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1. INTRODUCTION

We study the global existence and asymptotic behavior of solutions
for the nonlincar Schroédinger equation

Lu = N,(u) + Gp(u), (t,z) e RxR", (1.1)
in one or two space dimensions n = 1 and 2, where £ = i0; + %A and
ANl(U) = )\1'!1,3 + )\QEQ'U + }\3"(13,

NZ(U) = /\1U2 + )\QﬂQ,
Gn(u) = dolul"u

with Ay € R and )\; € C, j = 1,2,3. Following our paper [2], we
construct a modified wave operator in L? to equation (1.1) for small
final data ¢ € H%? N H~* with % < § < 2, where the weighted Sobolev
space is defined by

H™ = {u € 8 lullgme = || (iV)™ (2)° ull 2 < o0},
where (z) = /1 + |z|? and the homogeneous Sobolev space is

H™ = {u e & lfullgm = (=A)Zul| 2 < oo}

The nonlinearity is critical between the short range scattering and the
long range one.

There are several results on the scattering theory for equation (1.1)
in one or two space dimensions. In [4] it was shown the existence of




the wave operator for equation (1.1) with G,(u) = 0 by using the
method by Hormander [3], where he studied the life span of solutions
of nonlinear Klein-Gordon cquations and in [6] it was constructed the
modified wave operator for equation (1.1) by combining the methods in
(3] and [5]. More precisely, the following two propositions were obtained
in [6]:

Proposition 1.1. Letn =1, ¢ € H3NH* and ||¢| ;05 + |0l ;-4 be
sufficiently small. Then there exists a unique global solution u of (1.1)
such that u € C(R*; L?),

sup u(t) = )+ supe* ([ ) = y(r) ) < o0

t>1

where £ <b <1, and

up(t) = ——e 3 " logt).
Proposition 1.2. Letn =2, ¢ € HYNH 4, z¢ € H? and ||¢|| o+
ol g—a + lxd||g-2 be sufficiently small. Then there erists a unique

global solution u of equation (1.1) such that u € C(R*; L?),

ot st fulr) = () ) < oo

1 &2~z L~
;)GXP(—W\OW(?)

sup t°||u(t) — u,(t)
t>1

where % <b< 1.

Throughout this article, we denote the norm of a Banach space Z
by || - [[z. Our purpose in this article is to improve the condition on a
final data ¢ € H~*. In order to explain the reason why the previous
proof by [4] and [3] requires such a condition, we give briefly the idea
of paper [6] on the example of the Cauchy problem

Lu=1u? (t,z) e R xR (1.2)
If a solution u of (1.2) behaves like a free solution U(t)¢ as t — oo
iz ~ .
for a given ¢, then. wuy(t,z) = al)—g(i_ffb(%) can be considered as an
(2
approximate solution of (1.2) since

1 w2~z —l—a o
U(t)g = e 6(3) + O " lllzl*¢] ).
By a direct calculation we find that £(u —ug) = u? — size 3 | - [26(n).
with 77 = 2. The last term of the right-hand side of the above equation
is a remainder term which we denote by R. Hence the problem becomes
Lu—ug) =u? —ul+uj+ R (1.3)

We find a solution in the neighborhood of ug. however u$ can not be
considered as a remainder term since ||u3| 1z = t7!{|¢?||;2. In order to
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cancel uo we try to ﬁnd u, such that Lu, — Uo is a romdmder term. We
put u, = t°P(2)e" 5 to get Lu, =t~ velloal el p(2)e “ | R, which

t" t
a(a 5 2(,6(77)2 and a = b = 2 to
cancel u2 in the right-hand side of (1.3) and we note that Ry contains

implies that we should take P(n) =

a term like ¢4t ;}%(}5(17)2 Thus we get
L{u—ug — u) =u’—ul+ R+ R;.

This is the reason why we require a vanishing condition of ¢(n) at the
origin.
Our main result in the present article is the following.

Theorem 1.1. Let ¢ € H*2NH % and ||¢||go +]|¢ /| g-¢ be sufficiently
small, where § < 0 < 2. Then there exists a unique global solution u
of (1.1) such that u € C(R*; L?),

5 oo
sup £2 fu(t) = up(t)l|22 + SuptZ(/ () = up(T) I, dr)** < oo
2 t

t>1

where X, = L™, Xy = L*,
1 7.3‘2 -~
(t) = e B3 exp (~ 3f3(5)
Furthermore the modified wave operator

W, ¢ u(0)

" logt).

is well-defined.
Similar result holds for the negative time.

Remark 1.1. If we consider the asymptotic behavior of solutions to
the Cauchy problem for equation (1.1) with initial data u(0, z) = ¢o(z),
z € R*, then we see from Theorem 1.1 that for any initial data ¢
belonging to the range of the modified wave operator W, there exists
a unique global solution v € C(R¥; L?) of the Cauchy problem for
equation (1.1) which has a modified free profile u,. More precisely, u
satisfies the asymptotic formula of Theorem 1.1. However it is not clear
how to describe the initial data beloging to the range of the operator
W,.

Remark 1.2. If ¢ € H*2 and $(0) = 0, then ¢ € H** N H ™ for
0 <a<1l+% withn =1,2. This follows from the fact that H =
L? > H%? and the following inequalities:

(@) -1l < O] -1V | 2 for @ > 5%, provided that £(0) =

0,

(b) H] et fllpe < Cl|fllgo for 1l < a <1+ % withn=1,2.
Note that this implies that [¢(z)dz = 0 and ¢ € H®?, then ¢ €
H®*nH™.
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Remark 1.3. In the previous paper (1], we considered the Cauchy
problem for the cubic nonlinear Schrodinger equation

1
iug + S las = Nu), zeR, t>1

u(l,z) = ui(z), zeR,

where N(u) = Mu® + Wu?u + Mub. A € Co j = 1,2,3. It was
shown that there exists a global small solution u € C([1,00), L*),
if the initial data u, belong to some analytic function space and are
sufficiently small. For the coefficients A; it was assumed that there
exists 6y > 0 such that

Mo oy 9 A3 gir
Re (F=e?" — idge 27 4 Z=e™1) > C > 0,
(e e 5 2
Im ( Lo _ jhe 2 4 —A3 6_4")7‘ > Cr?,

V3 V3

for all |r| < 6. and also it was assumed that the initial data u,(z) are
such that

| arg 6“%*‘2@(5)1 < 6y, éfifl @ (€)] > Ce,

where ¢ is a small positive constant depending on the size of the initial
data in a suitable norm. Moreover it was shown that there exist unique
final states W, ,r, € L* and 0 < vy < 1/20 such that the asymptotic
statement

(it) SW,(2)e'® £

VRO POt o) 1)

o

u(t,z) =

t+ 2

is valid for t — oo uniformly with respect to x € R, where v > 0 and
x(€) is given by
A3

x(§) = Re (-:-\/——15 exp(2ir, (€)) — 1Az exp(—2ir(§)) + 75 exp(—4i7“+(€)))~

This asymptotic formula shows that, in the short range region |z| < v/%.
the solution has an additional logarithmic time decay comparing with
the corresponding linear case. Thus we can see that the vanishing
condition at the origin on the Fourier transform of the final data seems
to be essential for our result in the present article.

For the convenience of the reader we now state the strategy of the
proof. We consider the linearized version of equation (1.1)

Lu = N,(v) + Gp(v), (t,z) e RxR".
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We take

wlt, ) = oz B () exp (— lB(5) 1 logt)

as the first approximation for solutions to (1.1). By a direct calculation
we get

Lug = Gn(ug) + Ri(t),
where R;(t) is a remainder term. Hence
L{u = ug) = Np(v) + Gn(v) = Gn(uo) + Fa.

We define the second approximation u; for solutions of (1.1) as

wy (t) = —i‘/l U(t — 7)Np(up) dr

o

which implies that
Luy = Nyp(uo)

and
u(t) — uo(t) = z/ U(t — 7)(Np(v) — No(up) + Gr(v) — Guluo)) dr

z/tUt—T)Rl T)dr + ui(t).

o0

We define the function space
X = {f € C(IT, 00); L); || f]l x < oo}
[fllx = sup t*|f(t) — wo(t)llz2 + sup t”(/ () = uo()], d)"%,

te(T,oc) te[T,00) t
where

X, = L=, X, = L4, b>%.

In order to get the result we need to prove the following estimate for

ui(t),
H’U/l(t)H + (loo Hul(T)H%(n d7)1/4 < C(m . l_g(;“ + “(ﬁHHo,z)ldi—%th/Q,

forn/2 < 0 < 2. which is the main estimate of the present article. Note
that the choice of u; differs from that used in the previous papers.
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2. PRELIMINARIES

. We have forw # 1. f,ge L* N L* and h € C?,
t o .
/ h(ir)U(t — T)A(e%f—e'bg(?)loyf(ﬁ)) dr

o T

21w

Lemma 2.1

h(zt)e e P ( )logtf(ij‘)
l—w / ZFzTe%e ”"grk( )

(Fk
_ ( 1')5 ig(£)logst. (Y dg
—wU(t 7'/ ZF is)e = e k(s)dz’
(F.k)
iwa? 1 m, T
— WUt — Fis)e' 5 eioGoes _g (g 1y 2 --)d R(t
wU(t T/(;k) is)e 2= €' Sk(g 2)(8)db T+ R(t),

where the summation is taken over (F, k) =

(W, f), (h71, fg—in/2)),
R(t) = — (1;ww / t_T/ooﬁZ (is)Ro x(s) ds dr

——u_J / h(iT)U(t — T)Ro ¢ (T) dr,

and

I

1:“)12 'LuJ.T L
RO,k:(t) = g 2t k(—::I—)ALLg i) lost + 2?,-—- Z(?]g

( b1} ( ? l()gl
+ i(Azc)(f)e 5
12 Mt

log t

ezg(%) logt'

Lemma 2.1 is proved in Lemma 2.1 in [2]

Denote
t T
Ry(t) = / Ut — 1) / F(is)Ro x(s) ds dr

R t):/ U(t — 7)h(iT)Ro () d7

where

Rox(t) = e k( )Ae“”(%) o8t 1 9= v Zd]g 6 k( )c%gci”(%)k’gt log t

S(AK)(5)e 5 enlE) o

Lemma 2.2. Let

F(it)| < Ol > 5, [n(it)] < Cli| 5.
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Then
|R;(t

loe + ([ 1RO, 4
t
< CE2(| Akl + |k - Vallus logt + [kAg] s logt + [K¥g - Vgl (logt)?).
where X, = L™, X, = L*.
Lemma 2.2 is shown in Lemma 2.3 in [2].

Lemma 2.3. Assume that |G(it)| + [t]|G'(it)] < Clt|™97 %, then
t . I
| . = ig(E)logsy.
!)‘/OOG(ZT)C 2 el s k(T)dTHL’P

(570302 =0k

+Ct R 3Vl + ]| [0k Vg s logt),
for0<6,6<2 1<p< oo,

C't,,.éw(ﬁ'lw-'£ 1~~i H 1*5]6”L00

FO 3R ([ 3VE | o + || - [k V g logt),
f0r0<50<2f— I<p<oo.

Proof. Using the identity

1 . iuz2 1wx2

dt’]‘e 2r — @ 27

iwz?
1 2T

we have

/L (ZT)e T etyl7) losT k( )d

\ t .E l L(A}J—Q
- / G(ir)e! (7 BT (= )( —0,Te 7" )dT
oe T o7

. o 1,«.):22
= G(it)k(f)ezg(z)logt(l___l,_zte pr; )

WT
t 2t

‘ iwz? . Zz 1 ig{£)logT
— | Te T O; (G(zr)k(—)l — Set9(3)los )dT.
T _ dwz?

o 27

We also obtain

HG(it)k(_atz)eig(%) logt (——1.——'tei“')zf2 )

Lo 7
g4l |_€_’5 z1=8 x\\p, \V/P
< Ct 279" 2(/( { ‘ k(—))dﬂf‘)
1+ |2 ¢

C
Ct 350D B, 0<d<2,1<p <o
RO R e, 0<8<2-21<p<oo



and in the same way we get

|t 0. (Glank(3) —ggreie(2) =)

] — dw?
'Ct“%‘q‘%“’g”‘!-\_é k|
' %
+Ct 5D P k| |1 kg logt),
for0<6(5<2 1<p<oo,
Cr 80 1k
ot “Vk‘! |7 kg logD)
for 0 < 6,8 < , 1 <p<oo.

e

Hence we have the result of the lemma. O

Finally we state the Strichartz estimate for f:u (t — 7)f(r)dT ob-
tained by Yajima [6].

Lemma 2. 4 For anu pairs (g,r) and (¢',r’") such that 0 < 2 =2-2 <
Land0 < = 2 < 1. for any (possibly unbounded) Lntuuul I and

for any s E I the Strzchartz estimate

fw/ (t — 1) () dr]%, dt)s <C/||ft)| 7 dt)7,

is true with a constant C independent of I and s, where X -+ % =1 and
1,1

- + = = 1

q q

3. ProOOF oF THEOREM 1.1

In this section, following [2], we prove Theorcm 1.1.
We consider the linearized version of equation (1.1)
Lu = N,(v) + Gp(v), (t,z) e RxR"™ (3.1)
We take

1 1,12 -~

up(t, z) = (zt) 3 gb( )exp ( - z)\olgt)( )l‘ logt>

as the first approximation for solutions of (3.1). By a direct calculation
we get

£u0 = Gn(uo) + Rl,

where
Ru(t) = 7ege® 8 )QAexp<—mo1¢< 7\ log )
2.1 1 N 2
;Aot_‘z(zt) V@( )CXP(_Z)\OM)(%)I" log t)
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< 2R VB(7)3(F) 3 logt
1 % —2A 7 £ . I g %

* §(it)%e t A¢(t) exp( l)\olcb(t)! logt).

L(u — up) = Noy(v) + Go(v) — Go(uo) + R

Hence
By Lemma 2.4 we obtain
| [ v =R i
i
(3.2)

+ (/toc H/too Ut - 7)Ru(7) drlfk, dt)”
sc[ﬁmmwmwsw”muﬂw;%

since by the Holder inequality we have
Loz -2 SE IAD
7= 1 VOllza + Ct*(log 1) |4l Lo [[AG]] 12

| R () ]|z
< Ct72|| Al + Ct 2(logt)?|| 6

< Ct(log 1)?|6]| ok

We now define u,; as

i / Ut = 1) Na () dr

w (t) =
which implics Lug = N, (uo) and
u(t) — uo(t)
- /o; Ut~ 7)(Na(0) ~ Nalu) + Galv) = Guluo)) dr (55
i [ U = B dr +w(t).
Note that N
N, () + % /O: Ut — 7)AN, (uo) dr (3.4)

z@tul(z‘,) =

Now, we define the function space
X = {f € C(IT,00); L?); ||fllx < oo}, where
0 1
([ 15wy, &) "

2+ sup t°
te([T,00) t

1fllx = sup ][ f(t) — uo(t)
te(T'00)

and

. 4 n
X1:L, X2:L7 b>z
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Let X, be a closed ball in X with a radius p and a center uy. Let
v € X,. From (3.4) and Lemma 2.1 it follows that

g i 21w dwe? ooay o
i0yur (t) = Nn(uo) + 3 Z (—1 vwh(zt)e 2 et9(P)] g‘f( )

(w‘h,g,f)

(Fk
— iwU(t —7) / 3 Fllis)e™® "ol 1°gsk( )d
(FK)
wz? 1 m,,T
_ - 2)logs o
—iwU(t -7 / (:;IC)F is) e Sk(g 2)( )da)dT+R(f)

where the summation with respect to (w, h, g, f) is taken over

(b9, 1) = (3,672 xald(5) 2 MB(5)°),
(= 1 (=022 X5, m(i)@(%)),
=5, (=it 2, 3D (D) )

when n =1, and

—2

@k 9,£) = (2,657,208 Md(5)7), (=2 (=07 Xl A6 (3) ).

when n = 2, and the summation with respect to (F,k) is taken over
(F,k) = (KW, f),(ht %, f(g —in/2)). We have

Grn(v) — Gn(uo)
= )\0|U|%U — )\0"&0'%’&0

= Xol|v]* = Juol®)(v = uo) + Ao([v]% — luo| " Juo + Aolug]™ (v — up) .

Therefore, by the Strichartz estimate we get
| [ 0= D(Cutw) = Gatua) s
([0 [ v Ga) = Gutun el )
<o [ e —umizsar) ([ 10 - winig,ar) " 69

e / " o) — o)l e |[wolr) | -

<Cp et~ 4 Ct0p||¢| 11,
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for n = 2. Also
I [ Ut~ 7)@uo) - Gutuo) i
(1 vt 60 - Gatuop arl, o)
<o [ otr) — w1} dT)m
+0 [ 1o(r) = ol hua(r) s o
<o [ 1) = vl o) = wo(r) )

3/4

(3.6)
+C t lo(7) = uo(7)|| 2o (T)||3oe dr
<0 [ 1otr) = walr) i () — o))
e tm o) — wo(r) |2 1o ()| dr

1/2 oo
<cp( [ ptrtar) +—c7p|¢hL1J/ vl
t

< Ot 5 + CL0p|¢l,

1/2

for n = 1, where we have used the facts that b > n/4 and
1Gn(0) = Ginluo)| < C(lv = ugl™ + o] ™)v = 1ol.

Similarly, we see that the above estimate holds valid with G, replaced
by N,. Thus by (3.2), (3.3), (3.5) and (3.6)

o0 1/4
Jutt) = oo + ([ utr) = na(rl, o)
<Cp RO L ortplol, + Ot log ) ollger (377

@l + ([ i, ar)

To get the result we now estimate ui(t). By Lemma 2.1, Lemma 2.2
and Lemma 2.3 we get

@l + ([ Tlar)

<O [Plze + gllmon) #e°%,

(3.8)
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for 2 < 6 < 2, where we have used the fact that

H/OO/OOU(S—T)f(T)desHXn

<c / T Uls — 1) () drlx, ds

SC(/t "‘ds) / 4&11/ U(s — 1) f(r) drk. )/4
<ot [T [T vt - nreari, ds)

with a > 1, from which it follows that

/ Ii/ / U(s —7)f(r) drds||%, dt)
so([Tems ([T [ v -nmre iy as) ar)
gc( /; t—4a+3< [ 17 F () |2 dT) dt)m

< Ct™* =P gup tﬁf W7 f ()| L2 dT
i

t

< Ct P sup tﬁ/ 7% f()]| L2 dr.
t

t

By virtue of (3.7) and (3.8), taking 7 < 6<2,b= g, we get

) = o)+ [ u(r) = wo(r) g )

< C(Il- 1750 + ]| o) ot

Since the norm of the final state ||@|| go2 + ||@|| ;-5 is sufficiently small,
cstimate (3.9) implies that there exists a sufficiently small radius p > 0
such that the mapping Mv = u. defined by equation (3.1), transforms
the set X, into itself. In the same way as in the proof of estimatc (3.9)
we find that M is a contraction mapping in X,. This completes the
proof of the theorem.

1/4
(3.9)
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