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L! Estimates for Dissipative Wave Equations

HWERY - BOERYE /DELE (Kosuke Ono)
Department of Mathematical and Natural Sciences
The University of Tokushima

1 Introduction and Results

We consider the L' estimates of the solution u = u(z,t) to the Cauchy problem for
the dissipative wave cquation :

{(D+6t)u=0 in R x (0, 00) (1.1)

(u, Bu)|t=0 = (uo, u1)

where (0+0; = 07 +0;— A is the dissipative wave operator with Laplacian A, = Zj\;l (95].
This equation (1.1) often called the telegraph equation or the damped wave equation.

Matsumura [12] has shown the L? estimates and the L™ estimates of the solution u(t)
of (1.1) by using the Fourier transform method. e.g.,

lu(®)lzz < CQL+ 1) (lluollza + lluallzr-+ + lJuollze + Jurllse), 20,

lu(®) [z < CL+ )2 (lluoll gvravss + all v + Juolizs + unline), £ 20

(cf. Kawashima-Nakao-Ono [8] and Hayashi-Kaikina-Naumkin [4]). Then, in this paper
we pay attention to the L! estimates of the solution u(t) of (1.1).

By applying the Fourier transformation in the space variable together with the L™
decay estimates of the solution u(t) as in [12], Milani and Han [13] derived the following
L! type estimates of the solution u(t) for large time ¢ :

108 D2u(t)]yr < Cdut™* W72 for > 1,

where d, = ||ug|| gr+isi+nsze1 + ||ur || grrisiensz + N1+ D)%ouellpr + 11+ [)*tus |l with
integers so > (N +k -+ |8+ 1)(N+1)—1and s; > (N +k-+|F])(N+1)—1. The decay
rates for large time ¢ seems to be sharp (cf. Ponce [25] for heat cquation). However, their
estimates should be relaxed the regularity conditions on the initial data and also should
be estimated near the origin in time .

On the other hand, concerning the L' estimates of the solution u(t) for ¢ > 0 in lower
dimensions, there are a few results. Those were given by Marcati and Nishihara [11] for
N = 1, Nishihara [17] for N = 3, and Ono [19], [20] for N < 3 (also see Ono [21] for
exterior domains), e.g.,

Cllluollzs + ualle) if N =1
)l < {C(nuonw +lugllp) i N=2,3
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for ¢ > 0, by using the cxact solution S(t)g of the dissipative wave equation (1.1) with
(uo,u1) = (0,9) : For N =

t
S(t)g=e"* [ Iolan/t? — p?)Gi(-, p) dp
0

with Gy(z, p) = 3(g(z + p) + g(z = p)). For N =2,
¢
S(t)g = e—t/Z/ cosh{ar/t? — pz)wﬁp—EGz(wP) dp
0 =p
with Ga(z,p) = &= [ 9(x + pw) dw and §' = {w € R*| |w| = 1}. For N =3,

1 t —
S(t)g = 54/2; O 10(am2)P2G3('; p)dp

with Gs(z,p) = & [[¢ 9(z + pw)dw and S* = {w € R*||w| = 1}. Here, (") is the
modified Bessel function of order 0. So, in higher dimensional cases, we will give similar
results for the L! estimates of the solution u(t) of (1.1).

Our main results are as follows.

Theorem 1.1 Let N =2n be even or N = 2n+ 1 be odd for n = 1,2,--- . Suppose that
the initial data
ug € W™ and u, € WhHL

Then, the solution u(t) satisfies

HU(t) {L‘ < C(HU‘OHW"J + H’Uq“w’n-—l.l) y t > 0.

Here, we set
Wt ={pe L'| D¢ e L' |3 < ¢}.

Theorem 1.1 is proved by estimating directly the representation formulas of the solu-
tion u(t) as in Section 2 and we will give the outline of the proof of Theorem 1.1 in the
following section (see Ono [23] and {24] for details).

As a corollary of Theorem 1.1 together with the L? estimates of the solution u(t) as
in [12], we immediately have the following.

Corollary 1.2 For1 <p< 2,
u(t) ]| r < Cdo (1 +)~NRA=/2 ¢ >0
with don = |uollze + {lurllm-1 + luollwna + luslwn-r1.
By induction, we have

Theorem 1.3 Let m > 1. Suppose that the initial data (ug,uy) belong to (H™1 N
W) x (H™ N W™, Then, the solution u(t) satisfies that for 0 < k +|8] < m and
k #m,

16F DEu(t)l|zr < Clmgr (1 +8)7F92 £ >0
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With A1, = (o]l rm+r + Jutllae + [Juollwna + [luallwn-1a.
Moreover, for 1 <p <2 and for 0 <k + || <m and k # m,

10E DEu(t) | r < Cldys (1 + 1) ETIAVZZN/0-1D) g > g
We note that Marcati and Nishihara [11] for N = 1 and Nishihara [17] for N = 3

derived the LP-L9 type estimates with 1 < p < ¢ < oo of the solution u(t) (cf. Hosono-
Ogawa [5] and Narazaki [15] for LP-L? type estimates with some p # 1).

2 Representation formulas

By Courant and Hilbert’s book (1], we know the representation formula of the solution
w(t) to the Cauchy problem for the following wave equation (cf. [26], [27]) :

Ow = a*w  with (w,0w)|—o = (0, 9). (2.1)
Then, we observe the relation
S(t)g = e w(t), (2.2)
where S(t)g is the solution of
(04 2a0)v =0 with (v,0v)|i=0 = (0,9).
Therefore, by the Duhamel principle (e.g. [2]), the solution u(t) of (1.1) is expressed as
u(t) = 0, S(t)ug + S(t)(uo +uy) with a=1/2. (2.3)
Thus, in order to get the L' estimates of the solution u(t) of (1.1), we need to estimate
the L' estimates of the function S({)g and its derivatives 9,5(t)g.
2.1  Even dimension N = 2n

We first consider the even dimensional cases (i.e. N = 2n).
Define a new function ®(y) by

Vo vyl
P(y) = (e¥ + )y,

then we obtain from (2.2) and the representation formula of w(t) as in {1] that
S(t)g = e (P (e R(W)),

where

R) = [ 0av/B=) Gl dy
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and

G =2 (—2—1;) [ e+ pia

with $! = {w € R™ | |jw| = 1}.
By an elementary calculation, we observe that

S(t)g = e~ (ct™™ 2, R(t) + ct TV POR(L) + -+ ct TG TER(E) + O TIR(E)) -
(2.4)

Dividing the integration in time ¢ in R(t) into two parts, we have

R(t) = (/0

and we denote (2.4) with Ry(t) (resp. R»(t)) instead of R(t) by Si(t)g (resp. Sa(t)g),
that is,

/4

' /t3/4) O(a/1? — p?) 1 G(p) dp = Ru(t) + Ra(t)

S(t)g = Si(t)g + Sa(t)g .-
For t > 2, we see that

k £3/4

OFRi(t) =D O fi(t) + Oy @(ar/t2 = p?) p™ ' G(p) dp

=1 0

with f;(t) = &' (<I>(a 22— ) PP G(p) pmiere - DY),
Inductively, we define ®;(y) by

, 1
Do(y) =e¥—e™? and Pi(y) = k—l(y)§~

Then, we observe that

ey c c c ek c c c
@ky:~(1+—+——,—+~-+——>+—(:t1+—+~+-'-+ )
) yk y oyl yk-t y* y o y? yr!

By an elementary calculation together with the fact e %™ #-p? < g/ for
0 < p < t, we obtain

Lemma 2.1 (i) Fort>2 and 0 < p < t3/4,

e "y (a\/t? - p?) < CLkeer*/0)

(i) For0<p<t,

e Dy (ar/12 — p?) < Ce™ ¥/

1
-atgp 2 _ 2) < t—1/2 —ap?/(2t) ___* .
e (a2 —pt) < C e =
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(iil) Fort>2 and ** < p < t,

e ®y(ar/1? — p?) < Ce™WVH?
1
—at 2 _ 2 < Ot/ —av/t/2 '
e *®i(a\/t2—p?) < C e N
Since ®1(y) = ®(y) and 8,(a/t? — p?) = a*t/{a\/t* — p?), it follows that
(/12 — p?) =(a%t)* Byp1 (a/12 — p2) + ct¥ 72Dy (ar/12 — p?)
+ -+ Ct2@g+2(a\/ 2 — [)2) + C®g+1 (CL\/ 2 ~ pg)

and

O LD (ar/12 — p?) =(aPt)*  Dypi0(a/t2 — p2) + et 1 Dppy (/12 — p?)
+ e+ Ct3®p+3(a\/ 12 — ,02) -+ th)g+2(a\/ 2 — p2) .

Using the above identities and lemma, we have that
1S1(O)gllzr < Ce™*|igllwn—21 + Cligler, t>2.
Moreover, we observe the following estimates :
Sa()glls < Cemavi/? aa, t>2
[S2(t)glier < Ce lgllwn-1a, t2=

and
1S()gllr < Clligllwn-1a, <2,

and hence, we obtain the L' estimate of S(t)g :
|S@)glizs < Ce™ Y lgllwn-ra + Clighz, ¢ 20.
From (2.4), we sec that
0,S(t)g +aS(t)g =e (c tTI 28, R(t) + et R(E) + - -

F et aIR(E) + r““apR(t))

and
n—1 n—2
0,S(t)g = e~ (Z ct™HITRER(E) — @ Z et THEGE R(L)
k=1 k=1

4 gt (B?R(t) _ a@t”_lR(t))) =Ti(t)g + Tx(t)g,

where T;(t)g has R;(t) instead of R(t) for i = 1,2.
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Then, we observe the following cstimates :
ITi(t)gll < Ce™/2|glwn1s + Ct M ighos, ¢ 22

and
ITa(t)gll < Ce " Pjgllwns, t>2

and
10:S(t)gller < Cligllwnar, t<2,

and hence, we obtain the L' estimate of 9,S(¢)g :
18,5 (t)gllr < Ce™® 3 gllwns + CA+ 1) glls, 20
Therefore, by (2.3), we immediately obtain that

lu()]i: < 10:S{t)uollzr + I1S®) (uo + w1l
< e B (fluglwna + utfwn-r1) + C(luoll + [[uall)

for t > 0, which implies Theorem 1.1 in even dimensions.

2.2 0Odd dimension N =2n +1

Next we consider the odd dimensional cases (i.e. N =2n -+ 1).
From (2.2) and the representation formula of w(t) of (2.1) as in [1], we have that

S(t)g - c—att—2n—2 (t3at)n<t2(l—n)R(t)) ’

where .
Rt) = [ Dlov/B=7) "Glo)dp
0
and
Glo) = 3(5)" [ ola-+pw) e
2 271— S'Zn.

with $%* = {w € R?™*!||w| = 1}. Here, I,(y) is the modified Bessel function of order v
and is given by

N - 1 g 2m+v
L.ty = T;]m!P(TrH— 1 +1/)(2)

with the Gamma function I'(-) and satisfies the following propertics (see [16]) :

La(y) = L(y) - -;-fu(y)’

L(y) = Jfﬂ(wow—l)) as g — 00,
L(y)= ﬁ(%)y +0(@*"™®) as y—0.



By an elementary calculation, we have
S(t)g = e ™ (ct T GR{Q) + ct TPHR(E) + -+ ct T OPTIR(L) + OFR(L))

Differentiating R(¢) in time ¢, we have that

k _ t
= o0+ [ O lav/E= ) 7 Glo) do
=1 0

with f;(t) = (8] lo(a/& = p?))| _, - *"G(¢) for 1 < j < k.
Inductively, we define Ax(y) by

Aoly) = ofy) and Auly) = M) 2.5)

Then, noting 8&\;;((1@) = aztz\kﬂ(a\/tz—-ﬁf), we observe that
O Io(an/2 = p?) = (a®6)* Age(a/B? = p2) + ct* Ay 1 (/12 = p?)

+ -+ et A (a2 = p?) + c Ay a/t2 = p?)

and

O Io(av/B = %) = (@1 haes (aV/E® = 72) + et Aaala/22 = )
+o et Apsa (a2 — p2) + et Mgy (ay/t% = p2) .
In order to estimate the function Ag(y) defined by (2.5), we use the following lemma.
Lemma 2.2 The function Ag(y) (k=0,1,2, ) satisfies that

1 1
Mly) = L) and AW(0) = gy

The following estimates of the function Ax(ay/t2 — p?) are crucial for the L! estimates
of S(t)g and 0;S(t)g.

Lemma 2.3 Fort > 2, it holds that

e~ Ag(ay/12 — p?) < Ct7F12eo /30 4 0 < p < ¥4
e" " Ap(a/t2 — p?) < Ct12emaVt2 i (3 < p /121,
e Aplay/t2 — p?) < Ce™® if Vi2—-1<p<i

with some constant C.
Then, using the above identities and lemma, we observe the following estimates :

1S®gllz: < Ce™*2llgllwn-1a + Cligllzr, ¢ 20
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and
10:S(t)glir: < Ce™*|igllwns + ClighLr, t>0.

Therefore, by (2.3), we immediately obtain that

lu(@llzr < N10:S ) uollr + 1SE)(uo + ui)lize
< Ce™ 2 (|lug|lwnr + [lunllwn-11) + C(lluollzr + [luallze)

for t > 0, which implies Theorem 1.1 in odd dimensions.

3 Application

‘We consider the global existence, uniqueness, and asymptotic behavior of solutions to
the Cauchy problem for the semilinear dissipative wave equations :

{(D+5z)u=f(u) in RY x (0,00) (3.1)

('LL, 8tu)‘t:0 = (5U0, 5U1)

with f(u) = |Ju]**!] |u|%u for o > 0, and a small parameter ¢ > 0.

The critical exponent a.(N) for global and non-global existence problems in the L' N
L2-framework is a.(N) = 2/N and this number is often called Fujita’s exponent. Indeed,
Fujita [3] proved that the related semilinear heat equations have no non-trivial, global
solutions if @ < 2/N and have global, small data solutions if a > 2/N.

Todorova and Yordanov [28] have shown that when 2/N < o < 2/[N — 2|T, there
exist global solutions of the dissipative wave equation (3.1) with small initial data (ug,u;)
€ H' x L? satisfying compactly support conditions (cf. Matsumura [12] for & > 1 and
o > 2/N). On the other hand, when a < 2/N, (3.1) with the nonlinearity f(u) = |u|**!
has no non-trivial global solutions (cf. Tkehata and Ohta [7] for f(u) = |u|*u). Later, in
the casc of & = 2/N, Zhang [29] and Kirane and Qafsaoui [9] derived non-global existence
theorems (cf. Li and Zhou [10] for N = 1,2).

The global solvability problem under non-compactly support conditions on the initial
data is a difficult and an interesting problem, because we can not use Poincar s inequality
and its related structure of the solutions in the a-priori estimate. In particular, when
N > 3 and « < 1, the estimate of L' norm of the nonlinear term f(u) and thus the L?
type, 1 < p < 2, estimates of the solution u(l) will be requested in the analysis, and
hence, the problem will become difficult and attracts us. (Cf. Nakao and Ono {14] for
a > N/4 in the L2-framework. See [8], [18] for f(u) = —|u|*u and for large data.)

Recently, when N = 3, Nishihara [17] has proved a global existence theorem for the
initial data (ug,u;) € (Wb N W) x (L* N L!) and a > 2/N together with LP decay
estimates for p > 1. On the other side, in [20] we have solved this problem when N < 3
and 2/N < a < 2/(N —2) for the initial data (ug,u;) € (H' N Wh) x (L2 N L) (or
(H'N LY x (L2 LY) if N = 1), and moreover, we have derived the sharp decay estimates
on LP-norm with p > 1 of the solutions. (See Ikehata and Ohta {7] and Ikehata, Miyaoka
and Nakatake [6] for N = 1,2 and o > 2/N.)

Quite recently, Narazaki [15] has shown global existence theorems for N <
2/N < a < 2/(N — 2) under the assumptions on the initial data (ug,u1) €

5 and
(H*n



Wwhitllenyllten L1y (F' 0 LYo Li+e 0 L) and derived LP decay estimates for
P = 1+ a of the solutions. Also, Hayashi, Kaikina, and Naumkin [4] have obtained the
global solutions in any dimensions for initial data on suitable weighted Soblev spaces.

Our aims in this section are to prove the global existence theorem by the method used
L' estimates as in [17] and [20] which is different from [15], and to derive the sharp decay
estimates on L” norm with p > 1 of the solutions (see Ono [22] for details).

Theorem 3.1 Let N =4,5. Suppose that the initial data (ug,v;) belong to (H' NW>!) x
(LN WY and

2/N <a<2/(N-2) and a>1/2.

Then, there ezisis €9 > 0 such that the problem (3.1) admits a unique global solution u(t)
belonging to C([0,00); H') N C* ([0, 00); L?) for each & < gy and this solution satisfies

HVzU(t)“Lz < Cdl,z(l + t)*l/Z—N/4 ’ (3‘2>
”atu(t)HLz < Cd1,2(1 + t)—l—N//; ,

and for 1 <p <2N/(N - 2),
lu@®llze < dip(1 + 1)~ (3.4)
where dy 2 = |lugllgr + ||urllz2 + |[wollwer + |Juillwrr.

Theorem 3.2 Let N = 4,5. Suppose that the initial data (ug, u;) belong to (H*NW2!) x
(H'n W) and

2/N <a<2/[N-4]7T.

Then, there exists g > 0 such that the problem (3.1) admits a unique global solution u(t)
belonging to C([0,00); H%) N C1([0,00); H) for each € < gy and this solution satisfies
(3.2)-(3.4) with dy instead of d; and

V2w (t)||z2 < Cdoo(1 + )71 N4
10, Vou(t)||z2 < Cdgo(1 +t)~3/2-N/4

where day = |[ugllgz + ||wrll g + |lwollwen + [Jugljwrr.
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