
152
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.1 JANUARY 2021

PAPER

Integration of Experts’ and Beginners’ Machine Operation
Experiences to Obtain a Detailed Task Model

Longfei CHEN†a), Nonmember, Yuichi NAKAMURA†b), Kazuaki KONDO†c), Members, Dima DAMEN††d),
and Walterio MAYOL-CUEVAS††e), Nonmembers

SUMMARY We propose a novel framework for integrating beginners’
machine operational experiences with those of experts’ to obtain a detailed
task model. Beginners can provide valuable information for operation guid-
ance and task design; for example, from the operations that are easy or
difficult for them, the mistakes they make, and the strategy they tend to
choose. However, beginners’ experiences often vary widely and are diffi-
cult to integrate directly. Thus, we consider an operational experience as a
sequence of hand–machine interactions at hotspots. Then, a few experts’
experiences and a sufficient number of beginners’ experiences are unified
using two aggregation steps that align and integrate sequences of interac-
tions. We applied our method to more than 40 experiences of a sewing
task. The results demonstrate good potential for modeling and obtaining
important properties of the task.
key words: egocentric vision, hotspots, gaze, dynamic alignment, task
modeling, operation difficulty

1. Introduction

In recent decades, the video tutorial has become increas-
ingly popular for people that want to acquire knowledge
and skills. It provides the flexibility of time and place,
in addition to learning efficiency in a cost-effective man-
ner [1]. To relieve the large effort of manual content-making,
many studies have explored automatic guidance authoring
using experts’ experiences recorded through actual work
or demonstrations [2]–[7]. The emergence of wearable de-
vices, for example smart glasses and active cameras, makes
such recording easy in a human-centric manner, which can
be referred to as first-person vision/view (FPV) or egocen-
tric vision [8], [9]. It provides an intuitive and involving per-
spective – what the wearer sees is what you get – with less
occlusion and flexibility of views [10].

In this research, we focus on using FPV to acquire a
comprehensive task model for guidance on the operation
of a machine, such as a printer, rice cooker, or DIY tool.
Recordings of operational experiences are potentially valu-
able resources; for example, for directing users, particularly
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beginners; to select appropriate candidates for the next ac-
tion; for avoiding possible mistakes; and for aiding recovery
from errors. However, experts’ experiences are often insuf-
ficient for the resource of learning resources for beginners.
Experts often choose efficient and quick approaches, which
may be difficult for beginners; experts do not have difficul-
ties that beginners often encounter; and experts often skip
the confirmation of results that are already familiar to them.

To overcome this problem, we consider a framework
for integrating beginners’ operational experiences in addi-
tion to experts’ experiences into a unified operation model.
Beginners’ experiences are supplemented to fill the gap be-
tween experts’ experiences and the actual requirements for
guidance. In this framework, difficulties arise from the di-
versity of behaviors of beginners. Unlike experts’ efficient
operation behaviors, beginners often make mistakes, or per-
form unnecessary operations or redundant trials; they some-
times devise an easier approach or a new order of perform-
ing operations; or they do not complete tasks that are too
difficult for them. Our approach to managing such vari-
eties is as follows: We first automatically summarize ex-
perts’ experiences into the baseline model, which is a se-
quence of symbolized hand–machine interactions that cor-
respond to the crucial operation locations on a machine,
that is, hotspots [11]. We then integrate beginners’ expe-
riences into the baseline model and obtain a unified model.
We applied the above method to the operational experiences
of a tabletop device: a sewing machine. Our experiments
demonstrated good potential for modeling the operation and
acquiring important properties of the operation.

This paper is organized as follows: Related works are
introduced in Sect. 2. The basic idea of summarizing and
integrating operational experiences is explained in Sect. 3,
and actual methods are presented in Sects. 4 – 6. The exper-
imental results are presented in Sect. 7.

2. Related Works

Many studies have investigated video-based user guidance
in a variety of applications, for example, office work [2], [6],
cooking [3]–[5], and farm work [7]. These systems provide
guidance based on recorded expert experiences. Hamada et
al. developed a cooking navigation system [4], in which a
cooking process is decomposed into action units (i.e., ingre-
dients, actions, and time), and multimedia-based guidance is
provided. Doman et al. [3] synthesized a multimedia cook-
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Fig. 1 Framework of capturing and modeling machine operational experiences through egocentric
vision. Experts and beginners wear an RGB-D camera that records their operation process. A baseline
model is built with experts’ experiences first, then beginners experiences are aligned and integrated into
a unified model.

ing recipe by composing a dataset of video clips from cook-
ing shows. Zhuo et al. [12] developed a wearable cogni-
tive assistant system. The guiding instructions are generated
from downloaded YouTube tutorial videos, and indexed by
their titles and descriptions. The automated acquisition of a
task model from experts’ behaviors has been investigated to
reduce the burden of the manual collection of guidance data.
Dima et al. proposed a method of automatically integrating
multiple experts’ experiences and providing video guidance
through a Google Glass [2], [6]. Chen et al. [11] proposed
a method for automatically extracting temporal interactions
using hand shape and touch. However, to date, there have
been few attempts to systematically use beginners’ experi-
ences for guidance. We need intensive studies of possible
methods and verification of their advantages.

By contrast, recording and analyzing beginners’ behav-
iors have been studied for skill evaluation. Zhang et al. re-
ported a video-based evaluation of skills in surgical training
using motion features, assuming that a newer behavior pat-
tern demonstrated more skill compared with an older behav-
ior pattern [13]. Doughty et al. proposed a supervised deep
ranking model to determine skills in video records in a pair-
wise manner [14]. To compare and evaluate behaviors, tem-
poral features, such as spatio-temporal interest points [13]
and a two-stream CNN [14], are used to determine the corre-
spondence between two or more experiences. Although the
integration of beginners’ experiences has not been investi-
gated, these works provide good directions for the analysis
and assessment of beginners’ experiences.

In analyzing behaviors, gaze and attention can provide
significant information about users, for example, for oper-
ability, user skill, and task difficulty. Land and Hayhoe [5]
analyzed eye movement when making tea and a sandwich,
which indicates that the eye provides information on an “as
needed” basis. The gaze searches and locates objects to for-
mulate memory, leads the hand to approach objects, guides
the operation process, and checks the results. Peltz et al. [15]
investigated the coordination of the eye, hand, and head in a
block-copying task, which manifests in a temporary syner-
gistic linkage. The general coordination is that the eye leads,
followed by the head, and then the hand. Attention cues are
used in the aforementioned works [2], [6] for guidance data
acquisition. We expect that a comparison of gaze and at-

tention among experts and beginners will provide detailed
information about a task.

3. Task Modeling Using Beginners’ Experiences

Learning to master a skill consists of more than simply fol-
lowing the experts’ rules. The beginner’s learning process
is described in [16] as “contingent on concept formation
and the impact of fear, mistakes, and the need for valida-
tion.” Item searching and result confirmation are essential
aspects for novice learning of concept formation and assim-
ilation [17]. Accordingly, the approaches most experts take
are not sufficient for beginners. Guidance for beginners may
require the following functions.
1. Support diverse approaches suitable for beginners that
experts do not normally choose.
2. Provide sufficient information and details that experts of-
ten skip or ignore for efficiency.
3. Provide the properties of operation steps, such as assess-
ment of difficulty or possibility of failure.

The aim of this work is to enrich a task model with
beginners’ experiences to meet the above functions because
beginners’ experiences are good resources for this purpose.
Possible means of performing the task can be covered if a
sufficient number of beginners’ experiences can be gathered
in addition to those of experts. Some of them may also be
easier methods suitable for beginners. Beginners’ common
mistakes and failure cases can provide good hints to guide
beginners by recommending easier approaches or by alert-
ing beginners to avoid similar failures. Beginners tend to
pay more attention to the results of their actions and perform
each step more slowly than experts, which may provide data
that is easy to understand for guidance.

Figure 1 shows our framework for integrating begin-
ners’ experiences. It is composed of two steps because
building a network of interactions directly from the diverse
experiences of beginners is difficult. First, the baseline
model is composed using experts’ experiences which are
less diverse and include fewer unnecessary portions than be-
ginners’ experiences. Next, beginners’ experiences are one
by one aligned and integrated into the baseline model to ob-
tain a unified model.

We expect that the unified model provides the follow-
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Fig. 2 (a) Examples of detected hotspots. (b) Accumulated touches (green) through all steps visual-
ized relating to the center of sight (red) of an egocentric camera [21]. (c) Distances among the locations
of the hand (red), gaze center (blue), and hotspot (green).

ing features. The behaviors that commonly appear in multi-
ple users’ experiences manifest statistical significance, that
is, indispensability, substitutability, and the probability of
choice. Unnecessary behaviors and errors are also included
as less frequent interactions of beginners. The properties of
each step, including difficulty, can be estimated by begin-
ners’ behaviors.

4. Baseline Model

4.1 Task and Interaction

We focus on machine operation tasks in which operators are
sitting in front of a table manipulating machines. We chose
a sewing machine as a typical example. The sewing task
usually comprises a sequence of physical operations on ma-
chine surfaces performed by hands, for example, push but-
tons, seize a lever, rotate a knob, and grab the cloth, which
have a relatively quick tempo without a substantial waiting
time. The task is sufficiently complex and the included in-
teraction patterns are sufficiently diverse to represent every-
day machine operations. More importantly, the operations
can typically be performed in a degree of freedom (DoF),
that is, several steps can be substituted or their orders are
changeable.

To describe and integrate experiences, we consider an
operational experience as a sequence of hand–machine in-
teractions. Hotspots and their interaction patterns can ap-
propriately summarize the semantics of the interactions, that
is, where, when, and how an interaction occurs in a machine
operation.

Hotspots are automatically obtained from FPV through
the detection of a hand and its contact points with the ma-
chine. To identify hotspots throughout FPV, a global map,
that is, the sewing machine surface, is prepared first, and
then hotspots are located on the map through the estimation
of the camera pose. The interaction at each hotspot is clas-
sified by the hand shape. Figure 2 (a) shows an example of
hotspot detection results, whose details are provided in [11].

4.2 Train Baseline Model

Sequences of temporal interactions at hotspots enable us to
characterize an operational experience and make correspon-
dences among experiences. To integrate the arbitrariness

and redundancies of interactions, a hidden Markov model
(HMM) is adopted to obtain a baseline model from experts’
experiences. A left-to-right model is trained with all ex-
perts’ interaction sequences using the Baum–Welch algo-
rithm [18]. The training data is denoted as:

E = en
1, ek : om

1 = {o1, o2, . . . , om}. (1)

Here, E is the set of n experiences as training samples, and
each experience ek is symbolized by a sequence of hotspots.
Then, for any hidden state si with more than one observa-
tion, a replacement subnet of hidden states is created as fol-
lows:

si → subnet : [si, si+1, . . . , si+m−1]T , (2)

where m is the number of observations in si. The subnet is
retrained with all the observations from si, and replaces the
original state in the model. Here, the observations from si is
a set of observations belonging to this state that are extracted
from all training samples, which can be denoted as:

{o(si)} ∈ en
1. (3)

An example of subnet creation is shown in Fig. 8.
Through the above process, the observation ambiguity

of the model is eliminated, that is, each hidden state only
outputs a single observation. Thus, the HMM can hold the
DoF of the task, that is, alternative and order-changeable in-
teractions are allocated to separate state transition branches.
Additionally, the difficulty of determining the optimal num-
ber of states for training the HMM is relaxed by applying
subnets with adaptive configurations.

5. Integration of Interaction Sequences

A dynamic alignment approach is adopted to integrate ex-
periences. Each beginner’s interaction sequence is aligned
to the baseline model to obtain corresponding state transi-
tion paths in the model, and then a unified model is obtained
by adding all beginners’ state paths and observations to the
baseline model.

5.1 Alignment of Interaction Sequences

The alignment between a beginner’s interaction sequence
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and the baseline model can be defined as follows:

Â = arg max
A

Pr(A,O| Θ)

= arg max
aT

1

T∏

t=1

Pr(at, ot | Θ),
(4)

where O ∈ RT is the observation (interaction) sequences of
a beginner, A ∈ RT is the assigned path of the correspond-
ing hidden states for the observations in the baseline model,
and at and ot are the elements in the state and observation
sequence, respectively. Θ is the parameter of the baseline
model.

We assume that the operating procedures of the task
typically have an inherent forward order with certain varia-
tions (DoFs) in several steps. Therefore, the alignment of a
current interaction depends on the alignment position of the
previous interaction, which is similar to the time alignment
problem in speech recognition [19]. We adopt the HMM-
based word alignment model proposed in [20]:

Pr(at, ot | Θ) = Pr(at, ot | at−1
1 , o

t−1
1 ,Θ)

= Pr(at, ot | at−1,Θ)

=
∑

at−1

p(ot |at) ∗ p(at |at−1) ∗ p(at−1| Θ).

(5)

To perform dynamic alignment, a recursion formula is used:

Q(t) = max
at

Pr(at, ot | Θ)

= max
at

[
p(ot |at) ∗ p(at |ât−1)

] ∗ Q(t − 1)
(6)

Then we have

ât = arg max
at

p(ot |at) ∗ p(at |ât−1), (7)

where all the p(ot |at) ∈ {0, 1} by creating subnets.
In experiments, we assume that any hidden state can be

the starting point (a1) of alignment. We use dynamic time
warping (DTW) to compare a beginner’s sequence with the
baseline model. The actual process is as follows:
First, we determine the best match for the observation se-
quence in the baseline model to the beginner’s observation
as follows:

ω̂E = arg min
wE

(E(wE − wB)), (8)

where wB and wE are the corresponding observation se-
quences of beginners’ interactions and the baseline model
after warping, respectively, and E is the Euclidean distance.
The best-match expert’s sequence is represented by ω̂E .
Then, the first index of the same observation between two
sequences is derived and we consider the starting point for
alignment as the hidden state that corresponds to this obser-
vation as follows:

a1 = s(k̂)
E , where k̂ = arg min

k
(ω̂(k)

E == w(k)
B ), (9)

where k̂ is the index of the first-matched observation and
sE is the hidden state path that corresponds to ω̂E , which is
derived using the Viterbi algorithm.

All the possible state transitions p(at |at−1) are first
added to the baseline model when preparing the alignment.
The probabilities of jump transitions are adaptively set ac-
cording to the jump width, where the maximum width of
the forward or backward jump of the transition is set to
three states [20] by referring to the task DoF. For the newly
appearing behavior patterns in beginners’ experiences, new
states are added to the baseline model during alignment. The
detailed alignment algorithm is shown in Algorithm 1.

Algorithm 1 Dynamic Alignment for an Operation Interac-
tion Sequence
Input: beginner’s observation sequences O{o1, o2, . . . , oN } for alignment,

the baseline model M (prior π, emission matrix E, transition matrix T ,
state number m), small constant probability δ (� 1), and DoF of the task
D.

Output: best state transition path A{a1, a2, . . . , aN } corresponds to O.
i. Prepare for alignment:
for i = 1 to m do

(a) add self-transition:
T1(i, i)+ = δ;

(b) add forward transitions (dynamic value based on forward-jump
width):
for f = 1 to D do

T1(i, i + f )+ = 8 ∗ δ/ f ;
end for
(c) add backward transitions (dynamic value based on backward-jump
width):
for b = 1 to D do

T1(i, i − b)+ = 1/8 ∗ δ/b;
end for

end for
ii. Start alignment:
Initial state a1 ← DTW(O,M);
for t = 2 to N do

seqt ← [ot−1 ot]; πt(at−1)← 1;
path← Viterbi(Et−1,Tt−1, πt , seqt);
if path exist then

at ← path(end);
Tt ← Tt−1;

else
(d) add new hidden state:

m← m + 1; at ← m;
Tt ← Tt−1(at−1, at) = δ;
Et ← Et−1(at , ot) = δ;

end if
end for

5.2 Integration for Unified Model

Using the alignment mentioned above, state transitions that
correspond to each beginner’s observation sequence are ob-
tained. They are added to the baseline model with a constant
pseudo-probability δ(� 1). Repeating the above process for
all beginners, beginners’ and experts’ experiences are inte-
grated into the unified model.

Commonly appearing hidden states and transitions
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among experts and beginners are considered as essential in-
teractions to the task. New transitions and hidden states
correspond to, for example, new methods, repeated inter-
actions, order-changeable interactions, or missing interac-
tions.

Most experts’ interactions in the unified model mani-
fest higher frequencies than beginners’ newly added inter-
actions, which indicates that they are typically more cred-
itable. However, if multiple beginners share common inter-
action patterns, then the probabilities of the corresponding
paths may increase, which manifests their importance for
beginners.

6. Properties of Operations

6.1 Resource for Estimating Properties

The unified model obtained through the above process is im-
proved from the baseline model in accordance with points of
1 and 2 claimed in Sect. 3. The model covers more diverse
approaches to perform a task.

Beginners tend to take more time for each interaction
than experts and intensively watch the target of the oper-
ation, which is expected to make operation records more
comprehensible. Concerning point 3, that is, the assessment
of each operation step, there are several metrics that may di-
rectly demonstrate the advantage of the unified model. One
possible measurement is the time spent on performing each
step of a task. A comparison of how much time is spent by
beginners or experts could provide information on the dif-
ficulty of the operation. Another metric is the number of
failures. However, it is not easy to measure failures only by
observing FPV without subjective introspection. We alter-
natively consider redundant or unnecessary interactions as
signs of difficulty, which is explained below. Additionally,
gazing properties are also expected to provide rich informa-
tion on the characteristics of operations.

6.2 Redundant Operations

Redundant behaviors, e.g., mistakes, unnecessary trials, or
repeating the current operation, often appear in beginners’
experiences. The frequency of such behaviors increases
when the operator’s skill level is low or the operation is dif-
ficult. For the assessment of difficulty, we calculate two in-
dices from the acquired unified model:
(i) the repetition of interactions is an indicator of unexpected
results, mistakes, or perplexed states, which are closely re-
lated to the difficulty of an operation;
(ii) the frequency of uncommon operations appearing before
common operations.
Uncommon or exceptional interactions are typically unnec-
essary interactions that are closely related to mistakes or
trial and error. Conversely, easy and tractable interactions
with the task are expected to be adopted by multiple users if
we gather a sufficient number of samples. Thus, we manu-
ally set the threshold of occurrence frequency as 10% among

all experiences to distinguish between common and uncom-
mon behaviors in the unified model in our experiment. The
correlation between the above indices and subjective diffi-
culty were investigated in our experiments.

6.3 Gaze Properties

The relations of hands and gaze properties around hotspots
can be used to characterize behaviors, that is, how a user’s
gaze and hands cooperatively or independently move around
the operation location. The general coordination is that the
eye leads, followed by the head, and then the hand. Previ-
ous studies have reported that an operator’s gaze typically
precedes an operation action by a fraction of a second and it
leads the hand to trigger the action [5], [15], [22]. Consider-
ing this characteristic, we define the combination of behav-
iors of “pure-gazing (saccade/fixation), hand-approaching,
and operating” as a basic operation unit (OU), and an ex-
perience can be divided into a sequence of such units. The
pure-gazing period is considered to be in-between the end
of the previous physical contact and the moment when the
hand goes into the sight of FPV, while the operator searches
or locates the target. The hand-approaching period can be
considered as the period between the moment the hands just
appear and the moment at which the operation begins, while
the operator leads his/her hands to the hotspot with/without
confidence. Subsequently, the operating period is the period
in which physical touches occur.

We expect that temporal features in those periods char-
acterize each operation step well. For example, difficult in-
teractions require a relatively longer time for both the pure-
gazing and hand-approaching periods, whereas a shorter
time suggests that operators perform actions without much
thinking or planning. We also expect positional features to
be good clues to the characteristics of each step. We can
measure the distances between the target of the gaze, hands,
and hotspot for each OU, as shown in Fig. 2 (c). We can
clearly say that difficult interactions require concentration
on the operation area, which requires small distances among
the gaze, hand, and hotspots. Conversely, some easier inter-
actions do not require much attention, which causes the gaze
to leave the hotspot earlier.

To measure the gaze, preceding studies have demon-
strated strong correlations between gaze and head move-
ment in an egocentric operation environment [6], [23]. We
simply consider the average of the operator’s initial gaze lo-
cation as the reference of the attention location during the
operation process, and use head movement to approximate
the attention shift. For calibration, we lead the operator’s
gaze using a red point and ask the operator to position the
point at the center of his/her view as accurately as possi-
ble by adjusting the head-mounted camera installation. To
compensate for the bias between the center of sight and the
actual attention location, the minimum distance between the
center of sight and the hotspot is subtracted to obtain the
distance calculation for each OU.
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Table 1 Accuracy of temporal interaction detection and alignment.

Interaction (groundtruth) Detected (F-score) Alignment
Total Essential Unessential Expert [11] Our Essential Aligned Acc.
678 468 210 0.854 0.71 289 276 95.5%

7. Experimental Result

7.1 Environment and Parameters

The sewing task was designed with 11 essential interaction
operations, which included four pairs of order-changeable
steps (total DoF is 24 = 16). Forty-three records of a
sewing machine operation task were gathered from 16 par-
ticipants. Two records were performed by a professionally
skilled expert, whereas the remaining 41 were from begin-
ners with various skill levels. The participants were only
instructed with the task requirements before starting, for ex-
ample, “please get the sewing machine prepared, and sew
the cloth with thread pattern A and speed B”, and then they
were asked to perform the task without other restrictions. In
total, 678 interactions occurred in the experiences, of which
69% were essential interactions. The remaining interactions
were unnecessary interactions, mistakes, and other noise.

The recording device was a head-mounted RGB-D
camera with both color and depth resources at 30 fps (the
actual aligned depth and color fps reduced to around 20 with
real-time saving to hard disk). Recordings were stopped
when the participants finished the entire process or failed
halfway. To detect hotspots and interaction patterns, the
same parameters as those in [11] were adopted, that is, the
depth threshold for detecting valid touches was ±7 mm and
the temporal window size for clustering touches was 0.25s.

For the integration, beginners’ aligned states and obser-
vations were directly added to the experts’ baseline HMM
with an equal constant probability δ, and then the parameter
matrices of the HMM were normalized to ensure that all the
probabilities were between zero and one. The ground truth
of temporal interactions, that is, the sequence of hotspots
and interaction patterns for how the operator actually pro-
cessed the task, was manually annotated by each participant.
The ground truth of alignment for each interaction of begin-
ners’ experiences to the baseline model was provided by an
expert who viewed all experiences.

7.2 Detected Interactions

Table 1 shows the accuracy of interaction detection. The re-
call, precision, and F-score of temporal interaction detection
at hotspots for all experiences were 0.62, 0.84, and 0.71, re-
spectively. Compared with the case of using only experts’
experiences [11], the decrease in the recall is significant, and
was caused by beginners who performed redundant or un-
necessary touches more frequently than experts. Addition-
ally, beginners’ hotspots were sometimes difficult to match
to the corresponding location on the global map because of
differences in the viewing angle and position, particularly

Fig. 3 Example of alignment between the experiences of an expert (top)
and a beginner (bot). The size of the dots indicates the temporal duration
of the interaction and the color represents different patterns, where white
dots are interactions that newly appeared in the beginner’s experience. The
expert performed the task without any redundant interactions, whereas the
beginner had new and repeated interactions. The equivalent interactions
and the order-changeable interactions in the beginner’s sequence were suc-
cessfully matched to those of the expert’s sequence, whereas the newly
introduced interactions were located correctly among the aligned interac-
tions.

when they were searching, attempting the operation, or con-
firming results. Typical examples are shown in Figs. 6 (a)
and (b). The time-saving behaviors of experts, for example,
operating quickly or without looking at the current operating
location, also led to detection failure. For example, Fig. 6 (f)
shows an example in which an expert pushed the power but-
ton without looking because he/she already knew where the
button was, whereas a beginner needed to look at the button
first (as shown in Fig. 6 (g)).

The overall accuracy for the alignment of beginners’
essential interactions was 95.5%, as shown in Table 1. An
example of alignment between an expert and beginner is
shown in Fig. 3. Regarding failures, two beginners’ experi-
ences were misaligned to the operational graph because the
initial states of the two samples were incorrectly located on
the baseline model. The reason is that they performed many
wrong trials before the initial step. Another beginner’s sam-
ple was successfully aligned only for the first half because
it was missing many essential steps in the latter half of the
task process.

The model size growth through integration is illustrated
in Fig. 4 in terms of the number of hidden states. The initial
baseline model of experts’ experiences contained 17 states.
With the beginners’ experiences integrated, the number of
states increased to 95. Note that after 33 experiences were
integrated, the growth slowed down; it seemed to be almost
saturated after 40 experiences were integrated.

Figure 5 (a) shows the full HMM model after integra-
tion. It contains all the common behaviors and diversity of
beginners and experts. The blue nodes represent the baseline
model, and we can see that a variety of interactions colored
in red to yellow were added by the integration. Figure 5 (b)
shows a graph that contains only the common interactions
that occurred in multiple experiences with high probabil-
ity (>= 4δ). Thus, it can be regarded as a “summary” of
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Fig. 5 Models for integrating all experts’ and beginners’ experiences of the sewing task. The expert
baseline model is shown in blue, and the added beginner hidden states and transitions are shown in red.
The saturation of the node indicates its sum of in-out transition probabilities, (a) Full model after the
integration of all experiences. (b) High-probability states and transitions (>= 4δ).

Table 2 Semantic meaning of beginner–expert differences.

(subgraph) States Semantic Meanings

(g1)
sS → s3 → s2 New ways: “new orders of achieving several procedures”
s16 → s15 → sE

(g2) s18 Common mistakes: “operating wrong places”
(g3) s30, s31 Confirm: “seize the cloth to confirm it’s moving orientation, speed, and fixation”
(g4) s21, s29 Unnecessary: “hand put on the cloth panel (rest or support the other hand)”
(g5) s95 Other noise: “trials before the starting procedure (i.e., power on)”

Fig. 4 Hidden state number growth of the unified model by integrating
beginners’ experiences.

the model. This graph includes the primary differences be-
tween the baseline model and the beginners’ experiences,
that is, where experts and beginners frequently chose differ-
ent methods. (g1) shows new approaches and (g2) shows
a common mistake. (g3), (g4), and (g5) show results in
confirmation behaviors, unnecessary interaction, and other
noisy trials, respectively. The detailed semantic meanings
are explained in Table 2. Figure 6 (c) shows an example of a
mistake: a beginner attempted to pull the cloth out after the
needle was still down, which was not possible. Figure 6 (d)

and (e) show an example of confirmation behaviors. The ex-
pert was watching the sewing process without any additional
action (d), whereas a beginner was feeling the moving ori-
entation/speed of the cloth by hand (e).

7.3 Estimation of Properties

For the assessment of each operation step, we focus on the
properties of 15 common interactions in the summary shown
in Fig. 5. As potential clues for the properties of each oper-
ation step, such as difficulty, we consider, redundant opera-
tions, duration of each interaction, and gazing behaviors, as
mentioned in Sect. 6. As the ground truth of difficulty, three
experts and three beginners were asked to rate each inter-
action, then the difficulty scores were normalized between
zero and one (from the easiest to the most difficult).

Figure 7 (a) shows the frequency of redundant inter-
actions, that is, the repetition of the current operation, and
uncommon interactions before a common interaction. Fig-
ure 7 (d) shows their correlation to the subjective difficulty.
The combination of the two types of redundant operations
has a higher positive correlation than either of them; which
indicates that a difficult step tends to cause both types of
features simultaneously. Misdetection, that is, false posi-
tives, occurred in a few cases (e.g., interaction 7 and 8), in
which the operators continuously touched a relatively large
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Fig. 6 Examples of expert (E) and beginner (B) operation behavior comparisons. (a, b) Difficult
scenarios for hotspot detection and (c) an operational mistake (trying to pull out the cloth but failed
because of the needle is still down). (d, e) Different confirmation behaviors of the expert (pure gazing)
and the beginner (feeling the cloth’s moving speed and direction). (f, g) Lack of details in the expert’s
behavior, which were supplemented by the beginner’s behavior.

Fig. 7 Features for describing the properties of each interaction, and their correlations with the user-
rated interaction difficulty. (a) Accumulated occurrence of redundant operations for each common in-
teraction. (b) Average duration of each period of interaction. (c) Gaze–hotspot distance in the operating
period. (d) Correlations between each of the above features and subjective estimation of operation diffi-
culty, where G, H, and O denote the pure-gazing period, hand-approaching period, and operating period,
respectively.

area with moving hands. We need to improve the accuracy
of interaction detection, which is future work.

Figure 7 (b) shows the average duration of each OU
period for the above common interactions. As shown in
Fig. 7 (d), the duration of the hand-approaching period has a
high positive correlation with the difficulty, which indicates
that the longer the time in which the hand is approaching
the next hotspot, the more difficult the operation is. How-
ever, the duration of pure-gazing and operating periods do
not demonstrate a significant correlation. The duration of
the hand-approaching is closely related to the hesitation or
confidence of the operator; whereas the duration of the oper-
ating period is mainly based on the interaction pattern itself.
For instance, some interaction patterns, such as lead cloth,
naturally require a longer time than others, such as push but-
tons.

To illustrate the operator’s gaze distribution in oper-
ations, we calculate the average gaze–hotspot distance for
each interaction, as shown in Fig. 7 (c). Figure 7 (d) shows
that the gaze–hotspot distance in the operating period has a
strong negative correlation with difficulty. Difficult interac-

Fig. 8 An example of subnet creation. Initial model after training with
experts’ experience samples (top). For any state outputs more than one
observation, stretch the state into vertical states and create transitions (mid-
dle). Possible result of the model after re-training with the observations
corresponding to those states from all training samples (bottom).
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tions require gaze concentration in the operation area. Con-
versely, the further the center of the gaze is located from the
hotspot during operation, the easier an operation is. This
is significant for steps such as take up cap or rest hand
on panel, in which attention is almost unnecessary during
operation. However, the gaze–hotspot distance during the
pure-gazing period does not demonstrate such a close rela-
tionship to the operation difficulty because operators may
not concentrate on the hotspot when searching around in the
pure-gazing period.

Although Fig. 7 (d) shows the correlation to difficulty,
the detected properties have different meanings, as ex-
plained in the following observations. Some operation steps,
such as start and set pattern, caused unnecessary opera-
tions but little repetition occurred. An action, for example,
push the button, is not difficult in itself; however, locating
or finding the correct target is difficult. Hence, users re-
peated unnecessary trials at other operation locations. More-
over, some operations, for example, stop, were repeated fre-
quently. This is typically because of the operators’ behav-
ior of testing the function of a hotspot. The duration of the
hand-approaching was a clue to the hesitation or confidence
of the operator. Short pure-gazing and hand-approaching
periods indicated actions performed without much thinking
or planning. The gaze–hotspot distance in the operating pe-
riod was also a strong clue to the difficulty of an operation
step. These facts suggest the importance of analyzing the di-
versity of those behaviors and how they arise, which could
be useful for understanding the user’s operational activities.

8. Conclusion

In this paper, we proposed a framework for automatically
modeling a hand–machine operation task from FPV records
from experts and beginners. By integrating beginners’ and
experts’ machine operational experiences, we obtained a
unified model that contained diverse approaches to interac-
tions and samples of errors. Moreover, the temporal and
spatial features of the gaze, hand, and hotspot of each oper-
ation step provided operators’ behaviors and the properties
of operation closely related to the difficulty of each step. The
experiments demonstrate that the alignment and integration
methods used were sufficient for supplementing experts’ ex-
periments, for example, by providing easy approaches that
are suitable for beginners. They also proved that gaze behav-
iors and redundant operation behaviors provide good clues
for an operation’s properties, such as difficulty.

As future work, we need to gather a variety of hand–
machine operation examples and verify the suitability of
our framework for actual applications. The design of actual
guidance systems is also necessary for improving the frame-
work. Both the baseline model and the unified model are
expected to be effectively used for guiding operators from
beginners to those slightly-below-expert level.
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