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Abstract

Let X be a real valued Lévy process that is in the domain of attraction
of a stable law without centering with norming function c. We prove that
X conditioned not to hit zero before t has a Yaglom limit as t→∞.
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1 Introduction and main results

Let X be a real valued Lévy process with law P and characteristics
(a, σ,Π), and T0 = inf{t > 0 : Xt < 0}. We will assume throughout
that under P neither X nor −X is a subordinator; in the first case the
problem we are interested in makes no sense, and in the second case a
different approach is needed as our methods rely on the possibility of
excursions above the minimum. We also exclude the case where X is a
compound Poisson process.

Kyprianou and Palmowski [8] established the existence of quasi sta-
tionary laws for Lévy processes that satisfies some hypotheses and that
are classified into the families A and B. One of the conditions to belong
to either of these classes is that the Lévy processes X has some expo-
nential moments. Kyprianou and Palmowski proved that for such Lévy
processes there exists a measure µ such that for every continuous and
bounded function f,

µ(f) = lim
t→∞

Ex (f(Xt)|T0 > t) , ∀x > 0,

and there exists a θ such that

eθt
∫
[0,∞)

µ(dx)Ex(f(Xt), t < T0) = µ(f), t ≥ 0,
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Although this result is quite general, it can not be applied to Lévy pro-
cesses such as stable or attracted to stable Lévy processes. The reason for
this is simple: the existence of quasi-stationary laws implies that the right
tail of τ decays exponentially fast. This does not hold α-stable process.
Indeed, if X is an α-stable process, it is known, see e.g. [6], that

Px(T0 > t) ∼ Cα,ρxαρt−ρ,

where ρ = P(X1 < 0), and Cα,ρ > 0 is a constant. In fact it can be verified
that

lim
t→∞

Px(Xt ∈ dy|T0 > t) = δ∞(dy), y ≥ 0. (1)

Indeed, by the self-similarity property of X, we have that

Ex (f(Xt)|T0 > t) = E (f(Xt + x)|τ−x > t)

=
E
(
f
(
x+ t1/αX1

)
, 1 < τ−t1/αx

)
Px (T0 > t)

,

from where it is easy to see using the estimate (1) that the the right hand
term tends to f(∞). We used the notation τ−x = inf{t > 0 : Xt < −x}. It
can be verified that these assertions hold also for Lévy processes attracted
to stable. So, by conditioning an attracted to stable Lévy process we force
the process to growth too fast and so the limit of its conditional laws is
Dirac mass at infinity. Hence, in order to obtain a non-degenerate limit,
it is necessary to do a further normalization on the paths of X. That is
the content of our main result.

For the asymptotic results which are the main topic of this paper,
we assume that X is in the domain of attraction of a stable distribution
without centering, that is there exists a deterministic function c : (0,∞)→
(0,∞) such that

Xt
c(t)

D−→ Y1, as t→∞, (2)

with Y1 a strictly stable random variable of parameter 0 < α ≤ 2, and
positivity parameter ρ = P(Y1 > 0). In this case we will use the notation
X ∈ D(α, ρ), and put ρ = 1 − ρ. Hereafter (Yt, t ≥ 0) will denote an
α-stable Lévy process with positivity parameter ρ = P(Y1 > 0).

It is well known that in this case the function c is regularly varying
at infinity with index 1/α. Throughout this paper we will use the
notation η = 1/α.

In what follows, k, k1, k2, · · ·will denote fixed positive constants whereas
C will denote a generic constant whose value can change from line to
line. As previously remarked, the norming function c(·) ∈ RV (η),where
η = 1/α. More precisely we will assume, WLOG, that Y is a standard sta-
ble process, and c can be taken to be a continuous, monotone increasing
inverse of the quantity x2/m(x); where m(x) =

∫ x
−x y

2Π(dy) and neces-
sarily m(·) ∈ RV (2 − α). It follows from this that, when α < 2, we
have tΠ(c(t)) → k and tΠ

∗
(c(t)) → k∗, with k∗ > 0 if αρ < 1, and

k∗ = 0 if αρ = 1, when necessarily k > 0. Finally when α = 2, we have
t(Π(c(t)) + Π

∗
(c(t)))→ 0, so we can take k = k∗ = 0.
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Theorem 1 Assume that X ∈ D(α, ρ), ρ > 0 and that X is regular
upwards. We have the following weak convergence of measures

lim
t→∞

Px
(
Xt
c(t)
∈ dy|T0 > t

)
= P(Z1 ∈ dy)

where Z1 denotes the stable meander of length 1 at time 1 based on Y. See
[3] for a precise definition. We will say that Z1 is the Yaglom limit of X
conditioned to stay positive.

The proof of this result is based on some Lemmas that have been estab-
lished in the paper by Doney and the author [6], from where we extracted
verbatim some sentences and results, thus the notation has been preserved
so to facilitate the lecture of this paper.

To estate those Lemmas and proceed to the proof of Theorem 1, we
need first to introduce some notation and to recall some consequences of
our assumptions.

We first recall a few customary notations in fluctuation theory. For
background about fluctuation theory for Lévy processes the reader is re-
ferred to the books [1], [5], and [7].

The process Xt − It = Xt − inf0≤s≤tXs, t ≥ 0 is a strong Markov
process, the point process of its excursions out of zero forms a Poisson
point process with intensity or excursion measure n. We will denote by
{εt, t > 0} the generic excursion process and by ζ its lifetime. It is known
that under n the excursion process is Markovian with semigroup given by
Px(Xt ∈ dy, t < T0). We will denote by L∗ the local time at 0 for X −X,
and we will assume WLOG that it is normalized so that

E
(∫ ∞

0

e−sdL∗s

)
= 1. (3)

We will denote by τ∗ the right continuous inverse of the local time L∗,
and refer to it as the downward ladder time process, and call {H∗t =
−Xτ∗t , t ≥ 0} the downward ladder height process. The potential measure
of the bivariate process (τ∗, H∗) will be denoted by

W ∗(dt, dx) =

∫ ∞
0

dsP(τ∗s ∈ dt,H∗s ∈ dx), t ≥ 0, x ≥ 0.

The marginal in space of W ∗ is the potential measure of the downward
ladder height process H∗, and we will denote by U∗ its associated renewal
function

U∗(a) := W ∗([0,∞)× [0, a]) =

∫ ∞
0

dsP(H∗s ≤ a), a ≥ 0.

Analogously, the function V ∗ will denote the renewal function of the down-
ward ladder time process, τ∗. We will use a similar notation for the anal-
ogous objects defined in terms of X∗ but we will remove the symbol ∗
from them, and the excursion measure will be denoted by n.

It is known, see e.g. [4], that when X ∈ D(α, ρ), the bivariate down-
going ladder process (τ∗, H∗) is in the domain of attraction of a bivariate
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(ρ, αρ) stable law, and since ρ(t) = P(Xt < 0) → ρ, it follows from
Spitzer’s formula that

n(ζ > ·) ∈ RV (−ρ), (4)

where RV (β) denotes the class of functions which are regularly varying
with index β at ∞.

An important duality relation, which we will use extensively, connects
W ∗ and W with the characteristic measures n and n: see Lemma 1 in [?].

Lemma 2 Let a, a∗ denote the drifts in the ladder time processes τ and
τ∗ : then on [0,∞)× [0,∞) we have the identities

W (dt, dx) = a∗δ{(0,0)}(dt, dx) + n(εt ∈ dx, ζ > t)dt, (5)

W ∗(dt, dx) = aδ{(0,0)}(dt, dx) + n(εt ∈ dx, ζ > t)dt, (6)

so that, in particular

U(x) = a∗ +

∫ ∞
0

∫ x

0

n(εt ∈ dy, ζ > t)dt, (7)

U∗(x) = a+

∫ ∞
0

∫ x

0

n(εt ∈ dy, ζ > t)dt. (8)

Remark 3 Note that a = 0 (respectively a∗ = 0) is equivalent to X
being regular downwards (respectively upwards), and since we exclude the
Compound Poisson case, at most one of a and a∗ is positive.

We write P∗ for the law of the dual Lévy process X∗ = −X,
Throughout this paper we will make systematic use of the identities

in the following Lemma 4 as well as the estimates in the Lemma 5.
In order to shorten the notation throughout the rest of the paper we

will understand the following terms as equal, for s > 0,

ns(dy) = n(εs ∈ dy) = n(εs ∈ dy, s < ζ), y > 0.

Since in any case we will be integrating over (0,∞) there will not be any
risk of confusion. Analogous notation will be used under the excursion
measure n.

Lemma 4 The semigroup of X killed at its first entrance into (−∞, 0)
can be expressed as: for x, y ∈ R+

Px (Xt ∈ dy, t < T0) =

∫ t

s=0

ds

∫
z∈((x−y)+,x]

ns(dz)nt−s (dy + z − x)

+ ant(dy − x)1{y≥x} + a∗nt(x− dy)1{y≤x}.

(9)

A consequence of the fact that (X(ts)/c(t), s ≥ 0) converges in law to
(Y (s), s ≥ 0), is that

Lemma 5 Assume that X ∈ D(α, ρ). Then as t→∞

n(εt ∈ c(t)dx|ζ > t)
D→ P(Z1 ∈ dx),

where Z1 denotes the stable meander of length 1 at time 1 based on Y.
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Proof of Theorem 1. Here we will use the well known fact, see e.g.
[6], that for any x > 0

Px(t < T0) ∼ U∗(x)n(t < ζ), t→∞.

Let f : R → [0,∞) be a continuous and bounded function. From
Lemma 4 we have that

Ex
(
f

(
Xt
c(t)

)
, t < T0

)
=

∫ t

s=0

ds

∫
z∈(0,x]

n (εs ∈ dz, s < ζ)n

(
f

(
εt−s − z + x

c(t)

)
, t− s < ζ

)
+ ant

(
f

(
εt + x

c(t)

)
, t < ζ

)
+ a∗nt

(
f

(
x− εt
c(t)

)
, t < ζ

)
.

Assume furthermore that f has compact support, and hence it is uniformly
continuous. Since x/c(t) → 0 as t → ∞, one can easily check, using the
uniform continuity of f, the approximation

Ex
(
f

(
Xt
c(t)

)
|t < T0

)

=

∫ t

s=0

ds

∫
z∈(0,x]

n (εs ∈ dz, s < ζ)
n
(
f
(
εt−s+z−x

c(t)

)
, t− s < ζ

)
Px(t < T0)

+
1

Px(t < T0)

[
ant

(
f

(
εt + x

c(t)

)
, t < ζ

)
+ a∗nt

(
f

(
x− εt
c(t)

)
, t < ζ

)]

∼
∫ t

s=0

ds

∫
z∈(0,x]

n (εs ∈ dz, s < ζ)
n
(
f
(
εt−s
c(t)

)
, t− s < ζ

)
Px(t < T0)

+
1

Px(t < T0)

[
ant

(
f

(
εt
c(t)

)
, t < ζ

)
+ a∗nt

(
f

(
x− εt
c(t)

)
, t < ζ

)]
.

Since we assumed that X is regular upward a∗ = 0. By Lemma 5, the
factor of a in the rightmost term of the above expression, converges to

a

U∗(x)
E(f(Z1)).

Now, let 0 < λ < 1, be fixed, and split the integration interval [0, t]
into [0, λt] ∪ (λt, t]. Using the convergence in Lemma 5 and the uniform
convergence property of regularly varying functions (Theorem 1.5.2 in [2]),
the latter integral, over [0, λt], can be approximated as follows∫ λt

s=0

ds

∫
z∈(0,x]

n (εs ∈ dz, s < ζ)
n
(
f
(
εt−s
c(t)

)
, t− s < ζ

)
Px(t < T0)

=

∫ λt

s=0

ds

∫
z∈(0,x]

n (εs ∈ dz, s < ζ)
n
(
f
(
εt−s
c(t)

)
, t− s < ζ

)
n(t− s < ζ)

n(t− s < ζ)

Px(t < T0)

∼
∫ λt

s=0

ds

∫
z∈(0,x]

n (εs ∈ dz, s < ζ)
n
(
f
(
εt−s
c(t)

)
, t− s < ζ

)
n(t− s < ζ)

n(t− s < ζ)

U∗(x)n(t < ζ)

∼
∫ λt

s=0

ds

∫
z∈(0,x]

n (εs ∈ dz, s < ζ)E(f(Z1))
1

U∗(x)
∼ U∗(x)− a

U∗(x)
E(f(Z1)),
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where in the final estimate we used Lemma 2. Lemma 16 in [6] allow us
to ensure that for a fixed x and large s we have

n(εs ∈ (0, x], s < ζ) ≤ k4xU
∗(x)

sc(s)
.

Using again Lemma 4 and latter upper bound, we estimate the integral
over the interval (λt, t] as follows

∫ t

λt

ds

∫
z∈(0,x]

n (εs ∈ dz, s < ζ)
n
(
f
(
εt−s
c(t)

)
, t− s < ζ

)
Px(t < T0)

≤ ||f ||∞k4xU∗(x)

∫ t

tλ

ds
1

sc(s)
n(t− s < ζ)

1

Px(t < T0)

∼ ||f ||∞
xU∗(x)

tλc(tλ)

∫ t(1−λ)

0

dsn(s < ζ)
1

U∗(x)n(t < ζ)

∼ ||f ||∞
x

tλc(tλ)

t(1− λ)n(t(1− λ) < ζ)

ρn(t < ζ)

∼ ||f ||∞
x(1− λ)ρ

ρλc(tλ)
= o(1),

where in the second estimate we used Karamata’s theorem for regularly
varying functions and in the third the fact that t 7→ n(ζ > t) is regu-
larly varying with index ρ. The rightmost term in the above expression
tends to zero as t → ∞. Adding the three three estimates above we
conclude that the measures in the main theorem of this paper converge
vaguely. To get the convergence in distribution we should also verify
that the mass is preserved, but this is straightforward from the fact that

Px
(
Xt
c(t)
∈ (0,∞)|t < T0

)
= 1 = P(Z1 ∈ (0,∞)).
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cesses with applications. Universitext. Springer-Verlag, Berlin, 2006.

[8] A.E. Kyprianou, Z. Palmowski, Quasi-stationary distributions for
Lvy processes. Bernoulli 12, no. 4, 571?581, 2006.
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