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A dynamic collapse criterion for elastic–plastic structures under near-fault ground

motions is derived analytically by approximately transforming near-fault ground motions

into double impulse and using an energy balance law. A negative post-yield stiffness

is introduced to treat the P-delta effect in the single-degree-of-freedom (SDOF) model.

The principal part of fling-step near-fault ground motions is modeled by a one-cycle sine

wave and then a double impulse. The double impulse enables the efficient use of the

energy approach in the derivation of compact expressions of complicated elastic–plastic

responses of structures with the negative post-yield stiffness. In contrast to the previous

work (Kojima and Takewaki, 2016b) for the resonant critical case, a general collapse

criterion is provided for the velocity amplitude and the frequency of the double impulse. It

is significant that no iteration is needed in the derivation of the dynamic collapse criterion

except the solution of transcendental equations. It is shown that discussions on several

patterns of dynamic collapse behaviors introduced in the previous critical case are useful

for deriving a boundary between the collapse and the non-collapse in the plane of the

input velocity and the input frequency. Themost important point to be remarked is that the

critical state (Kojima and Takewaki, 2016b) corresponding to the non-linear resonance

does not necessarily provide the minimum input velocity level with respect to arbitrary

impulse timing. The validity of the proposed dynamic collapse criterion is examined by

the numerical response analysis for structures under double impulses with collapse or

non-collapse parameters.

Keywords: earthquake response, elastic-plastic response, P-delta effect, dynamic collapse, collapse criterion,

near-fault ground motion, double impulse

INTRODUCTION

The dynamic collapse of structures is of permanent interest in the field of structural and earthquake
engineering and applied mechanics. Historically, many significant works have been conducted
(Jennings and Husid, 1968; Sun et al., 1973; Tanabashi et al., 1973; Bertero et al., 1978; Takizawa
and Jennings, 1980; Bernal, 1987, 1998; Nakajima et al., 1990; Ger et al., 1993; Challa and
Hall, 1994; Hall, 1998; Hjelmstad and Williamson, 1998; Uetani and Tagawa, 1998; Araki and
Hjelmstad, 2000; Sasani and Bertero, 2000; Ibarra and Krawinkler, 2005; Adam and Jager, 2012).
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While earthquake and structural engineering made clear its
significance in the real world, e.g., safety check of structures and
infrastructures, applied mechanics contributed to the theoretical
advancement in this field (Herrmann, 1965; Ishida andMorisako,
1985; Maier and Perego, 1992; Araki and Hjelmstad, 2000;
Williamson and Hjelmstad, 2001).

It seems that the first theoretical achievement on collapse of
structures subjected to earthquake ground motions was made
by Jennings and Husid (1968). They dealt with a single-degree-
of-freedom (SDOF) system with an elastic–plastic spring and
demonstrated that the P-delta effect makes the natural period
of the structure longer. Sun et al. (1973) focused on the free
vibration of the SDOF system subjected to an initial impact and
made clear the stability or collapse boundary. Extension to multi-
degree-of-freedom (MDOF) systems has also been attempted
(Takizawa and Jennings, 1980; Nakajima et al., 1990).

The tangent stiffness has also attracted some researchers in the
investigation of dynamic response of elastic–plastic structures in
view of instability. If the tangent stiffness goes into the negative
range, residual displacements are induced and accelerated. In
addition, there were some discussions that a negative eigenvalue
of the tangent stiffness matrix is strongly related to either the
accumulation of deformation (Uetani and Tagawa, 1998) or the
localization of deformation (Maier and Perego, 1992). Dynamic
collapse behaviors and responses of actual and realistic frame
models have been investigated by some researchers (Ger et al.,
1993; Challa and Hall, 1994; Hall, 1998; Sivaselvan et al., 2009).
Through such investigations, various effects, such as non-linear
geometric effect, non-linear material behavior, and spread of the
plastic zone, were incorporated in the numerical methods.

However, it does not seem that a simple dynamic collapse
criterion has been proposed even for a rather simple input
except the recent work (Kojima and Takewaki, 2016b). In the
paper of Kojima and Takewaki (2016b), a simple closed-form
dynamic collapse criterion has been proposed for the double
impulse as a simplification of the near-fault ground motion by
taking full advantage of the energy balance law. They focused
on the non-linear resonant situation (Drenick, 1970; Takewaki,
2002; Moustafa et al., 2010) and showed that several collapse
patterns exist.

The effects of near-fault ground motions on structural
response have been studied extensively (Bertero et al., 1978; Hall
et al., 1995; Sasani and Bertero, 2000; Alavi and Krawinkler,
2004; Makris and Black, 2004; Mavroeidis et al., 2004; Kalkan
and Kunnath, 2006; Xu et al., 2007; Rupakhety and Sigbjörnsson,
2011; Yamamoto et al., 2011; Jarernprasert et al., 2013;
Minami and Hayashi, 2013; Khaloo et al., 2015; Vafaei and
Eskandari, 2015). These many investigations classified the input
characteristics into two ones, i.e., the fling-step input and the
forward-directivity input (Mavroeidis and Papageorgiou, 2003;
Bray and Rodriguez-Marek, 2004; Kalkan and Kunnath, 2006;
Mukhopadhyay and Gupta, 2013a,b; Zhai et al., 2013; Hayden
et al., 2014; Yang and Zhou, 2015).

While the inelastic earthquake responses were analyzed for the
steady-state response to a harmonic input or the non-stationary
response to a simple sinusoidal input in the 1960s−1970s
(Caughey, 1960a,b; Iwan, 1961, 1965a,b; Kojima and Takewaki,

2015a,c, 2016a,b) developed a completely different innovative
approach to the peak elastic–plastic response using an energy
balance law without solving directly the equations of motion.
Furthermore, the resonant and overturning phenomena have
been investigated from various viewpoints (Chatzis and Smyth,
2012; Makris and Vassiliou, 2013; Casapulla, 2015; Nabeshima
et al., 2016; Casapulla and Maione, 2017).

In this paper, a dynamic collapse criterion for elastic–
plastic structures under near-fault ground motions is derived
analytically by approximately transforming near-fault ground
motions into a double impulse and using an energy balance
law. A negative post-yield stiffness is introduced to treat the
P-delta effect in the single-degree-of-freedom (SDOF) model.
The principal part of fling-step near-fault ground motions is
modeled by a one-cycle sine wave and then a double impulse.
The use of the double impulse enables the efficient use of the
energy approach in the derivation of explicit expressions of a
complicated elastic–plastic response of structures with negative
post-yield stiffness. In contrast to the previous work (Kojima
and Takewaki, 2016b) for the resonant critical case, a general
collapse criterion is provided for the velocity amplitude and
the frequency of the double impulse. It is significant that no
iteration is needed in the derivation of the dynamic collapse
criterion except the solution of transcendental equations. It is
shown that discussions on several patterns of dynamic collapse
behaviors introduced in the previous critical case are useful for
deriving a boundary between the collapse and the non-collapse
in the plane of the input velocity and the input frequency.
The most important point to be remarked is that the critical
state (Kojima and Takewaki, 2016b) corresponding to the non-
linear resonance does not necessarily provide the minimum
input velocity level with respect to arbitrary impulse timing. The
validity of the proposed dynamic collapse criterion is examined
by the numerical response analysis for structures under double
impulses with collapse or non-collapse parameters.

There exist two major advantages of the proposed method
against themethod using time-history response analysis: (1) if the
collapse limit figure is prepared, structural designers can judge
the state of collapse or non-collapse at once without time-history
response analysis and know the safety factor (both for velocity
level and input frequency) for the collapse without many time-
history response analyses, and (2) while time-history response
analysis of the structural model with negative post-yield stiffness
exhibits the response results sensitive to the time increment of
the numerical integration, the proposed method does not have
such drawback (transcendental equation can be solved stably).
Furthermore, since the proposed collapse limit figure is drawn in
a normalized form with respect to input velocity level and input
frequency, it can be used for various combinations of structural
models and input properties.

DOUBLE-IMPULSE INPUT

As explained in the previous papers (Kojima and Takewaki,
2015a,b; Kojima et al., 2015), two types are distinctive in near-
fault ground motions. The fault-parallel fling-step input can
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FIGURE 1 | Transformation of acceleration wavelets into a series of impulses. (A) Fling-step input (blue) and double impulse (red). (B) Forward-directivity input (blue)

and triple impulse (red) (Kojima and Takewaki, 2016b).

be expressed by a one-cycle sinusoidal wave (Mavroeidis and
Papageorgiou, 2003; Kalkan and Kunnath, 2006) and the fault-
normal forward-directivity input can be represented by three
sinusoidal wavelets (see Figure 1). The fling step results from
the permanent displacement of the ground induced by the fault
dislocation and the forward directivity effect can be explained
by the relation of the movement of the rupture front with
the site. In this paper, a double impulse is used following
the references (Kojima and Takewaki, 2015a, 2016a; Kojima
et al., 2015). The double impulse enables the derivation of a
straightforward expression of the elastic–plastic responses based
on an energy approach by taking advantage of the properties
of free vibrations. Another advantage of the double impulse
is the ease of the derivation of the critical resonant timing of
impulses which is not possible for the sinusoidal and other inputs
without a repetitive procedure. While most of the conventional
methods (Caughey, 1960a,b; Iwan, 1961) use the equivalent
linearization techniques for the structural model under the
original unchanged input, the method using the double impulse
(Kojima and Takewaki, 2015a,b) employs the transformation of
the input for the unchanged structural model. This property leads
to an advantageous feature that the method using the double
impulse is appropriate even for large plastic deformation.

Consider a simplified ground acceleration üg(t) as shown in
Figure 1A (Kojima and Takewaki, 2015a) which is expressed by

üg(t) = Vδ(t)− Vδ(t − t0) (1)

V is the velocity amplitude in both positive and negative
directions, and t0 is the time interval of two impulses. The
time derivative is denoted by an over-dot. Figure 1A also
illustrates the comparison with the corresponding one-cycle
sinusoidal wave. For reference, the velocity and displacement
of both inputs are plotted in Figures 1A,B indicates the triple
impulse as a substitute of a forward-directivity input. Good
agreement can be observed even in the form of velocity and
displacement. However, the correspondence in the response
should be discussed carefully (see Kojima and Takewaki, 2016a).

The Fourier transform of the acceleration üg(t) of the double
impulse can be derived as,

Üg(ω) =
∫ ∞

−∞

{

Vδ(t)− Vδ(t − t0)
}

e−iωtdt=V(1− e−iωt0 ) (2)

PREVIOUS WORK ON COLLAPSE LIMIT
FOR NON-LINEAR RESONANT INPUT

Kojima and Takewaki (2016b) treated the case of non-linear
resonant input to derive the collapse limit of a bilinear
hysteretic SDOF model with negative second slope under the
double impulse. The terminology “nonlinear resonant input”
in this paper means the case where the non-linear response
of the SDOF model attains the maximum with respect to the
interval of two impulses of the double impulse. When the
restoring-force in the second stiffness range becomes zero, the
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FIGURE 2 | Regions of collapse and non-collapse and several patterns of collapse limit (patterns of collapse).

model collapses. This is because the model cannot sustain the
external force at this stage (Kojima and Takewaki, 2016b). Let
f and u denote the restoring force of the spring of stiffness k
and the displacement of the massm, respectively. In addition, let
fy and dy denote the yielding force and the yield displacement,
respectively. The natural period of this SDOF model is denoted
by T1 = 2π/ω1(ω1 =

√

k/m : natural circular frequency). The
ratio of the second slope to the initial slope is expressed by α. The
negative stiffness depends on the magnitude of elastic stiffness
and the effect of the P–1 effect. When the magnitude of the effect
of the P–1 effect against the elastic stiffness is large, the post-
yield stiffness is apt to become negative. Vy denotes the velocity
level at which the SDOFmodel just attains the yield level after the
first impulse. In this non-linear resonant case, the second impulse
acts at the point of zero restoring force in the first slope range
with a positive slope. They classified the collapse pattern into five
patterns, i.e., pattern 1, pattern 2, pattern 3, additional pattern
1, and additional pattern 2. Pattern 1 is the collapse pattern
such that the SDOF model collapses after the second impulse
without plastic deformation after the first impulse. Pattern 2 is
the collapse pattern such that the SDOF model collapses after the
second impulse with plastic deformation after the first impulse.
Pattern 3 is the collapse pattern such that the SDOF model
collapses after the second impulse with plastic deformation after
the first impulse and with closed loop after the second impulse.
Additional pattern 1 is the collapse pattern such that the SDOF
model collapses after the first impulse. Additional pattern 2 is the
collapse pattern such that the SDOF model has an elastic limit
after the second impulse.

Figure 2 summarizes the collapse limit of input velocity
amplitude with respect to the second slope.

CASE 1 indicates the input velocity range such that the SDOF
model remains elastic even after the second impulse. CASE 2
expresses the input velocity range such that the SDOF model
remains elastic after the first impulse and goes into the plastic
range after the second impulse. CASE 3 presents the input
velocity range such that the SDOF model goes into the plastic
range after the first impulse.

CLASSIFICATION BASED ON INPUT LEVEL
OF DOUBLE IMPULSE AND TIMING OF
SECOND IMPULSE

In this section, a preparation for the next section to derive the
collapse limit is made. Two classifications, one based on the input
level of the double impulse and the other based on the timing of
the second impulse, are introduced.

In the first classification based on the input level of the double
impulse, three cases exist, i.e., CASE-A, B, C.

CASE-A: The input velocity level satisfies 0 ≤ V/Vy ≤ 1.
CASE-B: The input velocity level satisfies 1 < V/Vy <
√

1− (1/α).

CASE-C: The input velocity level satisfies V/Vy ≥
√

1− (1/α).

The parameter
√

1− (1/α) is related to the coefficient such that
the structure just attains the collapse under only the first impulse
with the input velocity level V/Vy =

√

1− (1/α) (Kojima and
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FIGURE 3 | Classification based on input level of double impulse and timing of second impulse. (A) Force–deformation relation depending on input level of double

impulse. (B) Classification based on input level of double impulse and time between origin O and principal points. (C) Classification based on timing of second impulse.

Takewaki, 2016b). This classification is different from CASE-1, 2,
3 in the previous section which are defined for resonant critical
input. In non-resonant cases, a different kind of classification
is necessary.

In the second classification based on the timing of the second
impulse, four cases exist, i.e., CASE-I, II, III, and IV.

CASE-I: The structure does not yield after the first impulse, and
the second impulse acts.
CASE-II: The structure goes into the plastic range after the
first impulse, and the second impulse acts before the structure
attains the maximum displacement or before the structure
collapses under only the first impulse.
CASE-III: The structure goes into the plastic range after the
first impulse, and the second impulse acts while the structure
exhibits a harmonic free vibration after the attainment of the
maximum displacement.
CASE-IV: The structure collapses before the action of the
second impulse.

Consider the principal points on the restoring-force
characteristic, Point O: origin, Point A: initial yielding point,

Point B: point of the maximum displacement after the first
impulse, Point C: point of zero restoring force after the first
impulse, Point D: point of collapse after the first impulse, Point
E: point of zero velocity after Point C, Point F: point of zero
restoring force after Point E, Point P: the maximum displacement
in the negative direction (CASE-A), and Point Q: the maximum
displacement in the positive direction (CASE-A). The time
between two principal points (e.g., O and A) is indicated by tOA.
(CASE-A)

In CASE-A (Figure 3A), it is evident that

tOP/T1 = tPC/T1 = tCQ/T1 = tQF/T1 = 0.25 (3)

This is because the vibration after the first impulse is a free
vibration of an elastic SDOF model.
(CASE-B)

In CASE-B (1 < V/Vy <
√

1− (1/α)) (Figure 3A), the ratio
of the time between Points O and A to T1 can be expressed by

tOA/T1 = {arcsin(Vy/V)}/(2π) (4)
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In this case, the following condition must be satisfied.

0 < arcsin(Vy/V) < π/2 (5)

The plastic deformation up1 after the first impulse can be
expressed by using the energy balance law (Kojima and Takewaki,
2015a, 2016b) between the point of the first impulse and the
maximum deformation point.

up1/dy = (1/α)[−1+
√

1− α{1− (V/Vy)
2}] (6)

The time history from Point A through Point B and the time tAB
between Points A and B are derived next. The equation of motion
from Point A through Point B is

mü+ αku− (1− α)kdy = 0 (7)

The energy balance law between Points O and A yields

mV2/2 = (mvA
2/2)+ (kdy

2/2) (8)

Equation (8) provides the velocity vA at Point A.

vA = −
√

V2 − (ω1dy)
2 = −

√

V2 − Vy
2

= −{
√

(V/Vy)
2 − 1}Vy (9)

From Equation (7) and the initial condition (u(t = 0) = −dy,
u̇(t = 0) = vA), the displacement and velocity between Points A
and B are

u(t) = −(1/α)dy cosh(
√
−αω1t)

−dy

√

{(V/Vy)
2 − 1}/(−α) sinh(

√
−αω1t)

+{(1/α)− 1}dy (10)

u̇(t) = (1/
√
−α)Vysinh(

√
−αω1t)

−Vy

√

(V/Vy)
2 − 1cosh(

√
−αω1t) (11)

The ratio of the time between Points A and B to T1 can be
expressed by

tAB/T1 =
1

2π
√
−α

arctanh

√

−α{(V/Vy)
2 − 1}

=
1

4π
√
−α

ln





1+
√

−α{(V/Vy)
2 − 1}

1−
√

−α{(V/Vy)
2 − 1}



 (12)

The time history after Point B and the times between two
principal points are derived next. The equation of motion (free
vibration) after Point B (maximum displacement point) can be
described by

mü+ ku+ (1− α)kup1 = 0 (13)

The solution of Equation (13) for the initial condition u(t = 0) =
−dy − up1, u̇(t = 0) = 0 and t = 0 at Point B leads to

u(t) = −(dy + αup1) cos(ω1t)− (1− α)up1 (14)

u̇(t) = {1+ α(up1/dy)}Vysin(ω1t) (15)

The following results for the ratios of the times between the
principal points to T1 can be obtained.

tBC/T1 = 0.25 (16)

tBC/T1 = tCE/T1 = tEF/T1 = 0.25 (17)

Based on these results, the ratio of the critical interval of the
double impulse to T1 can be expressed by

t0
c

T1
=

tOA

T1
+

tAB

T1
+

tBC

T1
=

1

2π
arcsin

(

Vy

V

)

+
1

4π
√
−α

ln





1+
√

−α{(V/Vy)
2 − 1}

1−
√

−α{(V/Vy)
2 − 1}



 +
1

4
(18)

(CASE-C)

Consider CASE-C (Figure 3A). As in CASE-B, the condition
(5) is satisfied. The displacement and velocity after yielding
(Point A) can be expressed by Equations (10), (11) as in CASE-B.
Since the displacement at the collapse (Point D) is−dy{1−(1/α)}
and u(tAD) = −dy{1 − (1/α)} for time t from Point A, the ratio
of the time between Point A and Point D to T1 can be obtained as

tAD/T1 =
1

4π
√
−α

ln





1+
√

−α{(V/Vy)
2 − 1}

−1+
√

−α{(V/Vy)
2 − 1}



 (19)

Figure 3B shows the classification based on the input level of
the double impulse and the time between origin O and principal
points for the case α =-0.4. In this case of α =-0.4, CASE-A, B,
C exist. The normalized time tOA between two principal points
(O and A) is indicated by a solid light green line. This line exists
only in CASE-B and C. The normalized time tOD between two
principal points (O and D) is indicated by a dotted black line.
This line exists only in CASE-C. The normalized time tOP or tOQ
between two principal points (O and P or O and Q) is indicated
by a dotted light green line. This line exists only in CASE-A
(elastic response after the first impulse). The normalized times
tOB, tOE between two principal points (O and B, O and E) are
indicated by a dashed light green line and a dashed–dotted light
green line. These lines exist only in CASE-B (elastic response
after the first impulse). The normalized time tOF between two
principal points (O and F) is indicated by a solid black line. This
line exists only in CASE-A and B. Finally, the normalized critical
time interval t0

c between two impulses is indicated by a solid blue
line. This line exists only in CASE-A and B. These boundaries of
arrival times are useful for the classification of regions.

On the other hand, Figure 3C presents the classification of
regions based on the timing of the second impulse for the case
α =-0.4. In this case of α =-0.4, CASE-I, II, III, IV exist. CASE-
I exists in CASE-A, B, C and CASE-II exists in CASE-B and C.
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Furthermore, CASE-III exists in CASE-B and CASE-IV exists in
CASE-C. Once such classification of regions based on the timing
of the second impulse is conducted, the judgment of collapse
or non-collapse is made efficiently by introducing the energy
balance law (Kojima and Takewaki, 2015a, 2016b).

DETERMINATION OF COLLAPSE LIMIT
INPUT VELOCITY OF DOUBLE IMPULSE
WITH ARBITRARY INTERVAL

Consider here several collapse patterns, Collapse patterns 1′-
4′. This naming comes from the similarity to the previous
formulation for the non-linear resonant case (Kojima and
Takewaki, 2016b). Collapse pattern 4′ represents a new type.

Collapse Pattern 1′

The first collapse pattern is the case where the structure
remains elastic after the first impulse and attains the collapse
limit after the second impulse with arbitrary timing as shown
in Figure 4A.

Let O and A denote the point of the first impulse (origin of the
restoring force characteristic) and the point of initial yielding in
the negative direction. The interval of two impulses is denoted by
t0, and the passing time between Points O and A is indicated by
tOA. Since the structure does not yield after the first impulse, the
following two cases exist.

CASE-I =
{

0 ≤ V/Vy ≤ 1 (CASE-A)

1.0 < V/Vy (CASE-B, C) and 0 < t0 ≤ tOA

(20)

Consider the respective cases shown in Figure 3.
[0 ≤ V/Vy ≤ 1 (CASE-A)]

Figure 4A shows the collapse pattern 1′ in CASE-A. In this
figure, the timing of the second impulse is also indicated. In
CASE-A (0 ≤ V/Vy ≤ 1), the structure does not collapse for the
input 0 < V/Vy ≤ 0.5. Therefore, the condition 0.5 < V/Vy ≤ 1
is necessary to satisfy the collapse condition.

The displacement and velocity of the mass just before the
second impulse can be expressed by

u∗ = −(V/ω1) sin(ω1t0) = −(V/Vy)dy sin{2π(t0/T1)} (21)

v∗ = −V cos(ω1t0) = −V cos{2π(t0/T1)} (22)

When the structure just attains a zero restoring force after the
second impulse, the plastic deformation up2 after the second
impulse can be obtained as

up2 = −(1/α)dy (23)

The energy balance law between the state just after the
second impulse and the collapse Point H in Figure 4A can be
expressed by

m(v∗ + V)2/2+ ku∗2/2 = (fydy/2)+ fyup2 + (αkup2
2/2) (24)

FIGURE 4 | Collapse pattern 1′ (CASE-A): (A) Restoring-force characteristic.

(B) Second impulse timing t0/T1-input velocity relation.

Substitution of Equations (21), (22), and (23) into Equation (24)
leads to the collapse limit input velocity for CASE-A in collapse
pattern 1′.

V/Vy =

√

1− (1/α)

2− 2 cos (2π t0/T1)
(25)

Since 0.5 < V/Vy ≤ 1 is necessary, the following condition for α

and t0 must be satisfied.

1/α ≥ 2 cos(2π t0/T1)− 1 (26)

Figure 4B shows the collapse limit input velocity for α =−0.4 for

CASE-A in collapse pattern 1
′
. It can be observed that the critical

case for t0/T1 = 0.5 (Kojima and Takewaki, 2016b) gives the
minimum collapse limit input velocity. In Figure 4B, the timing
of the second impulse is also indicated.

Frontiers in Built Environment | www.frontiersin.org 7 June 2020 | Volume 6 | Article 84

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Homma et al. Dynamic Collapse of Inelastic Structure

[1.0 < V/Vy (CASE-B, C) and 0 < t0 ≤ tOA]

After some manipulation, it was found that α ≤ −1 is
required in this case to satisfy the collapse condition in collapse
pattern 1′. Since a usual case corresponds to the model with
α > −1, the detail of analysis is not shown here.

Collapse Pattern 2′

The second collapse pattern is the case where the structure
exhibits plastic deformation after the first impulse and attains the
collapse limit after the second impulse (see Figure 5A). Since the
structure exhibits plastic deformation after the first impulse in
this case, V/Vy > 1 must be satisfied.

Because the second impulse acts after the structure goes into a
plastic region under the first impulse, the case is divided into the
following two cases, CASE-II and CASE-III.







CASE-II=

{

1 < V/Vy <
√

1− (1/α) (CASE-B) and tOA < t0 ≤ tOB
√

1− (1/α) ≤ V/Vy (CASE-C) and tOA < t0 ≤ tOD
CASE-III= 1 < V/Vy <

√

1− (1/α) (CASE-B) and tOB ≤ t0

(27)

[1 < V/Vy <
√

1 − (1/α) (CASE-B) and (CASE-II)]

Since the second impulse acts before the attainment of the
maximum displacement (Point B) after the yielding under the
first impulse, the interval of two impulses has to satisfy

{arcsin (Vy/V)}/(2π) ≤ t0/T ≤ {arcsin(Vy/V)}/(2π)

+
1

4π
√
−α

ln





1+
√

−α{(V/Vy)
2 − 1}

1−
√

−α{(V/Vy)
2 − 1}



 (28)

The displacement and velocity at time t∗ just before the action of
the second impulse can be obtained from Equations (10), (11).

u∗ = uAB(t
∗ − tOA)

= − (1/α)dy cosh(
√
−αω1

(

t∗ − tOA
)

)

− dy

√

{(V/Vy)
2 − 1}/(−α) sinh

(√
−αω1

(

t∗ − tOA
))

+ {(1/α)− 1}dy (29)

v∗ = u̇AB(t
∗ − tOA)

=
√

(−1/α)− {(V/Vy)
2 − 1}Vy sinh

[√
−αω1

(

t∗ − tOA
)

− arctanh

√

−α{(V/Vy)
2 − 1}

]

(30)

tOA in Equations (29), (30) can be obtained from Equation
(4). The plastic deformation after the first impulse can be
expressed by

up1 = −(u∗ + dy) (31)

When the maximum displacement after the second impulse just
attains a zero restoring force, the plastic deformation after the
second impulse can be expressed by

up2 = up1 − (1/α)dy (32)

FIGURE 5 | Collapse pattern 2′ (CASE-B), (A) Restoring-force characteristic.

(B) The collapse limit input velocity for α =-0.4.

The energy balance law between the point just after the second
impulse and the point H where the maximum displacement after
the second impulse just attains a zero restoring force can be
expressed by

m(v∗ + V)2/2+ {k(dy + αup1)
2/2} = {k(dy − αup1)

2/2}
+(fy − αkup1)up2 + (αkup2

2/2) (33)

Substitution of Equations (4), (29)–(32) into Equation (33)
provides the collapse input velocity level V/Vy for collapse
pattern 2′.

After some manipulation, it was found that α ≤ −1 is
required in this case to satisfy the collapse condition in collapse
pattern 2′. Since a usual case corresponds to the model with
α > −1, the detail of analysis is not shown here.
[
√

1 − (1/α) ≤ V/Vy (CASE-C) and (CASE-II)]

Since the second impulse acts before the attainment of the
collapse point D with a zero restoring force after the yielding
under the first impulse, the following condition must be satisfied
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from Equations (4), (19).

{arcsin(Vy/V)}/(2π) ≤ t0/T ≤ {arcsin(Vy/V)}/(2π)

+
1

4π
√
−α

ln





1+
√

−α{(V/Vy)
2 − 1}

−1+
√

−α{(V/Vy)
2 − 1}



 (34)

After some manipulation, it was found that α ≤ −1 is required
in this case to satisfy the collapse condition in collapse pattern 2′.
Since a usual case corresponds to the model with α > −1, the
detail of analysis is not shown here.
[1.0 ≤ V/Vy <

√

1 − (1/α) (CASE-B) and (CASE-III)]

Figure 5A shows the collapse pattern 2′ in CASE-B. In this
figure, the timing of the second impulse is also indicated. In this
case, the structure collapses under the second impulse after it goes
into a plastic region under the first impulse. Since the second
impulse acts after the structure goes into a plastic region and
attains the maximum deformation (Point B), Equations (4), (12)
require to satisfy the condition

{arcsin(Vy/V)}/(2π)

+
1

4π
√
−α

ln





1+
√

−α{(V/Vy)
2 − 1}

1−
√

−α{(V/Vy)
2 − 1}



 ≤ t0/T (35)

In this case, the displacement and velocity of the mass just before
the action of the second impulse are described from Equations
(14) and (15) as

u∗ = u(t0 − (tOA + tAB))

= −(dy + αup1) cos
[

ω1

{

t0 − (tOA + tAB)
}]

− (1− α)up1

(36)

v∗ = u̇(t0 − (tOA + tAB))

= {1+ α(up1/dy)}Vysin
[

ω1

{

t0 − (tOA + tAB)
}]

(37)

tOA and tAB in Equations (36), (37) can be obtained from
Equations (4), (12). The plastic deformation up1 after the first
impulse can be derived by using the energy balance law between
the point just after the first impulse and the point of the
maximum deformation (Point B). The plastic deformation up2
after the second impulse can be obtained as Equation (32).

The energy balance law between the point just after the second
impulse and the point of the maximum deformation umax 2 =
dy − up1 + up2 after the second impulse (Point H) can be
expressed as

m(v∗ + V)2/2 + k{u∗ − (α − 1) up1}2/2 = {k(dy − αup1)
2/2}

+(fy − αkup1)up2 + (αkup2
2/2) (38)

Since substitution of Equations (4), (6), (12), (32), (36), (37)
into Equation (38) provides the transcendental equation, it is
difficult to derive a closed-form expression for the input velocity
corresponding to the collapse. To determine the input velocity
corresponding to the collapse, this transcendental equation can
be computed for given α and t0.

Figure 5B shows the collapse limit input velocity for α =−0.4
for CASE-B in collapse pattern 2′.

FIGURE 6 | Collapse pattern 3′ (CASE-B and CASE-II). (A) Restoring-force

characteristic. (B) Second impulse timing t0/T1-input velocity relation.

Collapse Pattern 3′

The third collapse pattern is the case where the structure exhibits
plastic deformation after the first impulse and attains the collapse
limit with a closed loop after the second impulse (Kojima and
Takewaki, 2016b).

Since the structure exhibits plastic deformation after the first
impulse in this case, V/Vy > 1 must be satisfied. Because the
second impulse acts after the structure goes into a plastic region
under the first impulse, the case is divided into two cases, CASE-
II and CASE-III, as shown in Equation (27). According to the
classification shown in Equation (27), the collapse limit velocity
corresponding to the collapse pattern 3′ is derived.
[1 < V/Vy <

√

1 − (1/α) (CASE-B) and (CASE-II)]

Figure 6A shows the collapse pattern 3′ in CASE-B andCASE-
II. In this figure, the timing of the second impulse is also
indicated. In this case, the structure exhibits a closed loop and
collapses under the second impulse after it goes into a plastic
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FIGURE 7 | Collapse pattern 3′ (CASE-B and CASE-III). (A) Restoring-force

characteristic. (B) Second impulse timing t0/T1-input velocity relation.

region under the first impulse. The second impulse acts before the
structure goes into the unloading path naturally and experiences
plastic deformation in the positive direction and then in the
negative direction.

Since the second impulse acts before the structure goes into
the unloading path naturally at Point B, the impulse interval t0
must satisfy Equation (28).

In this case, the displacement and velocity of the mass just
before the action of the second impulse are described from
Equations (29) and (30). tOA in Equations (29), (30) can be
obtained from Equation (4). As shown in Figure 6A, the plastic
deformation up1 after the first impulse can be derived as in
Equation (31).

The energy balance law between the point just after the second
impulse and the point J in Figure 6A can be expressed by

m(v∗ + V)2/2+ k(u∗ + αup1)
2
/2 = {k(dy − αup1)

2/2}
+(fy − αkup1)up2 + (αkup2

2/2) (39)

The plastic deformation up2 after the second impulse can be
obtained from Equation (39). In this case, the condition 0 <

up2 < −(1/α)dy must be satisfied. By solving the quadratic
equation, Equation (39), under the condition 0 < up2 <

−(1/α)dy, up2 can be obtained in closed form.

up2 = −{(dy/α)− up1}

−
√

{(dy/α)− up1}2 + 4up1dy + {(v∗ + V)dy/Vy}2/α (40)

Another energy balance law between Point J and Point
H provides

k(dy − αup1 + αup2)
2/2 = [k{dy − (−αup1 + αup2)}2/2]

−(1/α)[k{dy − (−αup1 + αup2)}2/2]
(41)

The input velocity corresponding to the collapse can be obtained
by solving the quartic equation transformed from Equation (41).

Figure 6B shows the collapse limit input velocity for α =−0.4
for CASE-B in collapse pattern 3′.
[
√

1 − (1/α) ≤ V/Vy (CASE-C) and (CASE-II)]

Since the input velocity level in this case is too large, the
solution to satisfy the collapse condition does not exist in
this case.
[1.0 ≤ V/Vy <

√

1 − (1/α) (CASE-B) and (CASE-III)]

Figure 7A shows the collapse pattern 3
′
in CASE-B andCASE-

III. In this figure, the timing of the second impulse is also
indicated. In this case, the structure exhibits a closed loop (BIJK)
and collapses under the second impulse after it goes into a plastic
region under the first impulse. The second impulse acts after the
structure goes into the unloading path naturally at Point B. Since
the second impulse acts after the structure goes into an unloading
path naturally at Point B, the impulse interval t0 must satisfy
Equation (35).

The displacement and velocity just before the action of the
second impulse can be obtained from Equations (36), (37). tOA
and tAB in Equations (36), (37) can be obtained from Equations
(4), (12). The plastic deformation up1 after the first impulse
can be derived as Equation (6) by using the energy balance law
between the point just after the first impulse and the point of the
maximum deformation (Point B) in Figure 7A.

The energy balance law between the point just after the second
impulse and the point of the maximum deformation umax 2 after
the second impulse (Point J in Figure 7A) can be expressed as

m(v∗ + V)2/2 + k{u∗ − (α − 1) up1}2/2
= {k(dy − αup1)

2/2}
+(fy − αkup1)up2 + (αkup2

2/2) (42)

By solving the quadratic equation, Equation (42), under the
condition 0<up2<−(1/α)dy, up2 can be obtained in closed form.

up2 = −{(dy/α)− up1} (43)

−

√

{(dy/α)− up1}2 − [(dy − αup1)
2

−{(v∗ + V)dy/Vy}2 − {u∗ − (α − 1) up1}2]/α
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FIGURE 8 | Restoring-force characteristic corresponding to collapse pattern 4′, (A) Case-B and CASE-II, (B) Case-C and CASE-II.

The collapse limit level in this pattern can be obtained by solving
the quartic equation derived by substituting Equation (43) into
Equation (41).

Figure 7B shows the collapse limit input velocity for α =−0.4
for CASE-B in collapse pattern 3′.

Collapse Pattern 4′

The fourth collapse pattern is the case where the structure
exhibits plastic deformation after the first impulse and attains
the collapse limit after experiencing unloading (positive
direction) and reloading–reyielding (negative direction) for the
second impulse.

Since the structure exhibits plastic deformation after the first
impulse in this case, V/Vy > 1 must be satisfied. Because
the second impulse acts after the structure goes into a plastic
region under the first impulse, the case is divided into two
cases, CASE-II and CASE-III, as shown in Equation (27).
According to the classification shown in Equation (27), the
collapse limit velocity corresponding to the collapse pattern 4′

is derived.
[1 < V/Vy <

√

1 − (1/α) (CASE-B) and (CASE-II)]

Figure 8A shows the collapse pattern 4′ for CASE-B and
CASE-II. In this figure, the timing of the second impulse is
also indicated. In this case, the second impulse acts before the
structure goes into an unloading path naturally. The structure
does not experience plastic deformation in the positive direction.
Since the second impulse acts before the structure goes into an
unloading path naturally at Point B, the impulse interval t0 must
satisfy Equation (28).

In this case, the displacement and velocity of the mass
just before the action of the second impulse are expressed by
Equations (29) and (30). tOA in Equations (29), (30) can be
obtained from Equation (4). As shown in Figure 8A, the plastic
deformation up1 after the first impulse can be derived as in
Equation (31). Since the structure does not go into a plastic
region just after the second impulse, the following relation
must hold.

m(v∗ + V)2/2+ k{u∗ + αup1}2/2 ≤ {k(dy − αup1)
2/2} (44)

FIGURE 9 | Second impulse timing t0/T1-input velocity relation for CASE-B

and CASE-II, CASE-C, CASE-II in collapse pattern 4′.

The energy balance law between the point just after
the second impulse and Point H in Figure 8A can be
expressed by

m(v∗ + V)2/2 + k{u∗ + αup1}2/2 = {k(dy + αup1)
2/2}

−(1/α){k(dy + αup1)
2/2} (45)

[
√

1 − (1/α) ≤ V/Vy (CASE-C) and (CASE-II)]

Figure 8B shows the collapse pattern 4′ for CASE-C and
CASE-II. In this figure, the timing of the second impulse
is also indicated. In this case, the second impulse acts
before the structure attains the collapse state, Point D. The
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FIGURE 10 | Collapse pattern 4′ (CASE-B and CASE-III). (A) Second impulse

timing t0/T1-input velocity relation. (B) Second impulse timing t0/T1-input

velocity relation.

structure does not experience plastic deformation in the
positive direction.

Since the second impulse acts before the structure attains

the collapse state, Point D, the impulse interval t0 must satisfy

Equation (34).
In this case, the displacement and velocity of the mass

just before the action of the second impulse are described by

Equations (29) and (30). tOA in Equations (29), (30) can be

obtained from Equation (4). As shown in Figure 8B, the plastic

deformation up1 after the first impulse can be derived as in

Equation (31). Since the structure does not go into a plastic region
just after the action of the second impulse, Equation (44) must be

satisfied. The energy balance law between the point just after the

FIGURE 11 | Second impulse timing t0/T1-input velocity relation for collapse

and non-collapse states (α = −0.4).

FIGURE 12 | Correspondence between arbitrary timing and critical timing of second impulse in collapse velocity level (α = −0.4).
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FIGURE 13 | Collapse limit input velocity of double impulse with arbitrary interval for SDOF system with various negative post-yield slopes (α = −0.2, −1/3, −0.8).
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FIGURE 14 | Verification of the proposed collapse limit by time-history response analysis to double impulses with various input velocities and impulse timings. (A)

Collapse and non-collapse plot for models with α = −0.2 and −0.4. (B) Displacement time histories of model with α = −0.4 to five inputs (1), (2), (5), (6), (8) shown in

(A) (blue marks indicate double impulse timings and red mark shows collapse state).

second impulse and the point H in Figure 8A can be expressed as
Equation (45).

Figure 9 shows the collapse limit input velocity for α = −0.4
for Case-B, CASE-II and CASE-C, CASE-II in collapse pattern 4′.
[1 ≤ V/Vy <

√

1 − (1/α) (CASE-B) and (CASE-III)]

Figure 10A shows the collapse pattern 4′ for CASE-B and
CASE-III. In this figure, the timing of the second impulse is also
indicated. In this case, the second impulse acts after the structure
goes into a plastic range and attains the maximum deformation,
Point B. The structure does not experience plastic deformation
in the positive direction. Since the second impulse acts after the
structure attains themaximum deformation, Point B, the impulse
interval t0 must satisfy Equation (35).

When the structure goes into a plastic region after the first
impulse and the second impulse acts after the structure attains the
maximum deformation, Point B, the displacement and velocity
of the mass just before the action of the second impulse are
described by Equations (36) and (37). tOA and tAB in Equations
(36), (37) can be obtained by Equations (4), (12). As shown in
Figure 10A, the plastic deformation up1 after the first impulse can
be derived as in Equation (6) by using the balance law between
the point just after the first impulse and the point B of the
maximum deformation.

Since the structure does not go into a plastic region just
after the action of the second impulse, Equation (46) must
be satisfied.

m(v∗ + V)2/2

+k{u∗ − (α − 1) up1}2/2 ≤ {k(dy − αup1)
2/2} (46)

The energy balance law between the point just after the
second impulse and the point H in Figure 10A can be
expressed as

m(v∗ + V)2/2+ k
{

u∗ − (α − 1)up1
}2

/2

= {k(dy + αup1)
2/2} − (1/α){k(dy + αup1)

2/2} (47)

Since substitution of Equations (4), (6), (12), (32), (36), (37)
into Equation (47) provides the transcendental equation,
it is difficult to derive a closed-form expression for the
input velocity corresponding to the collapse. To determine
the input velocity corresponding to the collapse, this
transcendental equation can be computed for given α

and t0.
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Figure 10B shows the second impulse timing t0/T1-
input velocity relation for Case-B and CASE-III in collapse
pattern 4′.

COLLAPSE LIMIT INPUT VELOCITY OF
DOUBLE IMPULSE WITH ARBITRARY
INTERVAL FOR SDOF SYSTEM WITH
VARIOUS NEGATIVE POST-YIELD SLOPES

Based on the collapse patterns explained above, a limit curve on
the second impulse timing t0/T1-input velocity V/Vy relation
for the collapse and non-collapse states can be proposed. As
an example, Figure 11 shows the second impulse timing t0/T1-
input velocity relation for the collapse and non-collapse states
for α = −0.4. It should be remarked that the present SDOF
model is an undamped model, and the states of t0/T1=0.5
and t0/T1=1.5 provide the same collapse limit. It can be
observed that an isolated region of the collapse state exists
around the level of t0/T1=0.5 (also 1.5) and the level of
V/Vy=1. The most important point to be remarked is that
the critical state (Kojima and Takewaki, 2016b) corresponding
to the non-linear resonance does not necessarily provide
the minimum input velocity level with respect to arbitrary
impulse timing.

Figure 12 presents the correspondence between arbitrary
timing and the critical timing (Kojima and Takewaki, 2016b) of
the second impulse in the collapse velocity level (α = −0.4). It
can be confirmed that the states of t0/T1=0.5 and t0/T1=1.5
certainly correspond to the critical state in the reference
(Kojima and Takewaki, 2016b).

Figure 13 indicates the collapse limit input velocity of the
double impulse with arbitrary interval for the SDOF system
with various negative post-yield slopes (α = −0.2, −1/3,
−0.8). The correspondence between the arbitrary timing and
critical timing (Kojima and Takewaki, 2016b) of the second
impulse in the collapse velocity level is also shown again.
It can be found that, as the parameter α changes, different
phases of the limit curve in the second impulse timing t0/T1-
input velocity relation for collapse and non-collapse states
appear and α = −1/3 gives the boundary of the change of
phases. When α is larger than −1/3, the non-linear resonance
does not provide the minimum input level corresponding
to collapse.

ACCURACY OF COLLAPSE LIMIT INPUT
VELOCITY OF DOUBLE IMPULSE WITH
ARBITRARY INTERVAL FOR SDOF
SYSTEM WITH NEGATIVE POST-YIELD
SLOPE

Figure 14A shows the verification of the proposed collapse limit
by time-history response analysis to double impulses with various
input velocities and impulse timings (α = −0.2, −0.4). Many
combinations of the impulse timing and the input velocity level
in the collapse and non-collapse states were selected in the case

FIGURE 15 | Restoring-force characteristics corresponding to various

combinations of impulse timing and input velocity level (blue marks indicate

double impulse timings and red mark shows collapse state).

of α = −0.2, −0.4. For strict verification, many combinations of
the impulse timing and the input velocity level were chosen near
the boundary of the proposed limit curve. Figure 14B presents
the displacement time histories of the model with α = −0.4
to five inputs (1), (2), (5), (6), (8) shown in Figure 14A. It
can be observed that strict classification into the collapse state
and the non-collapse state has been made with the proposed
limit curve.

Figure 15 presents the 9 restoring-force characteristics
corresponding to various combinations of the impulse timing
and the input velocity level shown in Figure 14 (blue marks
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indicate the double impulse timings and red mark shows the
collapse state). The cases (1), (2), (5), (6), (8) exhibit collapse
behaviors. The response behaviors can be well-understood from
these figures.

CONCLUSIONS

A dynamic collapse criterion for elastic–plastic structures under
double impulse as a substitute of a near-fault ground motion has
been derived. The conclusions may be summarized as follows:

(1) The use of the double impulse enables the efficient use of the
energy approach in the derivation of explicit expressions of
a complicated elastic–plastic response of structures with the
P-delta effect.

(2) In contrast to the previous work (Kojima and Takewaki,
2016b) for the resonant critical case, a general collapse
criterion is provided for the velocity amplitude and the
frequency of the double impulse. It is significant that
no iteration is needed in the derivation of the dynamic
collapse criterion.

(3) Discussions on several patterns of dynamic collapse
behaviors introduced in the previous critical case are useful
for deriving a boundary between the collapse and the
non-collapse in the plane of the input velocity and the
input frequency.

(4) The most important point to be remarked is that the
critical state (Kojima and Takewaki, 2016b) corresponding
to the non-linear resonance does not necessarily provide
the minimum input velocity level with respect to arbitrary
impulse timing.

(5) The validity of the proposed collapse criterion has been
investigated by the numerical response analysis for
structures under double impulses with collapse or non-
collapse parameters. It has been confirmed that the proposed
criterion has a reasonable accuracy.

The present paper dealt with an undamped system. This is
because, if a damped system is treated, the formulation is
too complicated even for the case of critical input (Saotome
et al., 2019). The discussion on the damped system may be the
future work.
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