)—X—;

for eachy € (T — I)(T — I)X, Buy is the unique solution of the functional equation (T —
Dr=yin(T-1X.
For 0 < 8 <1 we have

llgn(¥) + Byl = O(n™%) & K(n™*, By, (T — DX, D(B1), |- I3,) = O(n™").
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(T =DX such that ||gn(v)|] { ; °

Moreover,
lgn(y) + Byl = O(n™1) (resp. o(n™")) &y € (T — (T — I) X[ z=pyx (resp- y =0).

(iii) (T — I)X is not closed if and only if for every 0 < B < 1 there is an element yg €
O(n=")

(t-8) (n — o0).

IV. SPECIALIZATION TO PSEUDOESOLVENTS

A B(X)-valued function J : X — Jy, defined on a subset D(J) of the complex plane C, is
called a pseudo-resolvent on X if it satisfies the resolvent equation:

(5.1) Jr—Jy = (= \)JaJ, for all A, u € D(J).

J has a unique maximal extension J, which is also a pseudo-resolvent on X; J has an open

domain D(J) over which J is analytical. We assume that J is already maximal. The following
lemma is well-known ([27, p. 216]).

Lemma IV-1. (i) The subspaces N(Jy), R(J»), R(JE), N(AJx —I), R(AJx —1I), and R((AJx —

I)?) are independent of the parameter A.
(ii) The pseudo-resolvent J is the resolvent of a closed linear operator A (i.e., Jy = (A —

A)™Y) if and only if N(J5) = 0. In this case we have A := X\ — J;', R(J\) = D(A),R(J}) =
D(A?), N(AJ» — I) = N(A), ROJy — I) = R(A), and R((M — )?) = R(A?).

Let X; := R(A\J) —I), and let Bg)‘) and B; be operators defined by Bg’\)y = lim B(({\)y =

lim A~ (@ — A)J, — Ily and Byy = - lim J,y, respectively. We also define D(Bp) := N(AJy ~
I)® D(B;) and By := 0@ B;.

Lemma IV-2. We have D(B;) = D(BM) = (AJy = )X, and Byy = BNy + A~y for all
y € D(By) and X € D(J); the graph norms | - {|B, and || - ||z are equivalent on D(Bi), and
1
the graph norms || - ||, and || - {| gy are egquivalent on D(Bo).
0

Noting these facts, we can apply the general results in Sections II and III to (4, A,, BL({\))
to deduce the following results. They follow from Theorems II-1.2 and II-1.5, and Theorem II-
4.1.

Theorem IV-3. [26] Let J be a pseudo-resolvent on X such that 0 € D(J) and |laJ,|| =
O(1) (@ — 0,a € D(J)). Let P be the operator defined by Px := lim aJ,z. Then

a—0
(i) P is a bounded linear projection with range R(P) = N(AJy — I), null space N(P) =
R(AJx —I), and domain

D(P)=N(\Jy—I)® R(\Jy ~I) = {z € X;{aJaz}a—o has a weak cluster point}.
(i) {aJa} is strongly ergodic if and only if N (A\Jx—1I) separates R(AJy—1I)*, if and only if

{aJaz}o—o has a weak cluster point for each x € X. These conditions are satisfied in particular
when X 1is reflerive.

(iii) For x € Xo = N(AJx — I) ® R(AJy — I), one has:
laJoz — Pzi| = o(a) & z € N(AJ) - I);

laJoz — Pz|| = O(a®) © K(a,z,Xo,D(Bo), || - |B,) = O(a®)(for 0< 6 < 1)
< z € [D(Bo)x, (in case § =1).



Theorem IV-4. [26] Under the assumption of Theorem IV-3 we have:

(1) {JaY}a—o converges strongly if and only if it contains a weakly convergent subnet.

(i) For each y € D(B1) = (M — I)X1, By is the unique solution of the functional
equation (A\Jy — I)z = Jyy in Xy for every A € D(J).

(iii) For y € D(B;), one has:

[Jay + Biyll = O(a®) & K(a, Biy, X1,D(B1), | - ll8,) = O(@®)(for 0 <8< 1)
sy e (M= D[D(B1)[x,) (when 8 =1).

By applying Theorem II-2.1 to J and Lemma IV-2 we obtain the next theorem.

Theorem IV-5. [26] Let J be a pseudo-resolvent on X such that 0 € D(J) and |adal| =
O(1) (@ — 0,c € D(J)) . The following are equivalent:
(1) {aJa} is uniformly ergodic, i.e., D(P) = X and ||aJo — P|| — 0.
(i) R(AJx—1) gor (M — I)(X1)) is closed.
(i) R((AJx ~ D)?) (or (M — D)*(X1)) is closed.
(iv) sup{||Jalx,|l; @ € D(J),|a| < 6} < oo for some d > 0.
(v) B ts bounded.
(vi) {z € X;sup{||Jaz|; @ € D(J),|a| < 8} < oo} is closed for some § > 0.
Moreover, in this case, we have D(B1) = X; = R(AJx — I), |laJo - P|| = O(a) (e — 0) and
[alxy + Bill = O(a) (@ — 0).

From Corollaries 1I-3.2 and 11-3.3 we can deduce the following result for pseudo-resolvents.

Theorem IV-6. [26] Let J be a pseudo-resolvent on X such that 0 € D(J) and |laJa| =
O(1) (o — 0, € D(J)) . In each of the following cases, we have that (M — DU is closed and
**].

R —1I) = {z € X;sup{||Jazll;@ € D(J),|a] < 1} < oo}

(1) X is a dual space and Jo,a € D(J), are dual operators.
(2) X = Ly(p), with p a o-finite measure and |AJx[| < 1.
(3) X = C(K), with K a compact Hausdorff space, and MJ» is an irreducible Markov operator.

From results in Section II-3 we deduce the next theorem.

Theorem IV-7. [26] Let J be a pseudo-resolvent on X such that 0 € D(J) and ||aJa| =
O(1) (@ — 0,0 € D(J)).

(i) If aJy does not converge in operator norm as o — 0 and satisfies (**), and if either X 1s
separable, or aJ, converges strongly, then R(AJx — I) contains a separable infinite-dimensional
closed subspace isomorphic to a dual Banach space.

(i) If X does mot contain any infinite-dimensional separable closed subspace isomorphic
to o dual Banach space, then {aJ,} converges in operator norm as o — 0 if and only if 1t
converges strongly and (**) holds.

(iii) If X does not contain any infinite-dimensional closed subspace isomorphic to a dual
Banach space, and if X 1is separable or AJx — I is injective, then {aJ,} converges in operator
norm as @ — 0 if and only if (**) holds.

If A is a closed operator such that 0 € p(A) and ila(a — A7 =01) (e — 0) (e, a
generalized Hille-Yosida operator), then {Jo = (a—4)™", a € p(A)} is a pseudo-resolvent. We
have A, = a{a—A)7?, B = 21 (A=A (a—A4)"Y, AN = XAA-A4)7H, N(AL =) = N(4),
R(My = I) = R(A), R(Mx — I)?) = R(A?%), X1 = R(4), Xo = N(A) @ R(A4), A(lAJ =
M — A)x,, and BY = (4Y)71 = A1 - A)(Alx,)"} with D(BYY) = R(4]") =
A(A— A)~1(X,). Also we have D(By) = D(B{") and Byy = B y+2""y = (Alx,) 'y = ATy
for all y € D(By).

In this case, (iii) of Theorem IV-3 reduces to (i) of Theorem 3 in [24], (i) and (ii) of Theorem

IV-4 reduce to Theorem 3.1 in [20], and (iii) of Theorem IV-4 leads to (ii) of Theorem 3 in [24].
From Theorems IV-5, IV-6, and IV-7 we deduce the following three corollaries.
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Corollary IV-8. [26] For a generalized Hille- Yosida operator A, the following conditions are
equivalent:
(i) a(a— A)~! converges in operator norm as a — 0.
(ii) R(A) is closed.
(iii) R(A?) is closed.
() sup{li(c ~ 4)1pealiia € p(4), la] < 8} < o for some &> 0.
(v) By = (A4;)7? is bounded.
(vi) {z € X;sup{||(a — A)'z||;a € p(A), |a| < 6} < oo} is closed for some & > 0.
Moreover, in this case, we have X, = R(A), lla{a — A)~' — P|| = O(a) (a — 0) and ||(a —
A)Mxy + AT = O(@) (a = 0).

Corollary IV-9. Let A be o generalized Hille-Yosida operator. In each of the following cases,
we have

(***) R(A) ={y € X;[l(a ~ A)7'yll = O(1)(a — 0, € p(A))}.

(1) X 1is a dual space and A is a dual operator.

(2) X = Li(n), with pu a o-finite measure and |[M(A— A) 7| < 1.

(3) X = C(K), with K a compact Hausdorff space, and A(A — A)~! is an irreducible Markov
operator.

Corollary IV-10. Let A be a generalized Hille-Yosida operator.

(i) If A satisfies (***) and a(a — A)~! does not converge in operator norm as a — 0,
and if either X is separable, or a(a — A)™* converges strongly, then R(A) contains a separable
infinite-dimensional closed subspace isomorphic to a dual Banach space.

(ii) If X does not contain any infinite-dimensional separable closed subspace isomorphic to
a dual Banach space, then a(a — A)~! converges in operator norm as a — 0 if and only if it
converges strongly and (***) holds.

(iii) If X does not contain any infinite-dimensional closed subspace isomorphic to a dual
Banach space, and if X is separable or A is injective, then a{a — A)™! converges in operator
norm as & — 0 if and only if (¥***) holds.

Then the following theorem follows from Theorems II-3.1 and II-3.2 immediately.

Theorem IV-11. Let A be a closed operator such that 0 € p(A) and |A(A—A4)7 | = O(1)(A —
0). Then the following are true for 0 < 3 < 1:

(i) For z € Xq, one has ||A(A — A)~'z — Pz| = O(|A|?)(\ — 0) & K(|Al,z, X0, D(By), || -
18,) = O(JAI°) (A — 0).

(i) For y € D(B1) = R(A;), one has ||[(A - N7y — Biyl] = OMP) (A — 0)
K(IN, Buy, X1, D(B1), | - [13,) = O(A°) (A = 0).

(ili) R(A) is not closed if and only if for each (some) 0 < B < 1 there exists an element

— = &}
ys € R(A) such that | A(A — A) " tygll { 4 OO(TLTL)) (A —0).
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