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ABSTRACT. In this paper we study recurrent dimensions of discrete dynamical
systems given by circle diffeomorphisms, using a renormalization method. We
estimate the upper and the lower recurrent dimensions according to some
algebraic properties of irrational rotation numbers of the circle mappings and
we show that the gap values between the upper and the lower dimensions,
which measure unpredictability levels of orbits, take positive values if the
rotation numbers have good approximation properties by rational numbers.

1. INTRODUCTION

In this paper we study recurrent dimensions of discrete dynamical systems
given by a circle diffeomorphism f : ! — S'. The rotation number of f is
defined by

f(z)—=

p(f) = lim

n—o0 n

where f : R = R is a lift of f such that rof=fom, m:R— R/Z(= S') is a
covering map. Our purpose of this paper is to estimate the recurrent dimensions
of the discrete orbits £, = {f*(z) : n € No} according to the algebraic properties
of p(f).

The following theorem by Poincaré is well known.

Theorem 1.1 (Poincaré,1885). If f : S' — S' is a homeomorphism without pe-
riodic points, then there ezist a rotation R,(z) := z+a(mod 1) and a continuous
surjective monotone map h : S* — S, which satisfies

hof=Ryoh

and o is an irrational number and equal to the rotation number of f. Conse-
quently, p(f) is independent of z.

In the case of Theorem 1.1 we say that f is semi-conjugate to the rotation
R, or h is a semi-conjugacy between f and R,. Furthermore, if & is strictly
monotone (one-to-one), we say that f is conjugate to the rotation R, or A is a
conjugacy between f and R,.
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If f is sufficiently smooth, f is conjugate to a rotation. The following theorem
was given by Denjoy.

Theorem 1.2 (Denjoy,1932). If f : S* — S is C*-diffeomorphism without peri-
odic points, then f is topologically conjugate to a rotation. That is, the conjugacy
h between f and the rotation is a homeomorphism.

The regularity of the conjugacy was studied by so many authors; Herman
(1979), Yoccoz(1984), Khanin and Sinai(1987), Stark(1988). Here we introduce
the estimate by Katznelson and Ornstein [1].

We say that g is C™t%-class where m > 1 is an iteger and 0 < 6 < 1,if g is
C™ and its m-th derivative is Holder continuous with its exponent 4.

Theorem 1.3 (Katznelson and Ornstein, 1989). Let f : S — S' be a C*k-
diffeomorphism, k > 0, without periodic points and its rotation number o satis-
fies the Diophantine condition for 3 > 0:

C
JERY: ()

[a—gl>
q

for all p/q € Q. Then, if B +2 < k, the conjugacy h between f and the rotation
R, is of class C*~1=P=¢ for all e > 0.

In our previous papers ([7], [8], [9]) we introduce the gaps of recurrent di-
mensions, which are differences between the upper and the lower recurrent di-
mensions, as the index parameters, which measure unpredictability levels of the
orbits.

In view of Theorem 1.2 and 1.3 we estimate the gaps of recurrent dimensions
of the discrete orbit £, given by a C*-class function f, in the following cases.

(1) The rotation number satisfies the assumption 8 +2 < k and the conjugacy h
is smooth : C7-class, v > 1.
(I1) The rotation number satisfies 2 < k < B+ 2 and h is a homeomorphism.

Our plan of this paper as follows. In section 2 we introduce the classifications
of irrational numbers to parametrize the Diophantine condition () and give
defintions of recurrent dimensions. In section 3 we estimate the gaps of recurrent
dimensions in the case (I) and in section 4 we treat the case (II). In section 5,
introducing a renormalization technique and showing some fractal structures of
the intervals given by the circle mapping, we prove some Lemmas, which are
used to estimate the recurrent dimensions in section 4.

2. CLASSIFICATION OF IRRATIONAL NUMBERS

Let 7 be an irrational number. In our previous papers ([5], [6], [8]) we introduce
the following classifications according to (good or bad) levels of approximation
by rational numbers.
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We say that 7 is an a-order Roth number if there exists & > 0 such that, for
every 3 : B > «, there exists a constant c¢g > 0, which satisfies

|7 -

; = p2th
for all rational numbers ¢/p € Q.
Let {n;/m;} be the Diophantine approximation of 7. Then we call 7 an o-

order weak Liouville number if there exists a subsequence {my,} C {m;}, which
satisfies

K, c :
T — < —, Y
| M, | m;"c“."“’ J

J

for some constants ¢, a > 0.

Furthermore, we can parametrize the Diophantine condition (x) as follows (see
(8] for details).

Let R(a) be the set of a-order Roth numbers and wL(3) the set of S-order

weak Liouville numbers. Then we can show

R(a) C R(e/), a < o', wL(B) CwL(8), 828,

R(a) C R(), a <o, wL(B) cwL(p'), B> 4,
R(a)* € [ wL(8), wL(B)C [ R(a),

B<a B>a
R(0)° = | J wL(B)
B>0

where the complements are considered in the set of all irrational numbers. Thus,
for each irrational number 7, there exists a constant do, which specifies the levels
of (bad or good) approximations by rational numbers:

(2.1) inf{a : 7 is an a-order Roth number}

= sup{f : 7 is a B-order weak Liouville number} := dp.
In our previous paper [7] we introduced a dp-(D) condition for a pair of irrational
numbers (For more than two irratinal numbers, see [9]). For a single irrational
case, let us say that 7 satisfies a do-(D) condition if (2.1) holds.
Definitions of recurrent dimensions:
Define the first e-recurrent time by
M.(z) =min{m € N : |f™(z) — z| < }.

and the upper and lower recurrent dimensions by

D, = limsup M, D, = liminf log M (z)
es0 —loge ca0  —loge

Then we can define the gaps of recurrent dimensions by G, = D, — D,. (See [7]
or [8] for further details.)
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If the gap value G, takes a positive value, we cannot exactly determine or
predict the e-recurrent time of the orbits. Thus we propose the value G, as the
parameter, which measures the unpredictability level of the orbit.

3. SMOOTH CONJUGACY CASE

In this section we consider the case where the conjugacy h between the circle
map f and the rotaion is C7-class, ¥ > 1. First we note that the metric in S’ is
induced by the covering (quotient) map = : R — S* such that

o —y|=inf |s—y—m|, ayeS
where we use the same notation as that for usual absolute values as far as not
being confused.

Theorem 38.1. Let f: S' = S* be a C3-diffeomorphism without periodic points
and its rotation number a satisfy the do-(D) condition for 0 < dy < 1. Then, for
each z € S, we have

1 _
D_< D,>1
=T 1l+4do’
Consequently, we have
e 21— .
Go 2 1+ do

Proof. Since the Diophantine condition () in Theorem 1.3 is satisfied with 8 =
1 — ¢ > do for some sufficiently small &g > 0, the conjugacy h is Cl*eo~¢_class
for every ¢ > 0. Thus we can admit C'-conjugacy h : ho f = R, o h. Since
f*(z) = h™* o R" o h and Lipschitz continuity conditins of k and h~!, which are
given by the Mean Value Theorem, such that

Cilz —y| < |h(z) —h(y)| < Calz —yl, zyeS:le—yl<

N | =

for some C; > C; > 0, we can take an integer m :

(3.1) f*(z)—z| = [h7" o Ry o h(z) — (A7 o h)(2)|
< Cl—llan_m\s
jom—m| < 3
an—m| < o,
and also an integer m’ :
(3.2) [f*(z)—z] = |p7to Ry oh(z) = (k7" o h)(2)]
2 C;1|an—m,|,
lan —m'| < %

Let {qi/ps} be the Diophantine sequence of the rotation number a of f. It
follows from do-(D) condition that for every ¢ > 0 there exists a subsequence
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{px;} such that

¢ :
lapk, — @l € =2y VI
Pk;

Thus by (3.1) and (3.2) we have

Ika ((L‘) - .’I)' > dple T €j
kj
It follows from the definition that we can estimate lower recurrent dimension.
log M
D, = liminf 28ME)
e300 — log 5
log M (¢)

= liminf inf
j=oo gjp1<e<e; ——10g€

j—oo -—IOgEj
logpk
< i -
= jgrolo—Iogc+10g01+(1+d0_5)1051”’%
_ 1
- 1 + do — &

for every € > 0.
Next we show the lower estimate. Here we use the following elementary prop-
erty of the Dophantine sequence that

1 1 1
(3.3) ——————-—-———-<|a—gﬁl< <=
Pi(Pr+1 + Px) Pk PkPk+1 P}
and
. 1 -7 > —
(3.4) inf lan — 7| 2 |aps — g
holds for every n : 1 < n < pgy41. It follows from (3.2) that we have
1
"(z) = z| > C; Y ape — qi| > =
|f™(z) — 2| 2 C |aps qk|‘202pk+1 k
for every n : 1 < n < pgy1. Thus we can estimate the upper recurrent dimension
— log M
D, = limsup M
£—00 - 10g €
log M (¢)

= limsup sup
koo exqi<e<er — lOgE

log M
> limsup log M(zs)
koo —lOgEy
> I log pr+1

fred log 2C; + log pr41 -

and from the definition of the gap values we obtain the conclusion. a
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4. TOPOLOGICAL CONJUGATE CASE

(Hereafter we show some Lemmas and Theorems without proofs, which will
be given in a forthcoming paper.)

Next we consider the case (I1). f has a unique invariant probability measure p,
defined by p(A) = A(h(A)) where h is the conjugacy between f and the rotation
and A is a Lebesgue measure.

Let {qx/px} be the Diophantine sequence of the rotation number a of f and
denote

mi(z) = |fP*(z) — 2|,
op = |pra — qils

then we consider the subsets A, B of S!, defined by

A={z €S :limsup m(2) > 0},
k—oo 275
ay

B = {z € 8" : liminf

koo ()

> 0}.

We note that
(4.1) A = mk(m)dy(m)

Sl

(see [3]).

We can estimate the measure of these subsets:
Lemma 4.1. Let f : St = S be a C?-diffeomorphism. Then we have
(4.2) AMA)=XB)=1

Remark 4.2. Tt is known that the circle mapping f is conjugate to an irrational
rotation if and only if its minimal invariant set (a non-empty compact invariant
set which is minimal) is equal to S*. Thus we can easily show that the invariant
subsets A, B are dense in S?.

Theorem 4.3. Let f: S* — S! be a C?-diffeomorphism without periodic points
and its rotation number a. Then we have

(4.3) D,>1, ae zeS.

Theorem 4.4. Let f: S* — S! be a C*-diffeomorphism without periodic points
and its rotation number o satisfy the do-(D) condition for dg > 0. Then we have

. D < ——
(44) —17——1+d0’

Consequently, we can estimate the gap values by

a.e. eS8t

(4.5) G > ae. €S

_ 0
= 14dy’
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5. RENORMALIZATION METHOD

In this section, applying some renormalizatin techniques (cf. [3] or [10], here
we use the notations in [3]), we prove some Lemmas, one of which is used in the
proof of Theorem 4.3 and we show some fractal structures of the intervals given
by the circle mapping.

Here, let g : S' — S! be an orientation preserving homeomorphism without
fixed points, then we note that g can be identified with a map g : [0,1] — [0,1]
such that g(0) = g(1) and there exists a unique point ¢ € (0,1), which satisfies
that g is continuous and monotone increasing on [0,¢) and (¢, 1] and

limg(t) =1, limg(t) =0.

Denote [a, b], a closed interval in [0, 1], by J and define the space S(J) of maps
g :J — J such that g(a) = g(b) € (a,b) and there exists a unique discontinuity
point ¢ € (a,b), which satisfies that g is continuous and monotone increasing on

la,c) and (c, b] and
limg(t) =, limg(t)=a.

For J = [a,b], denote J' = (a,c), J" = (c,b), then we can admit the following
two cases: (i) g(J') C %, J' C g(J"), (i) g(J") C s J7C g(J).

First we consider the case (i). For g € §(J), since g does not have a fixed
point and g is monotone increasing on J’, J”, we define

a(g) = max{k € N: ¢g'(J') c J” forall i=1,..,k}.

Then we have the ordered intervals J', g(J'), ..., g*@(J’), each of which has one
common boundary point with the next one, and g*9+!(J")NJ’ # 0. Furthermore,
the closure of J' U g(J') U -+ - U g*9)+1(J') covers the closed interval J.

We define the first return map R(g) : K — K of g to K for an interval K C J
by R(g)(z) = ¢g*(z) where k = k(z) = min{: € N : ¢'(z) € K}.

Denote J(g) = J'U g2@+1(J"), then we can see that R(g) of g to J(g) is in
S(J(g)) and

(5.1) R(g)(J"NJ(g)) cJ =J"NJ(g)
and
(5.2) R(9)|s = (glan)*® o (gl5), R(g)|smnsig) = glur-

For the case (ii) we can define the number a(g) similarly.

Now, using the circle mapping f : S' — S!, which has no periodic points,
we inductively define the renormalization sequences of intervals {J,,} and of the
return maps {¢,} : ¢, € S(J,) and of the numbers {a,}, which determine the
continued fraction expantion for the rotation number of f.

Define Jo = J, ¢o : Jo = Jo, po = f and denote the interioir of the right
component of Jo\{c} by J} and the interioir of the other component of Jo\{c}
by J§ and

a1 i fR)C T
“=1 it Jy D f(JY),
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and

fooif Jy D f(Jo):
Now suppose that n > 2 and Ji, ..., Ju—1, 01, ..y Pn—1 are defined and that ¢,_; :
J.._1 = Jy_1 has no fixed points, then we inductively define the interval J,, the
return map ¢, to J, and the integer a, by
Jn = J(Son—l)a Pn = R(‘Pn—l) . J'n - Jna an = a(‘Pn—l)-
On the other hand, if ¢n_1 : Joy — Jn—1 has fixed points, then we must let
a, = +oo and stop the inductive process, but, since we assume that f has no
periodic points, that is, ¢, has no fixed points, we can define each sequence
infinitely.
Thus, if f(J') C J”,

a1=a(f)+l, SDI:R(JC)»

an = a(R*HS))s ¢a=R"(f), n=2,3,...
and, if J' O f(J"),

a = 17 $1 = f’
an = a(R*2(f)), @n=R"f), n=23,...

Now we use the following notations: Let J! be the interioir of the left compo-
nent of J,\{c} if n is odd and of the right component if n is even. Denote the
interioir of the other component of J,\{c} by J.. Then we have

Jo=J" 0 J=Jd_ NJu=J,

and @,(J)) C J” for all n > 1. Also we have ¢1|y; = f, @1lgr = f* and it
follows from (5.1) and (5.2) that we have

_{Rmifmmcm
Y1 =

Cnla, = en-1lar_s
SOnIJ,'{ = (‘Pn—l‘J,',’_,)a(%_l) °© (‘Pn—1|J,’,_1)-
Therefore by induction we have
‘PnIJA = fry SoniJ,'.,’ = f*r
where p, is defined inductively by
po=1, pr=a,
Pyl = An41Pn + Py for n > L
Since ¢y : Jn — Jn 1s in S(Jr), we have
Jo = [fPm1(e), f7(0), Jn = (e 7 (e)), T = (77 (e)y¢)
if n is even and similarly we obtain the intervals
Jo = [P, ), T = (F7()s), Jn = (e, f*"7(c)
if n is odd.
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We can show the fractal tiling structures of the intervals by using the renor-

malization method.

Lemma 5.1. Under the above setting we obtain for 0 < j < p,.; that
(53) fj(c) € Jﬂ Aand .] = ipn + Pn-1, L€ {0’ '"7an+1}

and also we obtain the fractal tiling structures of the interval J such that

n-1—1 Pn_l

(5.4) J=adl{ |J FUULU FUumn

1=0 1=0

where all intervals in the union are disjoint.

Applying Lemma 5.1 and also using the renormalization method, we can show

the following lemma.

Lemma 5.2. Under the same Hypotheses as Theorem 4.3 there exists a constant

bo

:0 < by <1 such that
|f7(z) — z| > borna(c)

holds for every j < pnyy.

10.

11
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