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1. Introduction

We call the function f; defined on a metric space (X,d) weak contraction
provided that there exists a function «;(1), [ > 0 such that 0 < o;(l) <
1, infiee;(l) > 0 and d(fj(2), fi(y)) £ o(Dd(z,y) for d(z,y) < |, j =
1,...,m (2 £ m < o0). In a complete metric space, there exists a unique
nonempty compact weak self-similar set S generated by the system {fj; j =
1,...,m} of weak contractions, namely, there exists a set S satisfying the rela-
tion UL, f;(S) = S [1,2,3].

In the present article, we will search the conditions for the weak contractions
fiy 3 =1,...,m defined on a compact metric space X to generate a weak self-
similar set S which has the property that every nonempty compact metric space
is a continuous image of it, and then, we will construct a decomposition space of

S, which is homeomorphic to the compact space X.

*) A part of the contents of this article is found in our paper, On a decomposition space of a

weak self-similar set, Chaos, Solitons and Fractals 24(2005)785.



2. Construction of a decomposition space of the set S

Every nonempty, perfect, zero-dimensional, compact metric space is known
[4,5] to have the above mentioned property that any nonempty compact metric
space is a continuous image of it. If there exists a nonempty, perfect, zero-
dimensional, compact weak self-similar set S in a compact metric space X, then,
X must be a continuous image of S.

To attain our main results, we prepare the following lemmata.

Lemma 1. Let X be a nonempty compact metric space with a metric d. Assume

that the following conditions hold for the weak contraction f;, j =1,...,m.

i) Each f; is one to one.

ii) The set {z € X; fi(z) = z, 7 = 1....,m}V is not degenerate. That
is, there exist at least two points zy and zf, such that f;,(zo) = zp and

fir(zp) = x4
iii) There exists a point Iy > 0 such that 37" ; a;{ly) < 1.

Then, there exists in X a perfect, zero-dimensional compact set S such that

i1 fi(§)y =8
Proof. Let us define a set S by N, X™ = S. Here, X" = U;,..;.ew,, Xji..j. Where
Xjyoin = fin 0o+ 0 f;.(X) and W,, denotes the set of all words j; - - j, with
length n on symbols {1,...,m}. Since zg = fj, 0+ o fijo(z0) € Xjpjo T X"
for any n, the compact set S is nonempty. We note that for any n and for
any ji---Jn € W, fjy 00 fi(me) = fj 020 fj, 0 figo-- o0 fi(zo) €
Xjyinjojo © X* for any k 2 n + 1. Since the relation X™*! C ... C X! is
obvious, fj, o++- o f;.(zo) € Nk X* = S. In the same way, concerning another

fixed point zj, the relation f;, o---o f; (x) € S must hold for any j; -+ - j, € W,.

D It is known [1] that any weak contraction f defined on a complete metric space X has a

fixed point in X.
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Next we note that the diameter of Xj,..;, — 0 (n — o00), that is, for any € > 0,
there exists N such that for any n > N and for any j, - - - jn € Wy, the diameter
Xj,..j. < €. In fact, since the relation d(f;(z), f;(y)) < &;(d(z,y))d(z,y) holds
for &;(1) = inf,5;;(p), each diameter of Xj . ;. is dominated from above as

follows.
diameter of Xj,..;, < (max{&j(diameter of X)}) diameter of X.
7

Now, let = be a point of § = (), X™. For any € > 0, there exists a number
N such that for any j;---jn € Wy, the diameter of X ..;, < £. Then, there
exists j; -+ jy € Wy such that = € X;,..;, C open sphere S(z,c). It is evident
that both f;, o+ o f;(2q) and fj, o+ o f;\(zf) are contained in S(x,). But
the condition (i) guarantees that the point f; o --- o fj,(z0) € S is different
from the point fj, o---o f; (z5) € S. Therefore, at least one of the two points
fiyorrofiy(zg) and f;, o--- o f; (xf) is different from the point z. This means
thai the point 7 is an accumulation point of S, and then, it is convinced that the
nonempty compact set S must be perfect. Taking the condition (i) into account,
we can easily verify the relation JJL; f;(S) = S. As this relation implies that
Ujguews fi 0020 f;.(S) = S for any n = 1, the estimate [2] concerning the
Hausdorfl dimension of S, dimyS < infi5gz(l) where Z;’;lo”zj(l)‘"”“) =1, holds.
Then, since the condition (iii) implies dimpgS < 1, the dimension of S = 0,
immediately follows from the fact [6] that the dimension? of a set does not

exceed its Hausdorff dimension. g

Next, let us recall the definition of the decomposition space [8] and that of the
quotient map [9].

Let D be a partition of a topological space (X, 7), 7.e. D is a collection of
nonempty, mutually disjoint subsets of X such that UD = X. The topological
space (D, 7(D)) defined by the decomposition topology 7(D) = {U C D; UU €

2) Since S is a separable metric space, indS = IndS = dimS [7].



7}, is called a decomposition space of (X, 7). Anontomap f: (X,7) = (Y,7) is
said to be a quotient map provided that 7/ = 7;. Here, 7y = {v/ C Y; f~1(v/) €
7}. Concerning the relationhships between the decomposition space and the

quotient map, we have the following general lemma.

Lemma 2. Let f be a quotient map from a space (X, 7) onto a space (Y, 7).
Then, (Y, 7') is homeomorphic to the decomposition space (D, 7(Dy)) of (X, 7).
Here, Dy = {f~Y(y); y€ Y}

Proof. Let us show that A : (Y,7') — (Dy,7(Dy)), y — f~!(y) is an homeo-
morphism. First, it is evident that the map h is one to one and onto. Then,
it is sufficient to show that the map is continuous and open. Let U be a
nonempty open set of Dy. There exists a nonempty subset B of Y such that
U={f*y); ye B} UU=U{fy); y € B} = f7}(B). Since the subset
U is 7(Dy)-open, f~!(B) € 7. The relation B = h™! o h(B) = h~}(U) follows
immediately from h(B) = {f~'(y); y € B} = U. This means the continuity
of the map h. Next, let B be a nonempty 7'-open, that is, f~!(B) € 7. Since
Uh(B) = U{f~(y); y € B} = f~Y(B), h(B) € 7(Dy). Hence, the map h is an

open map.g

It is an elemental fact that the existence of a continuous map f from a compact
space (X, 7) onto a Ty space (Y,7’) implies that 7/ = 7. Therefore, the above

lemma can be rewrited as follows.

Lemma 3. If there exists a continuous map f from a compact space (X,7)

onto a Ty space (Y,7'), then, (Y, 7’) is homeomorphic to the decomposition space

(Dy,7(Dy)), Dy ={f*(y); y€ Y}

Under the Lemma 3, we can state our results as the following proposition.
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Proposition 1. Let X be a nonempty compact metric space, and let S be a weak
self-similar set generated from f;, j = 1,...,m satisfying the three conditions
in Lemma 1. Then, there exists a continuous function f from S onto X, and
the decomposition space (Dy,7(Dy)), Dy = {f~(z) € S; =z € X}, of S is

homeomorphic to X.

3. Metrizablility of the decomposition space

It is known [10,11] that i) If a Ty space Y is an image of a continuous func-
tion f defined on a compact metric space X, then, the decomposition space
(Dy,7(Dy)), Dy = {f'(y) C X; y € Y}, of X is upper semi continuous [12],
and ii) Any upper semicontinuous decomposition of a compact metric space is

metrizable.

Therefore, from the above discussions, our decomposition space of S is easily

verified to be metrizable.
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