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1 Introduction

If the two chemical or physical states coexists, the interfaces are often observed as the
boundaries of two states. The dynamics of interfaces is one of the interesting problems
in applied mathematics. If the interfaces between the two states are moved by the local
forces, they are often controlled by the surface free energy and the energy difference
between two phases. The surface free energy usually depends on the orientations which
represents W(#) is a function of  with period 7 where 6 is the angle between the x axis
and the normal vector. Let I'; be the interface, V,, a normal velocity of the interface
and k a curvature. In this note we consider the following moving boundary problem in
the two-dimensional space (N = 2):

(1.1)

V, = —T(8) (T(0) + T"(0)) k + a¥(8)
FL|¢:0 =T,

where @ is a constant which corresponds to the energy difference between the two
states. This equation was introduced independently by Angenent and Gurtin [1] (also
see [2, 3, 9] for instance).

We always assume

(H1) ¥ € C*(R) and ¥" is a globally Lipschitz function,
(H2) there exists positive constants A; (i = 1,2,3,4) such that for all § € R

MSUE) < hy, A < UO)+T(0) < A

If the interface I'; is represented by the level set of U, that is,

Iy = {(z,y) | U(z,y,t) = 0},

then U satisfies the following degenerate parabolic equation:

62@ o*U
U =~ U) . 1.2
L= ’VU‘\I’ { aplap] 81‘i8$j + (1} ( )
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If T'; is a graph, then we may set U(z,y,t) = y — u(x,t). Define

' —p
O(p) := Arccos | ——— |,
(p) ( — +p2>

and then #'(p) = —1/(1 + p?). Denoting the angle between the normal vector (—ug, 1)
and the z axis by 6(u,) and setting

Gi(ug) = U (0(uz)) (P(0(ua)) + ¥"(0(uz)),  Galug) = aW(8(uy)) /1 + u2,

we see that u satisfies the following parabolic equation:

Cl(uz) .
T+ Uge + Go(uz) in R x (0,00)

u(z,0) = ( ) in R.

The existence of solutions to (1.3) is guaranteed by Barles, Biton and Ley [8, Chapter
4] when the initial function ug has a polynomial growth at infinity and satisfies:

Uy =

(1.3)

(H3) There exist v € [0, (1 ++/5)/2) and a modulus of continuity m such that

lug(x) — ue(y)] < m((1+ |z| + |y])"]z — y|) for all z,y € R.

The comparison principle also holds for (1.3). For the detail, see [10].

2 The traveling curved fronts

Consider the solution of

G](u )

Uy = 1+ 2

LUy + Ga(ug). (2.1)
Definition. We say that a solution u of (2.1) is a traveling curved front if it holds that
u(z,t) = (z —art) +cot for all (z,t) € R x [0, +00) where there exist 0 < 6 < 0. <
such that the function ¢ has two asymptotic lines y = tan(f= — 7/2)z as z — +oc.

The function ¢ is called the profile of the front and the vector ¢ := Hler, o) is the
velocity of the front.
If u is a traveling curved front, then its profile ¢ satisfies

er - exlla) = HEEDELD) 6,1, 22)
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Let 8(z) be the angle between the z-axis and the normal vector to the graph of ¢
at the point . Then we have

/() = tan (6 - g) , (2.3)
and (2.2) reduces to
0'(z) = f(0),
f(—oc) = 6,
B(cc) = 0.,

where

¢ cosf + cosinf — a¥(h)
U(4)(¥(F) + ¥"(0))sinb

fo) =
By (2.5) and (2.6), ¢; and ¢, are uniquely determined as follows:
¢ _ o cos 6. sinf, ! v(6,)
Co N cosf_ sinf_ V(h_)
L a sinf_  —sinf, U(4,) (2.7)
~ sin(@y —6_) \ —cosf_  cosf. ve-) ) '

First we state the following lemma.

Lemma 2.1. For any 0+ (0 < §_ < 6, < ), there erist a unique pair of constants
(e, ¢o) such that

f(0+) =0.
Moreover, if a # 0, then
af(0) >0  forf_ <8 <6,
af(f) <0 for0<f@<b_, 6.<6<m, (2.8)
af'(6_) >0, af'(6:)<0.

See [10] for the detail. As a consequence of this Lemma, we can easily see that there
is a connecting orbit from 6_ to f, satisfying (2.4) and then a unique traveling curved
front. Note that Angenent and Gurtin in Section 6.3 of [1] already proved the lemma
in the context of the Finsler metric and the existence of the traveling curved fronts was
already shown in [1, Theorem on steady motions, p. 349] or [9, Section 9.2, p. 65]. The
advantage of our proof is that it also gives the global stability of the traveling curved
front.
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Theorem 2.2. Let u(z,1) be a solution of (2.1) with u(z,0) = ug(z) satisfying

lim |uo(z) — ztan(fy — 7/2)| = 0. (2.9)

T—1+o0

Then,

lim sup |u(z,t) — p(z — c1t) — cpt| = 0.

t—o00 zeR

This theorem can be proved using similar arguments as in [12]. To construct the
supersolutions and the subsolutions, we also need an other kinds of traveling curved
fronts (see [10]).

Next, we consider any interfaces which may not be represented by the graph. Let

[y be a curve in R? possessing asymptotic lines y = ztan(fy —7/2) as z — +oo. More

precisely, there are two interfaces Iy = {(z,y) | y = u; (z)} where

up(z) < inf y< sup y<ud(a),
(-’L‘,y)EFO (z,y)EFO

i + J — ¢ — y l:.
z1_1>rj£100 lug () — ztan(fy — 7/2)| = 0.
Let Uy be a continuous function such that
{(z,y) € R* | Up(z,y) = 0} =T,
lim inf Uy(z, ) > 0, lim sup Up(z,y) < 0 for all z € R.

Y Y=>—00
Then, we obtain the following result.

Theorem 2.3. Let 'y be as above and U be the unique solution of (1.2) with Ulz,y,0) =
Ug (l‘, y) Set

[yi= {(a,y) € B | Ula,y,1) = 0},
Then, for any € > 0, there exists T > 0 such that for allt > T

Iy C{(x,y) €R® | ly — oz — c1t) — cot| < ).

3 Singular limit of traveling curved fronts and crys-
talline motions

In this section we consider the profile of the traveling waves when ¥ includes the small
parameter € > 0.

We assume that ¥ = (6, ¢) belongs to C*(R,R) and satisfies (H2) where A; and
Az are independent of £; A3 and A4 depend on . We use f(6,¢) instead of f(6) to
emphasize the dependence of ¢.
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(H4) There exist 0 < 6 < 6, < -+ < 8, < 27 and positive constants m; such that

m
U(h,e) + Vgg(f,€) — ijé(H —0;) in the distribution sense as € | 0.

=1

(H5) There are positive integers j; and jp such that 1 < ji3 <j» <m and 6_ < 8; <
9]‘2 < 4 and 03‘1_1 <0_, if j1 > 2, and 9+ < 6j2+1, if Ja<m — 1.

Using (2.4) and the definition of f, we have
0 z
ds /
— = [ dz
00 f(97 E) Zo

mj\If(Bj) sin 9j
¢, cos(0;) + casin(f;) — a¥(6;)’

Putting

we sec that # converges to the step function and that the traveling wave ¢ converges
to the segment with the slope tan(f; — m/2) in the interval [z}, z; + d;] (4 = ji, - j2)
where 7., = z; + d; and z;, is chosen appropriately. The traveling front converges
to a faceting which moves the constant velocity. The length of the each facet and its

normal vector are
Lv L dj L CcOSs 9]'
5 1= = , my = )
sin §; sin 6,

respectively. We note that the length of the facet does not depend on ¢ because it is a
traveling front. The normal velocity is

c
Vii=n;- ( C; ) : (3.2)

By (3.1), we have
Vi = cicosf;+ cpsinf;
_ (mjsm9j +a> w(9,)
d;
- (’—”i + a) W(g,). (3.3)
L

This shows that the traveling front of (1.1) converges to the traveling faceting governed
by the crystalline motion (3.3) (see [1, Section 10.3] or [9, Section 12.5]).
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We consider the following example (see Fig. 1). Set

U(h,e) := \/cos2 (9— g) +e+ \/sm (0— Z) +e.

Then,
5(1 + 5) 5(1 + 5)
U(6,e) + Ugg(, ) = '
(0,€) + Tge(0, €) (cos2(6 — 7 /4) + )72 + (sin(f — 7/4) + ¢)3/2
Setting
2(7 — Un
we get

e(l+¢e) e(l+e)
(1+¢)32 £3/2

Using the change of variables sins = \/z tan7, we can check that

/-6 5(1 +5) B /arctarx(siné/f (1 +€) cosn d

V(0j,e) + Wop(),¢) = as € = 0.

—5 73 ase — 0.
_s (sin® s + €)%/ arctan(sin§/y2) \/1 — £ tan®n
We see that (H4) and (H5) hold and that m; = 2.
. -107.5 =5 33 55 & 7.5 10

Figure 1: The profiles of the frank diagram and the traveling curved front

4 Expanding solutions of the anisotropic mean cur-
vature flow

Hereafter, we assume a < 0, which means G5 < 0. In an isotropic case (l.e., ¥ = 1),
Deckelnick et al [7] proved that the solution u(z,t) of (1.3) with ug(z) = |z| tan(fy—7/2)
behaves

%’u(a;,t)—tQ(g)l—»O ast — o0
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where

s (|s| < |al cosBy),
Qs) = 2|

—; —7/2) — .08 0
|s| tan(6y — 7/2) - (|s| > la|cosbp)

(see Fig. 2). Since 5% + Q(s)? = a? on [—|a|cos by, |a| cos ], the solution looks like an
arc after an appropriate rescaling.

1.5
0.5

-2 2
-0.5

-1.5}

Figure 2: The graph of @ with the case where a = 1 and 6, = /10

Next consider the anisotropic case. Set
G(8) == a {¥'(8) cos(6 — 7/2) + U (H) sin(f — 7/2)} .
By (H2), we sce that @g(a) = a(¥” + ¥) < 0. Thus we can define
O(s) := G5 (—s).
For the anisotropic case we can show that the limiting profile after the rescaling is

stan(f_ — m/2) + cos(f_ — 7/2)

for s < —Gs(0_),

O(s) = —a¥'(8(s)) sin(O(s) — 7/2) + aW(B(s)) cos(O(s) — 7/2)
= for — G3(6_) < s < —G3(04),

a¥(f.)

cos(fy — 7/2) R
for s > —G3(6.).

(4.1)

stan(f, —7/2) +

\

We can check that (s, Q(s)) is a portion of a circle on the Finsler metric. This result is
also applicable to the Allen-Cahn equation. See [14] for the detail.
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