Perampanel inhibits α-synuclein transmission in Parkinson's

2 disease models

- 3
- 4 Jun Ueda, M.D.¹, Norihito Uemura, M.D., Ph.D.^{1*}, Masanori Sawamura, M.D.¹, Tomoyuki
- 5 Taguchi, M.D.¹, Masashi Ikuno, M.D., Ph.D.¹, Seiji Kaji, M.D., Ph.D.¹, Yosuke Taruno,
- 6 M.D.¹, Shuichi Matsuzawa, Ph.D.¹, Hodaka Yamakado, M.D., Ph.D.¹, Ryosuke Takahashi,
- 7 M.D., Ph.D.^{1*}
- ⁸ ¹Department of Neurology, Kyoto University Graduate School of Medicine
- 9 54 Shogoin, Kawaramachi, Sakyo-ku, Kyoto 606-8507 Japan
- 10
- 11 *Correspondence to:
- 12 Norihito Uemura, M.D., Ph.D. and Ryosuke Takahashi, M.D., Ph.D.
- 13 Department of Neurology, Kyoto University Graduate School of Medicine
- 14 54 Shogoin, Kawaramachi, Sakyo-ku, Kyoto 606-8507 Japan
- 15 Tel.: +81-75-751-4397
- 16 Fax: +81-75-761-9780
- 17 E-mail: <u>nuemura@kuhp.kyoto-u.ac.jp</u> (NU), <u>ryosuket@kuhp.kyoto-u.ac.jp</u> (RT)
- 18 ORCID ID: 0000-0002-6251-0810 (NU), 0000-0002-1407-9640 (RT)
- 19 Word Count: 3,672 words
- 20 **Running title:** Perampanel inhibits α-synuclein transmission

22	macropinocytosis
23	Relevant conflicts of interests/financial disclosures: Nothing to report.
24	Funding Sources: This study was supported by a grant from the Ministry of Education,
25	Culture, Sports, Science, and Technology (No. 19K16610, RT, Grant-in-Aid for Scientific
26	Research (A); No. JP18H04041, Grant-in-Aid for Scientific Research on Innovative Areas;
27	No. JP17H05698), the Integrated Neurotechnologies for Disease Studies (Brain/MINDS)
28	from Japan Agency for Medical Research and Development AMED (RT, No.
29	JP18dm0207020 and JP19dm0207070).
30	

Keywords: Parkinson's disease, alpha-synuclein, neuronal activity, perampanel,

31 Abstract

32	Background: The intercellular transmission of pathogenic proteins plays a key role in the
33	clinicopathological progression of neurodegenerative diseases. Previous studies have
34	demonstrated that this uptake and release process is regulated by neuronal activity.
35	Objective: To examine the effect of perampanel, an antiepileptic drug, on α -synuclein
36	transmission in cultured cells and mouse models of Parkinson's disease.

37	Methods: Mouse primary hippocampal neurons were transduced with α -synuclein
38	preformed fibrils to examine the effect of perampanel on the development of α -synuclein
39	pathology and its mechanisms of action. An α -synuclein preformed fibrils-injected mouse
40	model was used to validate the effect of oral administration of perampanel on the α -
41	synuclein pathology <i>in vivo</i> .
42	Results: Perampanel inhibited the development of α -synuclein pathology in mouse
43	hippocampal neurons transduced with α -synuclein preformed fibrils. Interestingly,
44	perampanel blocked the neuronal uptake of α -synuclein preformed fibrils by inhibiting
45	macropinocytosis in a neuronal activity-dependent manner. We confirmed that oral
46	administration of perampanel ameliorated the development of α -synuclein pathology in
47	wild-type mice inoculated with α -synuclein preformed fibrils.
48	Conclusion: Modulation of neuronal activity could be a promising therapeutic target for
49	Parkinson's disease, and perampanel could be a novel disease-modifying drug for
50	Parkinson's disease.
51	

52 Introduction

53	Parkinson's disease (PD) is pathologically characterized by progressive neuronal
54	degeneration and the presence of Lewy bodies, which are composed of misfolded α -
55	synuclein (α -syn). There is currently no therapy that inhibits or even slows down the
56	progression of PD. Based on postmortem analysis, Braak et al. proposed a pathological
57	staging of PD, in which the Lewy pathology in PD starts from the olfactory bulb (OB),
58	anterior olfactory nucleus (AON), and dorsal nucleus of the vagus nerve and then spreads
59	stereotypically to other interconnected brain regions. ¹ Accumulating evidence suggests
60	that misfolded α -syn behaves in a prion-like fashion and plays a significant role in PD
61	progression. ^{2–14} Moreover, other pathogenic proteins, such as amyloid- β (A β) and tau in
62	Alzheimer's disease (AD), are also thought to propagate in the brain and contribute to
63	disease progression. ¹⁵ Although previous studies have revealed that exogenous α -syn
64	preformed fibrils (PFFs) induce the propagation of α -syn pathology in cultured neurons ⁹
65	and mouse brains, ^{4, 5, 16} the molecular mechanisms and modulating factors underlying the
66	propagation of α -syn pathology remain poorly understood.
67	Interestingly, a recent study demonstrated that the extracellular α -syn levels and
68	α -syn release are affected by neuronal activity. ¹⁷ Moreover, extracellular release of tau,
69	the formation of A β plaque, and the propagation of tau in AD are also affected by neuronal

activity.^{18–20} We hypothesized that the inhibition of neuronal activity could modulate the 70 71 dynamics of α -syn, inhibit the propagation of α -syn pathology, and attenuate the 72 progression of PD. 73 Perampanel (PER) is an α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 74 (AMPA) receptor antagonist that inhibits neuronal activity by blocking the AMPA receptorinduced sodium and calcium influx into neurons.^{21–23} PER has been shown to equipotently 75 76 inhibit AMPA receptors in both glutamatergic and GABAergic neurons, and suppression of 77 neuronal activity by PER has been demonstrated in previous in vitro and ex vivo studies. ^{21–26} In the present study, we examined whether the inhibition of neuronal activity by PER 78 79 could attenuate the propagation of α -syn pathology. 80 **Materials and Methods** 81 82 Animals 83 C57BL/6J 3-month-old male mice (n = 46) were obtained from Shimizu Laboratory 84 Supplies Co., Ltd., or CLEA Japan, Inc. All breeding, housing, and experimental 85 procedures were conducted according to the guidelines for animal care of Kyoto University 86 and were approved by the Kyoto University Animal Care and Use Committee.

88	Preparation of recombinant α -syn monomers and PFFs
89	Mouse α -syn PFFs were generated as described previously. ²⁷ We sonicated α -syn PFFs
90	for 10 min (30-s sonication followed by an interval of 30 s, for a total of 10 min) with a
91	Bioruptor bath sonicator before the administration of α -syn PFFs.
92	
93	Stereotaxic injection
94	Stereotaxic injection was performed as previously described. ^{28, 29} The 3-month-old male
95	mice anesthetized with Avertin (1.875% [w/v] 2,2,2-tribromoethanol, 1.25% [v/v] 3-methyl-
96	1-butanol) were stereotaxically injected with 0.5 μL of $\alpha\text{-syn}$ PFFs (5 mg/mL) bilaterally
97	into the OB (coordinates: AP: +4.5 mm, L or R: -0.9 mm, DV: -1.5 mm relative to the
98	bregma and scull surface) using a 33-gauge microsyringe.
99	
100	PER treatment
101	PER powder (Eisai Co., Ltd.) was suspended in a 0.5% (w/v) methyl cellulose solution
102	(final concentration of PER: 2.0 mg/mL, Wako), and 10 $\mu L/g$ of body weight was orally
103	administered to the mice daily. The 3-month-old male mice were initially treated with 20

mg/kg PER before injection of α-syn PFFs (PER [pre], n = 8), 20 mg/kg PER after injection
of α-syn PFFs (PER [post], n = 6), or vehicle before injection of α-syn PFFs (control, n =
7). The dose of PER was determined according to previous reports.^{30, 31} Treatment with
PER or vehicle was continued for 2 weeks after injection of α-syn PFFs.
Immunohistochemistry

110 Immunohistochemistry was performed as previously described, with minor modifications.

111 $2^{7, 28}$ Briefly, mice were sacrificed 2 weeks after injection of α -syn PFFs. The brains were

112 fixed with 4% paraformaldehyde (PFA), embedded in paraffin, and processed to prepare

113 8- μ m sections. An antibody against phosphorylated- α -syn (p- α -syn; 1:5000; ab51253,

Abcam) was used as the primary antibody. The areas of p- α -syn-positive pathology in the

115 AON and piriform cortex (PC) were quantified using the ImageJ software. For the

assessment of AON, the total p- α -syn-positive areas and total numbers of neuronal p- α -

- syn-positive aggregates were evaluated in the images of three coronal sections at +3.08,
- +2.80, and +2.58 mm relative to the bregma. For the assessment of PC, the total p- α -syn-
- 119 positive areas and total numbers of neuronal p-α-syn-positive aggregates were evaluated

120 in the images of four coronal sections at +1.78, +0.38, -0.94, and -2.30 mm relative to the

121 bregma.

122

123 Sequential extraction

Sequential extraction of brain lysates was performed as previously described.³² For biochemical analysis, we dissected the ventral half of the cerebral cortex containing the AON and PC from phosphate buffered saline (PBS)-perfused brains of mice treated with 20 mg/kg PER or vehicle for 2 weeks without α -syn PFFs inoculation (n = 5, respectively; Fig. 4A, B) or mice treated with 20 mg/kg PER or vehicle for 2 weeks after injection of α -syn PFFs into the OB (n = 5, respectively; Fig. 4G).

130

131 Western blotting

Western blotting was performed as previously described, with minor modification.³³ Briefly, 132 133 10 µg of Triton X-soluble or Triton X-insoluble samples was dissolved in sample buffer (1% [w/v] sodium dodecyl sulfate [SDS], 12.5% [w/v] glycerol, 0.005% [w/v] bromophenol blue, 134 135 2.5% [w/v] 2-mercaptoethanol, 25 mM Tris-HCl, pH 6.8) and separated on 10%–20% (w/v) 136 gradient gels (FUJIFILM Wako Pure Chemical Corporation). The proteins were transferred to polyvinylidene difluoride membranes (Merck Millipore). The membranes were treated 137 138 with 4% (w/v) PFA in PBS for 30 min at room temperature (RT) before blocking to prevent 139 detachment of α -syn from the blotted membranes. After blocking for 1 h with 5% [w/v] skim

140	milk in TBS-T, the membranes were incubated with primary antibodies against α -syn
141	(1:2000; 610787, BD Biosciences), β -actin (1:5000; A5441, Sigma-Aldrich), and p- α -syn
142	(1:5000; ab51253, Abcam) overnight at 4°C. Subsequently, the membranes were
143	incubated with horseradish peroxidase-conjugated secondary antibodies (NB7574 or
144	NB7160; Novus Biologicals) for 1 h at RT. Immunoreactive bands were detected using
145	detection reagent (Thermo Fisher Scientific), and the chemiluminescent signal was
146	detected with Amersham Imager 600 (GE Healthcare). The band intensities were
147	normalized to those of β -actin.
1 4 0	
148	
148	Primary hippocampal culture
148 149 150	Primary hippocampal culture Primary hippocampal cell cultures were prepared from E16 ICR mice. The embryos were
148 149 150 151	Primary hippocampal culture Primary hippocampal cell cultures were prepared from E16 ICR mice. The embryos were removed and decapitated, and the entire hippocampus was dissected under sterile
149 150 151 152	Primary hippocampal culture Primary hippocampal cell cultures were prepared from E16 ICR mice. The embryos were removed and decapitated, and the entire hippocampus was dissected under sterile conditions. After enzymatic digestion for 5 min by 0.25% trypsin at 37°C, the cells were
148 149 150 151 152 153	Primary hippocampal culture Primary hippocampal cell cultures were prepared from E16 ICR mice. The embryos were removed and decapitated, and the entire hippocampus was dissected under sterile conditions. After enzymatic digestion for 5 min by 0.25% trypsin at 37°C, the cells were separated by trituration in Dulbecco's modified Eagle's medium (Wako) supplemented with
148 149 150 151 152 153 154	Primary hippocampal culture Primary hippocampal cell cultures were prepared from E16 ICR mice. The embryos were removed and decapitated, and the entire hippocampus was dissected under sterile conditions. After enzymatic digestion for 5 min by 0.25% trypsin at 37°C, the cells were separated by trituration in Dulbecco's modified Eagle's medium (Wako) supplemented with 10% fetal bovine serum (Thermo Fisher Scientific) and 1% penicillin–streptomycin
148 149 150 151 152 153 154 155	Primary hippocampal culture Primary hippocampal cell cultures were prepared from E16 ICR mice. The embryos were removed and decapitated, and the entire hippocampus was dissected under sterile conditions. After enzymatic digestion for 5 min by 0.25% trypsin at 37°C, the cells were separated by trituration in Dulbecco's modified Eagle's medium (Wako) supplemented with 10% fetal bovine serum (Thermo Fisher Scientific) and 1% penicillin–streptomycin (Thermo Fisher Scientific). After trituration, the solution was centrifuged at 190 g for 3 min,

157	Scientific) with 2% B27 (Invitrogen), 2 mM L-glutamine (Nacalai Tesque), and 1%
158	penicillin-streptomycin (Thermo Fisher Scientific). The dissociated cells were plated on
159	24-well plates (1.5 × 10^5 cells/well) that were pre-coated with poly-DL-ornithine
160	hydrobromide (Sigma-Aldrich). Half of the medium was removed and replaced every 3–4
161	days. The cells were cultured under constant conditions of $37^{\circ}C$, 5% CO_{2} in a humidified
162	incubator. The experiments were conducted over 14–17 days in vitro (DIV), and each
163	experiment was repeated three times.
164	
165	Cytotoxicity with media LDH assay
166	Cytotoxicity was assessed using media lactate dehydrogenase (LDH) Assay Kit
166 167	Cytotoxicity was assessed using media lactate dehydrogenase (LDH) Assay Kit (Cytotoxicity LDH Assay Kit-WST, Dojindo). Supernatants (100 μ L) was incubated with an
166 167 168	Cytotoxicity was assessed using media lactate dehydrogenase (LDH) Assay Kit (Cytotoxicity LDH Assay Kit-WST, Dojindo). Supernatants (100 μ L) was incubated with an equal volume of assay buffer for 30 min, and the absorbance of the culture medium was
166 167 168 169	Cytotoxicity was assessed using media lactate dehydrogenase (LDH) Assay Kit (Cytotoxicity LDH Assay Kit-WST, Dojindo). Supernatants (100 μ L) was incubated with an equal volume of assay buffer for 30 min, and the absorbance of the culture medium was measured using a microplate reader at a test wavelength of 490 nm.
166 167 168 169 170	Cytotoxicity was assessed using media lactate dehydrogenase (LDH) Assay Kit (Cytotoxicity LDH Assay Kit-WST, Dojindo). Supernatants (100 µL) was incubated with an equal volume of assay buffer for 30 min, and the absorbance of the culture medium was measured using a microplate reader at a test wavelength of 490 nm.
166 167 168 169 170 171	Cytotoxicity was assessed using media lactate dehydrogenase (LDH) Assay Kit (Cytotoxicity LDH Assay Kit-WST, Dojindo). Supernatants (100 μL) was incubated with an equal volume of assay buffer for 30 min, and the absorbance of the culture medium was measured using a microplate reader at a test wavelength of 490 nm. α-syn PFFs, pHrodo-PFFs, and pHrodo-dextran transduction
166 167 168 169 170 171 172	Cytotoxicity was assessed using media lactate dehydrogenase (LDH) Assay Kit (Cytotoxicity LDH Assay Kit-WST, Dojindo). Supernatants (100 μL) was incubated with an equal volume of assay buffer for 30 min, and the absorbance of the culture medium was measured using a microplate reader at a test wavelength of 490 nm. α-syn PFFs, pHrodo-PFFs, and pHrodo-dextran transduction Sonicated α-syn PFFs were labeled with pHrodo Red (Invitrogen), as per the

174	labeled with pHrodo Red (pHrodo-PFFs; final concentration: 0.5 μ g/mL), and pHrodo Red-
175	dextran (10 kDa; Invitrogen), (pHrodo-dextran; final concentration: 0.5 μ g/mL) were added
176	to the primary hippocampal culture at 14 DIV with PER (0.3, 3, 10, or 30 μ M), 2,3-Dioxo-6-
177	nitro-1,2,3,4-tetrahydrobenzo[<i>f</i>]quinoxaline-7-sulfonamide (NBQX; 50 μM, Abcam),
178	tetrodotoxin (TTX; 1 μ M, Nacalai Tesque), 5-(N-ethyl-N-isopropyl)-amiloride (EIPA; 50 μ M,
179	Cayman Chemical), or vehicle and then incubated for the indicated time. The dose of PER
180	was determined according to previous reports. ^{21, 23} Primary neurons transduced with PBS
181	alone were used as negative controls.
182	
183	Immunocytochemistry
183 184	Immunocytochemistry For immunocytochemistry, the cells were washed twice with PBS and then fixed with 4%
183 184 185	Immunocytochemistry For immunocytochemistry, the cells were washed twice with PBS and then fixed with 4% (w/v) PFA in PBS for 5–20 min. After washing twice with PBS, incubation with
183 184 185 186	Immunocytochemistry For immunocytochemistry, the cells were washed twice with PBS and then fixed with 4% (w/v) PFA in PBS for 5–20 min. After washing twice with PBS, incubation with PBS/0.1%Tween (10 min), and blocking with 3% (w/v) bovine serum albumin/PBS (1 h at
183 184 185 186 187	Immunocytochemistry For immunocytochemistry, the cells were washed twice with PBS and then fixed with 4% (w/v) PFA in PBS for 5–20 min. After washing twice with PBS, incubation with PBS/0.1%Tween (10 min), and blocking with 3% (w/v) bovine serum albumin/PBS (1 h at RT), the cells were incubated with primary antibodies against p-α-syn (1:3000; ab51253,
183 184 185 186 187 188	Immunocytochemistry For immunocytochemistry, the cells were washed twice with PBS and then fixed with 4% (w/v) PFA in PBS for 5–20 min. After washing twice with PBS, incubation with PBS/0.1%Tween (10 min), and blocking with 3% (w/v) bovine serum albumin/PBS (1 h at RT), the cells were incubated with primary antibodies against p-α-syn (1:3000; ab51253, Abcam), glial fibrillary acidic protein (GFAP; 1:500; M1406, Sigma-Aldrich), and neuronal
183 184 185 186 187 188 189	Immunocytochemistry For immunocytochemistry, the cells were washed twice with PBS and then fixed with 4% (w/v) PFA in PBS for 5–20 min. After washing twice with PBS, incubation with PBS/0.1%Tween (10 min), and blocking with 3% (w/v) bovine serum albumin/PBS (1 h at RT), the cells were incubated with primary antibodies against p-α-syn (1:3000; ab51253, Abcam), glial fibrillary acidic protein (GFAP; 1:500; M1406, Sigma-Aldrich), and neuronal nuclei (NeuN; 1:500; ABN78, Merck Millipore) at 4°C overnight. After washing with PBS,

191	594-conjugated (1:1000; A11037, Invitrogen), or 647-conjugated secondary antibodies
192	(1:1000; A21094, Life Technologies) for 1 h at RT. After washing with PBS and cover-
193	slipping, the cells were observed with BZ-X710 (Keyence) at \times 20 magnification. The
194	image acquisition settings were kept constant in all groups for each experiment. The
195	number of NeuN-positive cells per field were counted to measure neuronal density. The
196	areas of p- α -syn-positive pathology, pHrodo-PFFs, and pHrodo-dextran were quantified
197	using ImageJ software. The average areas of p- α -syn-positive pathology, pHrodo-PFFs,
198	and pHrodo-dextran per field (3–10 fields of view per sample) were averaged for the same
199	conditions.
200	
201	Statistical analysis
202	Statistical analysis was conducted using PRISM statistical package. Statistical significance
203	was evaluated by employing Kruskal-Wallis test, followed by Dunn's <i>post hoc</i> test. Mann
204	Whitney test was employed to compare the two groups of data. Statistical significance was
205	set at * <i>P</i> < 0.05, ** <i>P</i> < 0.01, or *** <i>P</i> < 0.001.

Results

209 PER inhibits the development of p- α -syn-positive pathology in hippocampal primary

210 neurons

211	To investigate the potential effect of PER on PD pathology, we first assessed whether
212	PER is effective against the development of p- α -syn-positive pathology using an <i>in vitro</i>
213	PD model. In contrast to physiological α -syn, the majority of α -syn in Lewy pathology is
214	phosphorylated at Ser129; thus, p- α -syn is a useful pathological marker of human PD and
215	PD models. ^{4, 5, 10, 34} Primary neurons transduced with α -syn PFFs exhibit p- α -syn-positive
216	pathology and are well established as in vitro PD models to examine the mechanisms of
217	the prion-like propagation of α -syn pathology. ⁹ In this study, mouse hippocampal primary
218	neurons were transduced with α -syn PFFs in the presence of PER (0.3, 3, 10, or 30 μ M) or
219	vehicle at 14 DIV, followed by immunocytochemistry at 17 DIV. Primary neurons
220	transduced with PBS alone were used as negative controls. To exclude the cytotoxic effect
221	of PER, we measured the neuronal density by counting the NeuN-positive cells, which
222	revealed no significant difference among the groups (Fig. 1A). Next, we tested the effect of
223	PER on the development of p- α -syn-positive pathology. Interestingly,
224	immunocytochemistry revealed that less p - α -syn-positive pathology was observed in

225 primary neurons transduced with α-syn PFFs in the presence of PER compared with those 226 without PER (Fig. 1B, C). Primary neurons transduced with PBS alone exhibited no p-α-227 syn-positive pathology (Fig. 1C). 228 229 PER inhibits the activity-dependent uptake of α-syn PFFs via macropinocytosis in 230 hippocampal primary neurons 231 To elucidate the mechanisms of the decreased p- α -syn-positive pathology in α -syn PFFs-232 transduced primary neurons treated with PER, we investigated the potential effect of PER 233 against the neuronal uptake of α -syn PFFs. We generated pHrodo-PFFs to examine the 234 effect of PER on the uptake of α -syn PFFs in primary hippocampal neurons. Due to its favorable pH-sensitive photophysical properties, pHrodo Red is widely used for studying 235 endocytosis.^{35, 36} In this study, at 14 DIV, primary hippocampal neurons were transduced 236 with pHrodo-PFFs in the presence of PER (0.3, 3, 10, or 30 µM) or vehicle, incubated for 4 237 238 h, followed by LDH assay, evaluation of the areas of pHrodo-PFFs, and 239 immunocytochemistry. Primary neurons transduced with PBS alone were used as negative 240 controls. The neuronal density was measured to exclude cytotoxic effects of PER, and no significant difference was found among the groups (Fig. 2A). Moreover, LDH release into 241

242	the conditioned medium did not differ among the groups (Fig. 2B), suggesting that PER
243	treatment exhibited no appreciable toxicity to primary neurons within the 4-h incubation
244	period. Next, we assessed whether pHrodo-PFFs colocalize with NeuN, a neuronal
245	marker, or GFAP, an astrocytic marker. Immunocytochemical analyses revealed only a
246	small number of GFAP-positive cells and those cells colocalized with pHrodo-PFFs
247	compared to NeuN-positive cells (Fig. 2C, Supporting Information Fig. S1A, B). It has been
248	reported that both astrocytes and neurons efficiently take up $\alpha\text{-syn}$ PFFs. 37 However,
249	because the number of astrocytes was considerably lower than that of neurons in our
250	primary neuronal culture (Fig. 2C, Supporting Information Fig. S1A, B), the fluorescence of
251	pHrodo-PFFs was mostly observed in neurons. Therefore, the fluorescence of pHrodo-
252	PFFs observed in this study can be considered as neuronal uptake of α -syn PFFs. We
253	next tested the effect of PER on the neuronal uptake of α -syn PFFs. PER treatment
254	decreased the pHrodo-PFFs areas compared to the control in a dose-dependent manner,
255	indicating a reduction in the uptake of α -syn PFFs by these neurons (Fig. 2D, G), while
256	primary neurons transduced with PBS alone exhibited no fluorescence (Fig. 2G). To
257	confirm the mechanisms of action of PER, we tested the effect of NBQX, another AMPA
258	receptor antagonist, and TTX, a sodium channel blocker, on the neuronal uptake of α -syn

259 PFFs. Both NBQX (50 μM) and TTX (1 μM) treatment decreased the pHrodo-PFFs areas
260 without toxicity (Fig. 2E, F, Supporting Information Fig. S2A–D).

261 Although the mechanisms of α -syn PFFs uptake are not fully understood, several 262 previous studies have demonstrated that α-syn PFFs uptake could be mediated by the endocytic process, including macropinocytosis.^{36, 38} Therefore, we investigated the effect 263 264 of PER on macropinocytosis. First, we investigated whether macropinocytosis is involved 265 in the neuronal α-syn PFFs uptake in the hippocampal primary neurons. EIPA is a specific inhibitor of macropinocytosis that blocks the Na⁺/H⁺ exchanger without affecting other 266 endocytic pathways, such as clathrin-mediated endocytosis.^{39–42} Hippocampal primary 267 268 neurons transduced with pHrodo-PFFs in the presence of EIPA exhibited a remarkable 269 decrease in pHrodo-PFFs areas without decreasing neuronal density (Fig. 3A-C). Next, we tested the efficacy of PER against macropinocytosis. Dextran (10 kDa) is a marker of 270 fluid phase endocytosis; it is widely used to quantify macropinocytosis.^{38–40} In this study, 271 272 the hippocampal primary neurons were treated with pHrodo-dextran in the presence of 273 PER (0.3, 3, 10, or 30 µM), NBQX (50 µM), TTX (1 µM), or vehicle at 14 DIV and then 274 incubated for 4 h. PER, NBQX, and TTX treatment resulted in decreased areas of pHrododextran, indicating the inhibition of macropinocytosis in hippocampal primary neurons (Fig.
3D–G).

278	PER inhibits the development of p - α -syn-positive pathology in a mouse PD model
279	We further investigated the effect of PER on the propagation of α -syn pathology in a
280	mouse PD model. First, we checked the expression levels of α -syn and p- α -syn in mouse
281	brains by Western blot analysis to exclude the possibility that they are affected by PER
282	administration. To this end, wild type mice were treated orally with PER or vehicle for 2
283	weeks, and brain lysates containing AON and PC were sequentially extracted in Triton X
284	and SDS buffers, followed by Western blotting. Western blot analysis revealed that PER
285	had no significant effect on the expression levels of total α -syn and p- α -syn in the Triton X-
286	soluble fraction (Fig. 4A, B).
287	Next, we examined whether PER treatment is also effective in an in vivo PD
288	model. We previously reported that mice inoculated with α -syn PFFs into the OB, one of
289	the initial lesions in PD, exhibited α -syn pathology mainly in the olfactory pathway,
290	including the AON and PC, at 1 month post-inoculation, but not in mice inoculated with
291	PBS. ²⁸ In this study, we analyzed wild type mice inoculated with α -syn PFFs into the OB

292	bilaterally by stereotaxic injections with or without oral administration of PER. PER
293	treatment was initiated before or after the injection of α -syn PFFs, and mice were
294	sacrificed 2 weeks after injection (Fig. 4C). In this study, "PER (pre)" refers to "the mice in
295	which PER treatment was initiated before the injection of α -syn PFFs," whereas "PER
296	(post)" refers to "the mice in which PER treatment was initiated after the injection of α -syn
297	PFFs." Mice in which the treatment was started with vehicle alone before the injection of α -
298	syn PFFs were used as a control group (Fig. 4C). We analyzed the areas of p- α -syn-
299	positive pathology and the number of neuronal p- α -syn-positive aggregates in the AON
300	and PC, as described previously. ²⁸ In PER (pre), the areas of p- α -syn-positive pathology in
301	the AON and PC were significantly decreased compared with those in the control (Fig. 4D,
302	E); in PER (post), they were not significantly decreased compared with those in the
303	control, although there was a tendency toward decreased p - α -syn-positive pathology (Fig.
304	4D, E). Moreover, the numbers of neuronal p- α -syn-positive aggregates in the AON and
305	PC were also significantly decreased in PER (pre), but not in PER (post) (Fig. 4F). We
306	also investigated the amount of p- α -syn-positive aggregates by Western blot analysis. A
307	previous study reported p- α -syn-positive bands in the detergent-insoluble fraction of
308	mouse brains inoculated with α -syn PFFs by Western blot analysis. ⁵ In the current study,

309	brain lysates containing the AON and PC of PER (pre), PER (post), or control were
310	sequentially extracted in Triton X and SDS buffers, followed by Western blotting. In
311	accordance with the immunohistochemical results, Western blot analysis showed
312	significantly decreased p- α -syn in the Triton X-insoluble fraction of PER (pre) and PER
313	(post) compared to that in the control (Fig. 4G).
314	
315	Discussion
316	Although numerous studies have reported on the propagation of α -syn pathology in
317	cultured neurons and mice, the correlation between the neuronal activity and the
318	propagation of α -syn pathology remains unclear. Here we used in vitro and in vivo PD
319	models to demonstrate that neuronal activity plays a crucial role in the propagation of α -
320	syn pathology. We found that PER, as well as NBQX and TTX inhibit the neuronal uptake
321	of α -syn PFFs and decrease the development of p- α -syn-positive pathology in primary
322	neurons. PER and NBQX inhibit neuronal activity by blocking the AMPA receptor
323	current, ^{23, 43} whereas TTX suppresses neuronal activity in an AMPA receptor-independent
324	manner by blocking the voltage-gated sodium channel. Thus, our results strongly suggest
325	that the neuronal uptake of α -syn PFFs is mediated by an activity-dependent mechanism,

326	and PER inhibits the formation of p- α -syn-positive pathology by reducing the activity-
327	dependent neuronal uptake of α -syn PFFs. Another important finding is that the inhibitor of
328	macropinocytosis remarkably decreased α -syn PFFs uptake, and PER, NBQX, and TTX
329	inhibited macropinocytosis in primary neurons. Macropinocytosis is a type of fluid phase
330	endocytosis that is characterized by the formation of large endocytic vesicles termed
331	macropinosomes (up to 5 μ m). Previously, we demonstrated that the length of sonicated
332	$\alpha\text{-syn}$ PFFs was 66.8 ± 3.1 nm (mean ± standard error of the mean [SEM]), ^44 which
333	suggests that a macropinosome is large enough for α -syn PFFs uptake. Although several
334	studies have revealed that macropinocytosis could be involved in the uptake of pathogenic
335	proteins in neurodegenerative diseases, ^{38–40} the correlation between macropinocytosis
336	and neuronal activity has not yet been reported. Our results demonstrate that neuronal
337	macropinocytosis is involved in the uptake of α -syn PFFs and is regulated, at least in part,
338	by neuronal activity. Taken together, our in vitro results suggest that PER inhibits neuronal
339	α -syn PFFs uptake by suppressing macropinocytosis in a neuronal activity-dependent
340	manner.
341	Our in vivo results suggest that PER inhibits the development of p- α -syn

342 pathology induced by α -syn PFFs without affecting the levels of total α -syn and p- α -syn

343	expression, which is consistent with our <i>in vitro</i> results. Furthermore, our <i>in vivo</i> results
344	also suggest that the presence or absence of PER treatment at the time of α -syn PFFs
345	injection affects the development of p- α -syn-positive pathology (Fig. 4D–G). Since the
346	neuronal uptake of α -syn PFFs is the initial step of propagation, and starts immediately
347	after α -syn PFFs injection, ⁴⁵ the neuronal uptake of α -syn PFFs in PER (pre) could be
348	more reduced than that in PER (post), leading to further reduction of p- α -syn-positive
349	pathology in PER (pre). These results are consistent with the rapid transmission of α -syn
350	PFFs via synaptic connections that was previously observed in a mouse PD model. ⁴⁶ In
351	this study, we assessed the neuronal uptake of α -syn PFFs and the initial development of
352	α -syn pathology. However, since our <i>in vivo</i> PD model showed neuronal death more than
353	3 months after the injection of α -syn PFFs, ²⁸ the duration of our <i>in vivo</i> study was
354	insufficient to evaluate the long-term efficacy of PER. Further in vivo studies with longer
355	follow-up are required to elucidate any negative effects of PER as well as to determine the
356	long-term effect of PER on the subsequent propagation of α -syn pathology, neuronal
357	death, and behavioral changes in PD models. Moreover, several clinical studies have
358	reported that PER treatment has no beneficial effect on clinical symptoms in PD
359	patients. ^{47, 48} However, since the aim of these clinical studies was to evaluate the efficacy

360	of PER against wearing off, the patients with PD were at an advanced stage and the
361	duration of PER treatment was relatively short (≤ 30 weeks). In order to elucidate the
362	disease-modifying effect of PER, de novo patients with PD should be treated with PER for
363	a longer duration (e.g., 36 months). After further validation of the effects of PER in animal
364	studies, such clinical studies should be considered.
365	In conclusion, the major finding of this study is that PER inhibits the activity-
366	dependent neuronal uptake of α -syn PFFs via macropinocytosis, and the subsequent
367	development of p- α -syn-positive pathology in PD models. Our results support the idea that
368	the propagation of α -syn pathology could be affected by an activity-dependent mechanism
369	in neurons and suggest that PER could inhibit the neuronal transmission of pathogenic α -
370	syn, thus slowing the progression of PD. Considering that neurodegenerative diseases
371	have similar mechanisms of pathogenic protein transmission, PER could also be applied to
372	other neurodegenerative diseases. Furthermore, since PER has already been approved
373	as an antiepileptic drug in many countries, prompt clinical application for PD and other
374	neurodegenerative diseases is possible. Targeting neuronal activity with PER could
375	represent a new therapeutic strategy for synucleinopathies including PD and other
376	neurodegenerative diseases.

3	7	7

378	Acknowledgments
379	We wish to thank Yusuke Hatanaka Ph.D., Ms. Rie Hikawa and Ms. Ikuko Amano for the
380	technical assistance, and Eisai Co., Ltd. for providing us with PER.
381	
382	Author contributions
383	JU, MS, NU, and HY designed the experiments. JU performed the experiments. JU and
384	NU wrote the manuscript after a fruitful discussion with MS, TT, MI, SK, YT, SM, and HY.
385	All the authors have read and approved the final manuscript. RT supervised all the
386	experiments.
387	
388	References
389	1. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain
390	pathology related to sporadic Parkinson's disease. Neurobiol Aging 2003; 24: 197-211.
391	2. Olanow CW, Prusiner SB. Is Parkinson's disease a prion disorder? Proc Natl Acad Sci
392	2009; 106: 12571-12572.
393	3. Lee SJ, Desplats P, Lee HJ, Spencer B, Masliah E. Cell-to-cell transmission of α -
394	synuclein aggregates. Methods Mol Biol 2012; 849: 347-359.

395	4.	Luk KC, Kehm V, Carroll J, et al. Pathological α-synuclein transmission initiates
396		Parkinson-like neurodegeneration in nontransgenic mice. Science 2012; 338: 949-953.
397	5.	Masuda-Suzukake M, Nonaka T, Hosokawa M, et al. Prion-like spreading of
398		pathological α-synuclein in brain. Brain 2013; 136: 1128-1138.
399	6.	Guo JL, Lee VM. Cell-to-cell transmission of pathogenic proteins in neurodegenerative
400		diseases. Nat Med 2014; 20: 130-138.
401	7.	Dehay B, Vila M, Bezard E, Brundin P, Kordower JH. Alpha-synuclein propagation:
402		new insights from animal models. Mov Disord 2016; 31: 161-168.
403	8.	Tyson T, Steiner JA, Brundin P. Sorting out release, uptake and processing of alpha-
404		synuclein during prion-like spread of pathology. J Neurochem 2016; 139: 275-289.
405	9.	Angot E, Brundin P. Dissecting the potential molecular mechanisms underlying alpha-
406		synuclein cell-to-cell transfer in Parkinson's disease. Parkinsonism Relat Disord 2009;
407		15: S143-S147.
408	10	. Volpicelli-Daley LA, Luk KC, Patel TP, et al. Exogenous α -synuclein fibrils induce Lewy
409		body pathology leading to synaptic dysfunction and neuron death. Neuron 2011; 72:
410		57-71.

411	11. Freundt EC, Maynard N, Clancy EK, et al. Neuron-to-neuron transmission of α -
412	synuclein fibrils through axonal transport. Ann Neurol 2012; 72: 517-524.
413	12. Borchelt DR, Koliatsos VE, Guarnieri M, Pardo CA, Sisodia SS, Price DL. Rapid
414	anterograde axonal transport of the cellular prion glycoprotein in the peripheral and
415	central nervous systems. J Biol Chem 1994; 269: 14711-14714.
416	13. Cohen FE, Pan KM, Huang Z, Baldwin M, Fletterick RJ, Prusiner SB. Structural clues
417	to prion replication. Science 1994; 264: 530-531.
418	14. Moya KL, Hässig R, Créminon C, Laffont I, Di Giamberardino L. Enhanced detection
419	and retrograde axonal transport of PrPc in peripheral nerve. J Neurochem 2004; 88:
420	155-160.
421	15. Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in
422	neurodegenerative diseases. Nature 2013; 501: 45-51.
423	16. Rey NL, Steiner JA, Maroof N, et al. Widespread transneuronal propagation of α -
424	synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson's disease. J
425	Exp Med 2016; 213: 1759-1778.

426	17. Yamada K, Iwatsubo T. Extracellular α -synuclein levels are regulated by neuronal
427	activity. Mol Neurodegener 2018; 13: 9.
428	18. Bero AW, Yan P, Roh JH, et al. Neuronal activity regulates the regional vulnerability to
429	amyloid-β deposition. Nat Neurosci 2011; 14: 750-756.
430	19. Wu JW, Hussaini SA, Bastille IM, et al. Neuronal activity enhances tau propagation and
431	tau pathology in vivo. Nat Neurosci 2016; 19: 1085-1092.
432	20. Holth JK, Fritschi SK, Wang C, et al. The sleep-wake cycle regulates brain interstitial
433	fluid tau in mice and CSF tau in humans. Science 2019; 363: 880-884.
434	21. Hanada T, Hashizume Y, Tokuhara N, et al. Perampanel: a novel, orally active,
435	noncompetitive AMPA-receptor antagonist that reduces seizure activity in rodent
436	models of epilepsy. Epilepsia 2011; 52: 1331-1340.
437	22. Ceolin L, Bortolotto ZA, Bannister N, et al. A novel anti-epileptic agent, perampanel,
438	selectively inhibits AMPA receptor-mediated synaptic transmission in the hippocampus.
439	Neurochem Int 2012; 61: 517-522.
440	23. Chen CY, Matt L, Hell JW, Rogawski MA. Perampanel inhibition of AMPA receptor
441	currents in cultured hippocampal neurons. PLOS ONE 2014; 9: e108021.

442	24. Fukushima K, Hatanaka K, Sagane K, Ido K. Inhibitory effect of anti-seizure
443	medications on ionotropic glutamate receptors: special focus on AMPA receptor
444	subunits. Epilepsy Res 2020; 167: 106452.
445	25. Barygin OI. Inhibition of calcium-permeable and calcium-impermeable AMPA receptors
446	by perampanel in rat brain neurons. Neurosci Lett 2016; 633: 146-151.
447	26. Yang YC, Wang GH, Chuang AY, Hsueh SW. Perampanel reduces paroxysmal
448	depolarizing shift and inhibitory synaptic input in excitatory neurons to inhibit epileptic
449	network oscillations. Br J Pharmacol 2020; 177: 5177-5194.
450	27. Uemura N, Yagi H, Uemura MT, Hatanaka Y, Yamakado H, Takahashi R. Inoculation
451	of α -synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy
452	body-like aggregates in the brainstem via the vagus nerve. Mol Neurodegener 2018;
453	13: 21.
454	28. Uemura N, Uemura MT, Lo A, et al. Slow progressive accumulation of oligodendroglial
455	alpha-synuclein (α -syn) pathology in synthetic α -syn fibril-induced mouse models of
456	synucleinopathy. J Neuropathol Exp Neurol 2019; 78: 877-890.

457	29. Uemura N, Ueda J, Yoshihara T, et al. α -Synuclein Spread from Olfactory Bulb Causes
458	Hyposmia, Anxiety, and Memory Loss in BAC-SNCA Mice. Mov Disord 2021; Online
459	ahead of print.
460	30. Akamatsu M, Yamashita T, Hirose N, Teramoto S, Kwak S. The AMPA receptor
461	antagonist perampanel robustly rescues amyotrophic lateral sclerosis (ALS) pathology
462	in sporadic ALS model mice. Sci Rep 2016; 6: 28649.
463	31. Sugiyama K, Aida T, Nomura M, Takayanagi R, Zeilhofer HU, Tanaka K. Calpain-
464	dependent degradation of nucleoporins contributes to motor neuron death in a mouse
465	model of chronic excitotoxicity. J Neurosci 2017; 37: 8830-8844.
466	32. Taguchi T, Ikuno M, Hondo M, et al. α -Synuclein BAC transgenic mice exhibit RBD-like
467	behaviour and hyposmia: a prodromal Parkinson's disease model. Brain 2020; 143:
468	249-265.
469	33. Uemura N, Koike M, Ansai S, et al. Viable neuronopathic Gaucher disease model in
470	Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein. PLOS
471	Genet 2015; 11: e1005065.

472	34. Fujiwara H, Hasegawa M, Dohmae N, et al. Alpha-synuclein is phosphorylated in
473	synucleinopathy lesions. Nat Cell Biol 2002; 4: 160-164.
474	35. Miksa M, Komura H, Wu R, Shah KG, Wang P. A novel method to determine the
475	engulfment of apoptotic cells by macrophages using pHrodo succinimidyl ester. J
476	Immunol Methods 2009; 342: 71-77.
477	36. Mao X, Ou MT, Karuppagounder SS, et al. Pathological α -synuclein transmission
478	initiated by binding lymphocyte-activation gene 3. Science 2016; 30: 353(6307).
479	37.Loria F, Vargas JY, Bousset L, et al. α -Synuclein transfer between neurons and
480	astrocytes indicates that astrocytes play a role in degradation rather than in spreading.
481	Acta Neuropathol 2017; 134: 789-808.
482	38. Holmes BB, DeVos SL, Kfoury N, et al. Heparan sulfate proteoglycans mediate
483	internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci
484	2013; 110: E3138-E3147.
485	39. Münch C, O'Brien J, Bertolotti A. Prion-like propagation of mutant superoxide
486	dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci 2011; 108: 3548-3553.

487	40. Zeineddine R, Pundavela JF, Corcoran L, et al. SOD1 protein aggregates stimulate
488	macropinocytosis in neurons to facilitate their propagation. Mol Neurodegener 2015;
489	10: 57.
490	41. Gold S, Monaghan P, Mertens P, et al. A clathrin independent macropinocytosis-like
491	entry mechanism used by bluetongue virus-1 during infection of BHK cells. PLOS ONE
492	2010; 5: e11360.
493	42. West MA, Bretscher MS, Watts C. Distinct endocytotic pathways in epidermal growth
494	factor-stimulated human carcinoma A431 cells. J Cell Biol 1989; 109: 2731-2739.
495	43. Doyle MW, Andresen MC. Reliability of monosynaptic sensory transmission in brain
496	stem neurons in vitro. J Neurophysiol 2001; 85: 2213-2223.
497	44. Uemura N, Yagi H, Uemura MT, Yamakado H, Takahashi R. Limited spread of
498	pathology within the brainstem of α -synuclein BAC transgenic mice inoculated with
499	preformed fibrils into the gastrointestinal tract. Neurosci Lett 2020; 716: 134651.
500	45. Rey NL, Petit GH, Bousset L, Melki R, Brundin P. Transfer of human α -synuclein from
501	the olfactory bulb to interconnected brain regions in mice. Acta Neuropathol 2013; 126:
502	555-573.

503	46. Okuzumi A, Kurosawa M, Hatano T, et al. Rapid dissemination of alpha-synuclein
504	seeds through neural circuits in an in-vivo prion-like seeding experiment. Acta
505	Neuropathol Commun 2018; 6: 96.
506	47. Eggert K, Squillacote D, Barone P, et al. Safety and efficacy of perampanel in
507	advanced Parkinson's disease: a randomized, placebo-controlled study. Mov Disord
508	2010; 25: 896-905.
509	48. Lattanzi S, Grillo E, Brigo F, Silvestrini M. Efficacy and safety of perampanel in
510	Parkinson's disease. A systematic review with meta-analysis. J Neurol 2018; 265: 733-
511	740.
512	
513	FIGURE LEGENDS
514	
515	FIG. 1
516	PER inhibits the development of p- α -syn-positive pathology in primary hippocampal
517	neurons. (A) Density of neurons. In Fig. 1, "control" refers to the primary neurons that were
518	transduced with α -syn PFFs and treated with vehicle. Data are representative of three
519	independent experiments (n = 4–8). Data are normalized against control and are

520	expressed as mean ± SEM. N.S.: Not significant, Kruskal-Wallis test with Dunn's post hoc
521	test. Scatter plots show data from each sample. (B) Area of p - α -syn-positive pathology in
522	primary hippocampal neurons. Plotted data are representative of three independent
523	experiments (n = 4–8). Data are normalized against control and are expressed as mean \pm
524	SEM. ** <i>P</i> < 0.01; Kruskal-Wallis test with Dunn's <i>post hoc</i> test. (C) Representative images
525	of immunohistochemical staining of primary hippocampal neurons. Data are representative
526	of three independent experiments. Arrows indicate p - α -syn colocalization with NeuN-
527	positive cells. Scale bar: 20 µm.
528	
529	FIG. 2
530	PER, NBQX, and TTX inhibit the uptake of α -syn PFFs in primary hippocampal neurons.
530 531	PER, NBQX, and TTX inhibit the uptake of α-syn PFFs in primary hippocampal neurons. (A) Density of neurons. In Fig. 2, "control" refers to the primary neurons that were
530 531 532	PER, NBQX, and TTX inhibit the uptake of α-syn PFFs in primary hippocampal neurons. (A) Density of neurons. In Fig. 2, "control" refers to the primary neurons that were transduced with pHrodo-PFFs and treated with vehicle. Data are representative of three
530 531 532 533	PER, NBQX, and TTX inhibit the uptake of α-syn PFFs in primary hippocampal neurons. (A) Density of neurons. In Fig. 2, "control" refers to the primary neurons that were transduced with pHrodo-PFFs and treated with vehicle. Data are representative of three independent experiments (n = 4–8). Data are normalized against control and are
530 531 532 533 534	PER, NBQX, and TTX inhibit the uptake of α -syn PFFs in primary hippocampal neurons. (A) Density of neurons. In Fig. 2, "control" refers to the primary neurons that were transduced with pHrodo-PFFs and treated with vehicle. Data are representative of three independent experiments (n = 4–8). Data are normalized against control and are expressed as mean ± SEM. N.S.: Not significant, Kruskal-Wallis test with Dunn's <i>post hoc</i>
530 531 532 533 534 535	PER, NBQX, and TTX inhibit the uptake of α-syn PFFs in primary hippocampal neurons. (A) Density of neurons. In Fig. 2, "control" refers to the primary neurons that were transduced with pHrodo-PFFs and treated with vehicle. Data are representative of three independent experiments (n = 4–8). Data are normalized against control and are expressed as mean ± SEM. N.S.: Not significant, Kruskal-Wallis test with Dunn's <i>post hoc</i> test. Scatter plots show data from each sample. (B) LDH assay. Plotted data are

537	control and are expressed as mean ± SEM. N.S.: Not significant, Kruskal-Wallis test with
538	Dunn's post hoc test. (C) Representative images of immunohistochemical staining of
539	primary hippocampal neurons. Data are representative of three independent experiments.
540	Arrows indicate pHrodo-PFFs colocalized with NeuN-positive cells, and arrowheads
541	indicate GFAP-positive cells. Scale bar: 20 μ m. (D) (E) (F) Area of pHrodo-PFFs in
542	primary hippocampal neurons. Plotted data are representative of three independent
543	experiments (n = 4–8). Data are normalized against control and are expressed as mean \pm
544	SEM. **P < 0.01, ***P < 0.001, Kruskal-Wallis test with Dunn's <i>post hoc</i> test (D), and Mann
545	Whitney test (E, F). (G) Representative images of pHrodo-PFFs in primary hippocampal
546	neurons. Data are representative of three independent experiments. Scale bar: 20 μm .
547	
548	FIG. 3
549	PER, NBQX, and TTX inhibit the uptake of α -syn PFFs via macropinocytosis. (A) Density
550	of neurons. In Fig. 3A–3C, "control" refers to the primary neurons that were transduced
551	with pHrodo-PFFs and treated with vehicle. Data are representative of three independent
552	experiments (n = 6). Data are normalized against control and are expressed as mean \pm
553	SEM. N.S.: Not significant, Mann Whitney test. Scatter plots show data from each sample.

554	(B) Area of pHrodo-PFFs in primary hippocampal neurons. Plotted data are representative
555	of three independent experiments (n = 6). Data are normalized against control and are
556	expressed as mean \pm SEM. *** P < 0.001, Mann Whitney test. (C) Representative images
557	of pHrodo-PFFs in primary hippocampal neurons. Data are representative of three
558	independent experiments. Scale bar: 20 μ m. (D) (E) (F) Area of pHrodo-dextran in primary
559	hippocampal neurons. In Fig. 3D–3G, "control" refers to the primary neurons that were
560	transduced with pHrodo-dextran and treated with vehicle. Plotted data are representative
561	of three independent experiments (n = 4–6). Data are normalized against control and are
562	expressed as mean ± SEM. ** <i>P</i> < 0.01, *** <i>P</i> < 0.001, Kruskal-Wallis test with Dunn's <i>post</i>
563	hoc test (D), and Mann Whitney test (E, F). (G) Representative images of pHrodo-dextran
564	in primary hippocampal neurons. Data are representative of three independent
565	experiments. Scale bar: 20 μm.

FIG. 4

568 PER inhibits the development of p-α-syn–positive pathology in a mouse model of PD. (A)
569 Level of total α-syn in the Triton X-soluble fraction. The numbers (in kDa) to the right
570 indicate the position of the size markers. Representative images and plotted data are

571	shown (n = 5). All values are expressed as mean ± SEM. N.S.: Not significant, Mann
572	Whitney test. (B) Level of p- α -syn in the Triton X-soluble fraction. The numbers (in kDa) to
573	the right indicate the position of the size markers. Representative images and plotted data
574	are shown (n = 5). All values are expressed as mean \pm SEM. N.S.: Not significant, Mann
575	Whitney test. (C) Time schedule for the injection of α -syn PFFs and drug treatment. In Fig.
576	4, "PER (pre)" refers to "the mice in which PER treatment was initiated prior to the injection
577	of α -syn PFFs," whereas "PER (post)" refers to "the mice in which PER treatment was
578	initiated after the injection of α -syn PFFs." (D) Representative images of
579	immunohistochemical staining of the mice that underwent injection of α -syn PFFs and drug
580	treatment. Insets show high-power images of p - α -syn-positive pathology in the AON and
581	PC. Data are representative of two independent experiments. Scale bar: 200 μ m; inset: 50
582	$\mu m.$ (E) Area of p- α -syn-positive pathology in the AON and PC. Plotted data are pooled
583	from two independent experiments (n = $6-8$). Data are normalized against control and are
584	expressed as mean ± SEM. *P < 0.05, **P < 0.01, N.S.: Not significant, Kruskal-Wallis test
585	with Dunn's <i>post hoc</i> test. (F) Numbers of neuronal p- α -syn-positive aggregates in the
586	AON and PC. Plotted data are pooled from two independent experiments (n = $6-8$). Data
587	are normalized against control and are expressed as mean \pm SEM. ** P < 0.01, N.S.: Not

588	significant, Kruskal-Wallis test with Dunn's <i>post hoc</i> test. (G) Level of $p-\alpha$ -syn in the Triton
589	X-insoluble fraction. The numbers (in kDa) to the right indicate the position of the size
590	markers. Representative images and plotted data are shown ($n = 5$). All values are
591	expressed as mean \pm SEM. * <i>P</i> < 0.05, Kruskal-Wallis test with Dunn's <i>post hoc</i> test.
592	
593	Supporting Information FIG. S1
594	Most of the cells colocalized with pHrodo-PFFs are NeuN-positive cells. (A) Numbers of
595	NeuN or GFAP-positive cells per field. Plotted data are representative of three
596	independent experiments (n = 8). Data are expressed as mean \pm SEM. (B) Numbers of
597	NeuN or GFAP-positive cells per field colocalized with pHrodo-PFFs. Plotted data are
598	representative of three independent experiments (n = 8). Data are expressed as mean \pm
599	SEM.
600	
601	Supporting Information FIG. S2
602	NBQX and TTX show no toxicity to primary neuronal culture. (A) (B) Density of neurons.
603	Data are representative of three independent experiments ($n = 6$). Data are normalized
604	against control and are expressed as mean ± SEM. N.S.: Not significant, Mann Whitney

605	test. Scatter plots show data from each sample. (C) (D) LDH assay. Plotted data are
606	representative of three independent experiments (n = 6). Data are normalized against
607	control and are expressed as mean ± SEM. N.S.: Not significant, Mann Whitney test.
608	
609	
610	
611	
612	
613	
614	
615	
616	
617	
618	
619	
620	
621	

622 Financial disclosure of all authors (for the preceding 12 months)

623	J.U. and T.T. have no financial disclosure. N.U. received Japan Society for the
624	Promotion of Science (JSPS) Overseas Research Fellowships. M.S. received grants from
625	JSPS and Sumitomo Dainippon Pharma Co., Ltd. M.I. received a grant from JSPS. S.K.
626	received a grant from JSPS. Y.T. is a principal investigator of clinical trials by Kyowa Kirin
627	Co., Ltd., and Kissei Pharmaceutical Co., Ltd., and received a grant from JSPS. S.M.
628	received grants from JSR Co., Ltd, ROHTO Pharmaceutical Co., Ltd, and NOASTEC
629	Foundation. H.Y. received grants from JSPS. R.T. received consultancies from KAN
630	Research Institute, Inc., Ono Pharmaceutical Co., Ltd., Chugai Pharmaceutical Co., Ltd.;
631	grants/research support from Sumitomo Dainippon Pharma Co., Ltd., Takeda
632	Pharmaceutical Co., Ltd., Eisai Co., Ltd., Kyowa Kirin Co., Ltd., Sanofi K.K., Otsuka
633	Pharmaceutical Co., Ltd., and Nippon Boehringer Ingelheim Co., Ltd.; grants from Japan
634	Agency for Medical Research and Development (AMED), JSPS, and Ministry of Education
635	Culture, Sports, Science and Technology Japan; and honoraria from Sumitomo Dainippon
636	Pharma Co., Ltd., Takeda Pharmaceutical Co., Ltd., Novartis Pharma K.K., Kyowa Kirin
637	Co., Ltd., Eisai Co., Ltd., Otsuka Pharmaceutical Co., Ltd., Ono Pharmaceutical Co., Ltd.,
638	AbbVie Inc, and Alexion Pharmaceuticals, Inc.

С

α-syn PFFs + vehicle (Control)

ol) α-syn PFFs + 3µM PER

 α -syn PFFs + 30 μ M PER

PBS

D

Fig.S1

Α

