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1 Introduction and notation

1.1 Introduction

This note is a part of the paper [23].

In this paper, we deal with destructible gaps. A destructible gap is an
(w1, wr )-gap which can be destroyed by a forcing extension preserving cardinals.
A destructible gap has a characterization similar to a Suslin tree ([2]). A Suslin
tree is an w-tree having no uncountable chains and antichains. On the other
hand, for an (wy, w; )-pregap (A, B) = (aq,ba; @ € w1 ) with the set a,Nb, empty
for every « € wy, we say here that « and § in w; are compatible if

(aa Nbg) U (ag Nba) = 0.

Then by the characterization due to Kunen and Todoréevi¢, we notice that an
(w1, wy )-pregap is a destructible gap iff it has no uncountable pairwise compati-
ble and incompatible subsets of w;. (We must notice that from results of Farah
and Hirschorn [8, 9], the existence of a destructible gap is independent with the
existence of a Suslin tree.)

One of differences from an w;-tree is that any (wy,w )-pregap have never had
an uncountable chain and antichain at the same time. We have forcing notions
related to an (wy,w )-pregap.

Definition 1.1 (E.g. [5, 11, 18, 19]). Let (A, B) = (aq,ba;a € w1) be an
(w1, w )-pregap with aq Nbg = @ for every a € wi.

1. F(A,B) == {0 € [w1]<¥;Va # B € 0, (aa Nbg) U (ag Nba) # B}, ordered

by reverse inclusion.

2. S(A,B) := {0 € w1l Uses @a NUgeo ba = 0}, ordered by reverse in-
clusion.
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We note that F(A, B) forces (A, B) to be indestructible and S(A, B) forces
(A, B) to be separated. Using these forcing notions, we can express characteri-
zations of being a gap and destructibility.

Theorem 1.2 (E.g. [5, 11, 18, 19]). Let (A, B) be an (wy,w1)-pregap. Then;
1. (A, B) forms a gap iff F(A, B) has the countable chain condition.

2. (A, B) is destructible (may not be a gap) iff S(A,B) has the countable
chain condition.

Therefore we say that (A, B) is a destructible gap if both F(A, B) and
S(A, B) have the ccc. As in the case of a Suslin tree, by the product lemma
for forcings, we note that (A, B) x S(A, B) does not have the ccc, and we will
see that e.g., we may have two destructible gaps (A4, B) and (C,D) so that all
variations Xp(A, B) x &1 (A, B) have the ccc.

In [10], it is proved that for any family {(A;,B;);i € I} of (w1,w;)-gaps,
the finite support product [],.; (A, B;) has the countable chain condition. It
means that generically making gaps indestructible cannot separate any (w1, w; )-
gap. So we arise a question wether or not the above statement is also true for
adding interpolations. We prove that this question cannot be decided from ZFC,
ie.

Theorem 1. It is consistent with ZFC that for any family {(A;, B:);i € I} of
destructible gaps, the product forcing notion HiEIS(Ai’Bi) has the countable
chain condition.

Theorem 2. It is consistent with ZFC that there are two destructible gaps (A, B)
and (C, D) such that the product forcing notion S(A, B) x S(C, D) does not have
the countable chain condition.

(We note that the statement in Theorem 1 (and the next theorem) is trivially
true if there are no destructible gaps. For example, if Martin’s Axiom holds,
then all (wy,w;) gaps are indestructible. But it is really consistent with ZFC
that the statement in Theorem 1 plus there are many destructible gaps. see the
proof of Theorem 1.)

Moreover, we prove the following theorem which is a version of Larson’s
theorem [14, Theorem 4.6] for a destructible gap.

Theorem 3. It is consistent with ZFC that there ezists a destructible gap (A, B)
such that S(A, B) forces that all (wy,w:)-gaps are indestructible.

1.2 Notation

A pregap in P(w)/fin is a pair (A, B) of subsets of P(w) such that for all a € A
and b € B, the set a N b is finite. For subsets a and b of w, we say that a is
almost contained in b (and denote a C* b) if a\ [ is a subset of b for some [ € w.
For a pregap (A, B), both ordered sets (A, C*) and (B, C*) are well ordered and
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these order type are x and A respectively, then we say that a pregap (A, B) has
the type (x, ) or a (k,\)-pregap. Moreover if K = A, we say that the pregap
is symmetric. For a pregap (A, B), we say that (A, B) is separated if for some
¢ € P(w), a C* ¢ and the set ¢ N b is finite for every a € Aand b € B. If a
pregap is not separated, we say that it is a gap. Moreover if a gap has the type
(k,A), it is called a (k, A)-gap.

For an ordinal a, if we say that (a¢,be; € € o) is a pregap, we always assume
that

o if { <7ina, as C* a, and be C* by, and
e for every £ € a, the set ag N b, is empty.

Our other notation is quite standard in set theory. (See [4, 12].)

2 Products of forcing notions adding interpola-
tions

The referee of the paper [10] has proved the following theorem. (For the proot
of the following theorem, see the proof of Claim 2.11 in the proof of Lemma
2.10.)

Theorem 2.1 ([10, Theorem 4]). Letn € w and (A;, B;) be (wr, w1)-gaps for
i <n. Then I],., F(A;, B;) has the countable chain condition.

This theorem says that the forcing a gap to be indestructible cannot force
any (wi,w;)-gap to be separated. But as seen below, we cannot prove from
ZFC that the forcing gaps to be separated does not force a gap to be indestruc-
tible. The point of the proofs in this section is the homogeneity of the forcing
notion S(A, B) for a destructible gap (A, B) with some property below. For a
homogeneity, we give some definitions.

Definition 2.2 ([18, Definition 2]). We say that pregaps (A, B) and (C,D)
are equivalent if (A, B) and (C,D) are cofinal each others.

We notice that if pregaps (A, B) and (C, D) are equivalent, then (A, B) is a
gap iff so is (C,D) and (A, B) is destructible iff so is (C,D). We note that any
(w1, w )-pregap has an equivalent pregap (A, B) such that S(A, B) is homoge-
neous. The similar property of the following one is appeared in the proof of [6,
Proposition 2.5].

Definition 2.3 ([22]). We say that a pregap (A, B) = (aq,ba; @ € w1) admils
finite changes if for all & < wy, e N by is empty and the set w N (aq U by) 15
infinite, and for any B < a with 8 = n+ k for somen € LimNa and k € w,
H,J € [w]<¥ with HNJ = 0 and i > max(H U J) there exists n € w so that

Apin Nt =H, agen Ni=0g N1, byypnNi=J, and bpyn N1 =bg \ 1.



For a homogeneity, we need a little strong property of the admission of finite
changes.

Definition 2.4. We say that a pregap (A, B) = {aq, ba; o € wy) strictly admits
finite changes if it admits finite changes and for all & # 8 in wy, (@, bs) #

(ag, bg)-

We note that any symmetric gap has an equivalent gap which strictly admits
finite changes. So the rest of this paper, we consider only (w;,w)-gaps which
strictly admits finite changes because of the following propositions.

Proposition 2.5. Let ((A;, B;);i < n) be a finite collection of destructible gaps
and (C;,D;) a gap equivalent to (A;, B;) for each i < n. Then for any combina-
tion (X;;1 < n), where X; is either F or S, the finite support product []
has the countable chain condition iff ||
condition.

Proof. Let (As, B;) = <a‘§, bise Ew1> and (C;, D;) = < et dis€ € w1>. It suf-
fices to show that if J[,_, Ai(Ai, B;) has the countable chain condition, then
[1,<n Xi(Ci, D;) also has the Countable chain condition.

Let {pa; @ € wy} be a family of conditions in ],
of generality, we may assume that

i<n

X;i(C;, D;) also has the countable chain

<n

Xi(C;, D;). Without loss

<n

o the set {p4(i); @ € w1} forms a A-system with a root o; for each i < n,
e all p, (i) \ 0; have the same size k; for each 7 < n and
e for any o < B8 in w; and 7 < n,

max(c;) < min (pa(i) N 0;) and max (pa (i) \ 0;) < min (pg(i) \ ;) .

Moreover, we may assume that there exists a family {gq; @ € w1} of conditions
in HKn X;(A;, B;) and a natural numbers m; for each i < n such that

e for any a < fin w; and 7 < n,
max (pa( ) N Uz) < mm(Qa( )) < max(Qa( )) < min (pﬁ(i) N Ui)a
e for each i < n,

— if Ay = F, then for any a € w;, g,(7) has the size k; and for each
£ € pa(i) \ o3, there is 17 € g, (i) such that
af,\mi gcé and bﬁ;\migdé,

— if X; = &, then for any a € wy, ¢,(2) = {')’é} and

U cé\mi Ca, and U di\m,
é€p(a) gep(a)
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and

e for any «, 3 € wy,

U cgﬁmz— U céﬂmi and U déﬂmi: U déﬂmi.

£€p(a) Eep(B) gep(a) £ep(B)

By the ccc-ness of [], ., Ai(Ai, Bi), we can find different ordinals o and 8
in w; such that g, and gs are compatible in ], , Ai(A;, Bi). Then we notice
that p, and pg are compatible in [], ., X:i(Ci, Di). O

Lemma 2.6. If (A, B) strictly admits finite changes, then S(A,B) ts homoge-
neous as a forcing notion, i.e. for every o,7 € S(A, B) there are extensions o’
and 7' of ¢ and T respectively such that S(A, B)[o’ and S(A, B) 7" are isomor-
phic.

Proof. Now we fix o, 7 € S(A, B). By strict admission of finite changes of (A, B),
we can find extensions ¢’ and 7’ of o and 7 respectively such that

(i) max{a € wiNLim;3k € w (a+k € ')} = max{a € wiNLim;3k € w (a+k €
)} and

(ii) there exists N € w such that
s foranya < fe€0’,ao~N Cag~Nand by~ N Cbs N,
o forauy a < B €T, a,~N Cag~ N and by ~N Cbg~ N, and

e |J@nNul] tanN)= ] (@aanN)u U bonN)=N.

a€a’ a€a’ €T’ aeT’
Then we note that
U (@a~MN)= {J (@a~N) and [J Ga~N)= |J (ba~N)

a€o’ a€T’ a€o’ a€T’

We note that if v € wy is such that ¢’ U {v} is also a condition in S(A, B),
then

ayNnC U (agNn), byNnC U (bg N'M)

aco’ aco’

((a.y \'ﬂ)ﬂ(U (ba \'ﬂ))) (b ~n)nN (U (aa\n)>>
a€ao’ ago’

We pick any bijection 7 from

\
’P(U aaﬂn) x’P(U baﬂn)
a€o’ a€co’

and



onto

P(U aaﬂn> x’P(U baﬂn>
aeT’ a€T!

and let m; and m, represent the first and second coordinates of the value of 7
respectively. We define an isomorphism ¢ from S(A, B)[o’ onto S(A, B)[7' as
follow. Let p be an extension of ¢’ and 8 € p\o’,say 8 = a+k for a € w;NLim
and k € w, ag = HU (aq ~ N) and bg = K U (by ~ N), where H and K are
subsets of N. Then we let £° be the unique number such that

aa+ke =71 (H,K)U (ag \ N)

and
batke = T2 (HK) U (bg ~ N)

Then we define 8° := o + k° and

W(p) =7 U{B%Bep~c'}.
By the above note, this is well defined and certainly an isomorphism. O

Lemima 2.6 says that the theory in the extension with S(.A, B) can calculate
in the ground model when (A, B) strictly admits finite changes, that is, if some
condition in S(A,B) can force the statement about elements of the ground
model, then the statement holds in any extension with S(A, B).

Assume that (A, B) is a destructible gap and strictly admits finite changes
and that o and 7 are conditions in S(.A, B). By strengthening ¢ and 7 if need,
we may assume that o and 7 satisfy the conditions (i) and (ii). When o, 7
and N satisfies above conditions, we say that {o,7, N) is a good sequence. If
(o, 7, N) is a good sequence, as seen in above lemma, S(A, B)[o and S(A, B) [
are isomorphic and a finite bijection 7 from

UaennN|xP | JbnN
13514 £€o

onto

et Eer

asNN | xP b NN
iy U b )
)

induces an isomorphism v from S(A, B)[c onto S(A, B)|7. We say that ¢ is an
isomorphism induced by .

Let {(Ai, B;);i € I} be a family of destructible gaps which strictly admits
finite changes and p = (0y;1 € I) and p’ = (o;;1 € I) are conditions in the finite
support product [],.; S(A;, B;). Then by strengthening conditions, we can find
a sequence (N, : i € I) of natural numbers with the property that the supports
of two conditions are same and for any i € I Nsupp(p), (04,0, N;) is a good
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sequence, then we have an isomorphism between Hie 1 S(Ai, Bi)l (oi;i € I) and
[L,e; S(Ai, B))I (0l;4 € I) induced by finitely many finite bijections. That is,
we have

Lemma 2.7. Let {(A;i, B;);i € I} be a family of destructible gaps which strictly
admits finite changes. Then the product forcing HieIS(Ai,Bi) with a finite
support s homogeneous. D

Moreover assume all (A4;, B;) are the same gap (A, B). By strengthening
each o;, we have N € w such that for any ¢ # j in I Nsupp(p), (0,05, N) is
a good sequence. Then we have the collection of isomorphisms 4); ; for each
i,j € I Nsupp(p) from S(A, B)[o; onto S(A, B)[o; which are commutative, by
taking finite bijections suitably.

The following lemma is to show Theorem 1.

Lemma 2.8. Let P is a homogeneous forcing notion with the countable chain
condition and (C,D) an (wy,w)-pregap. Then the following statements hold.

1. If the product forcing P x S(C,D) does not have the countable chain con-
dition, then the product P x F(C,D) has the countable chain condition.

2. If the product forcing P x F(C,D) does not have the countable chain con-
dition, then the product P x S(C, D) has the countable chain condition.

Proof. Both statements follow from the ccc-ness and the homogeneity of P and
the fact that

1. it §(C, D) does not have the ccc, then F(C, F) has the cce, and
2. if F(C, D) does not have the ccc, then S(C, F) has the ccc
respectively. O

Proof of Theorem 1. This theorem is true in the model where there are no de-
structible gaps. We will build a model for the theorem containing a destructible
gap by an iteration with a finite support as follows.

Assume that there is a destructible gap, 2% = X and A<* = . At first
we take any family T'g of destructible gaps which strictly admits finite changes
with the property that the finite support product H( AB)eTo S (A, B) has the ccc
(which is a weak property of the independence). By recursion on a € w,, we
construct I', in the a-th stage of the iteration as follows:

In stage a+1 € wy, for a destructible gap (C, D) which strictly admits finite
changes (given by a book-keeping map), if H(A,B)era S(A,B) x S(C, D) has the
cce, then let T'yy1 :==TU{(C,D)} and does not force in this iterand, otherwise,
ie. [T amyer, S(A B) x S(C,D) does not have the ccc, then let Tot1 = Ty
and force F(C,D). By Lemma 2.8, H(A,B)era+1 S(A, B) still has the ccc and
by Theorem 2.1, in the extension with F(C,D), F(A, B) is still ccc for every



(A,B) € T, so every member in I',4; is still a destructible gap. For a limit
ordinal a € wy, let T'q := Uge, I's-

We note that in the final model, T"y is the set of all destructible gaps with
the admission of finite changes and [[ 4 gyer, S(A,B) is ccc. Let T' be the
set of all destructible gaps. Then H(A,B)el‘ S(A, B) also has the ccc and so
is [I 4 m)er S(A, B) for every I" C I'. (We notice that Iy do not have to be
independent. It follows from ZFC that for any destructible gap (A, B), we can
find another destructible gap (C, D) such that S(A, B) x S(C, D) has the ccc but
S(A, B) x F(C,D) doesn’t have.) O

To prove Theorems 2 and 3, the key lemma is Lemma 2.10. To show this
lemma, we need the following lemma due to the referee of the paper [10]. (The
following proof is same in [10]. But for a convenience to the reader, I write the
proof here.)

Lemma 2.9 ([10, Lemma B.1)}). Let (an,bo; @ € w1) be an (wi,w1)-gap. Then
for any uncountable subsets I and J of wy, there exist uncountable I' C I and
J" C J such that for everya € I' and B € J', ag Nbg # 0.

Proof. For each a € w;, there is a natural number n, such that both sets
{ €wiaq N 1o C ag} and {n € wi;ba \ N C by} are uncountable. We note

that the set
U(aé N ng) N U (by N np)
el ned

is not empty because the pregap
(ae ~ng, by ~n,; §€el,ned)

is equivalent to the original one and so is a gap. Wetakea € I, 3 € Jand k € w
such that £ is in the set (aq \no) N (bg ~ng). Let I' := {£ € [;aq N\ N C a¢}
and J' := {n € J;bg \ ng C b,} which are as desired. O

The next lemma is a variation of [14, Corollary 4.3] for a destructible gap
which is the key lemma for proofs of Theorems 2 and 3.

Lemma 2.10. Let (A, B) be a destructible gap and strictly admits finite changes,
and (C, D) be an S(A, B)-name for an (wy,w1)-gap. Then there exists a ccc forc-
ing notion P (which is possibly trivial) such that in the extension with P, (A, B)
is still a destructible gap and S(A, B) forces (C,D) to be indestructible.

Proof. At first we define a forcing notion Q as follow.
w)2 w, Y\ P
Q= {p e ([w]<)":p(0) € S(4, B) & p(0) Irsam“ p(1) € S, D) 7}

ordered by
p<gq < p(0) 2 ¢(0) & p(1) 2 q(1).

If we have an uncountable antichain in Q, we have nothing to do, i.e. what we
have to do is that we let P be the trivial forcing notion.
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Assume that Q has an uncountable antichain {g,;a € wi}. Without loss of

generality, we may assume that the set {g,(1); @ € w1} forms a A-system with
a root ¢ and for all a < B in wq,

max (¢) < min (go(1) N~ o) and max(gs(1) \ ¢) < min (gg(1) \ o).

Let (cq,dq; @ € wy) the interpretation of (C, D) in this extension with S(A, B).
Then we can find an uncountable subset X of w; such that the set {g,(0); & € X}

is pairwise compatible in S(A, B) using an interpolation of (A, B). Since {¢a; @ € w1 }
is pairwise incompatible in Q, for all a # 8 in X,

U en U d|ul U en U d]#0

£€Gn(1)~o £€qp(l)~o §e€gp(l)~No £€g. (1)~

Then by our assumption, the following sequence

< U e« U dg;a6w1>

£€gqa(l)~c £€qa(l)~o

forms a pregap and is an equivalent gap of {€q,dq; @ € wy) and so is indestruc-
tible. Therefore S(A, B) forces (C, D) to be indestructible.

Even if Q has the countable chain condition, we can find a forcing notion P

which adds un uncountable antichain in Q and preserves the ccc-ness of both
F(A,B) and S(A, B). Let

P:= {P € [Q|<¥; P is an antichain in Q},

ordered by reverse inclusion. Since (A, B) forms a gap, it can be proved that
P has the countable chain condition. Moreover we can show more stronger
results. To show them, we use Lemma 2.9. The proof of the following claim is

very similar to a proof of Theorem 4 in [10]. And this proof let us know the
ccc-ness of P.

Claim 2.11. P x F(A, B) has the countable chain condition.

Proof of Clatm 2.11. Assume that {(F4,04) ;@ € w1} is an uncountable collec-
tion of conditions in P x F(A, B). Without loss of generality, we may assume
that

{P,;a € wy} forms a A-system with a root P,

{04; @ € wy} forms a A-system with a root o,

for all @ € wy, P, . P has the same size k, and

for all a € w1, 0, \ ¢ has the same size (.



For a € wi, we let PJ := {p(0);p € P, \ P} and denote the i-th member of P2

and o4\ o by P2(i) and 0,(j) for all i < k and j < [ respectively. Using Lemma
9.9 of k(k+1) n {l+1)

2
wj such that

o forallae€lpand B €, and i,j < k,
U ag N U bg # (0,
€€PY(i) £€PY(3)
and

o foralla € Ipand B € I, and 1,5 < [,
A, (i) N bd'ﬂ(j) # 0.

Then for any a@ € Iy and 8 € I}, (Py,04) and (P,,0,) are compatible in
P x F(A,B). =

By the fact that (C,D) is an S(A, B)-name for a gap and the homogeneity
of §(A, B), we can moreover prove the following claim and this completes the
proof.

Claim 2.12. P x S(A, B) has the countable chain condition.

Proof of Claim 2.12. Let {{Pa,00) : @ € w1} be in P x S(A, B) for all a € w.
Without loss of generality, we may assume that

o {P,;x € w;} forms a A-system with a root P,
e for all @ € wy, P, \ P has the same size m, and

e for any a < 8 € wn,

max U p(1) | < min U (1)

pEPL~P pEPs~P

Let {(T;,Ué> 1< m} enumerate the set P, ~ P and we denote o, by 73 to
simplify the notation for all @ € w;. Since (A, B) strictly admits finite changes,
for every a € w; and 7 < m, there exists (53 € wy such that

U aéza(;; and U bgzbéé.

tert £ert

[¢]

times, we can find uncountable subsets Iy and I; of
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Since S(A, B) has the ccc, for each i < m, there exists p* € S(A, B) such
that

o IFsa,B) It = {a € 031;7:};[ € G} is uncountable ”.
We note that A N 5 _
plrsam” I'= {a € u; {53} € G} ?

for all i < m. By strengthening p*’s if need, we may assume that there exists
N € w such that for all i # 5 < m, (p*, p/,N) is a good sequence. Then
without loss of generality again, we may moreover assume that for all @, 8 € wy
and 7 < m,

asi NN = ag, NN and b(;}; NN = b% N N.

We lel 7; , be a finite bijection for an isomorphism so that
Wi,m (a‘d'; N N:bJ; ﬂN) - <a53l ﬂN,b,;;n. N N>

for each i < m (and some (any) a € wy) and let 1; » be the isomorphism from
S(A, B)[p* onto S(A, B)[p™ induced by 7;». We note that for every i < n,
the calculations of ¥; ., are absolute and if {5;} Upt € S(A,B), then-

Yim ({85} UpY) = {05} p™
for all o € wy. For each i # j < m, we define 9; ; := (wj’m)—l 0 Yim. We note
that for every i # j < m, ¥ ;1 (S(A, B)p*) is an isomorphism onto S(A, B)[¢”,
and if {4%} U p* € S(A, B), then

vij ({8a}up’) = {84} up’

for all @ € w;. Using Lemma 2.9, since (C , ’D) is a name for a gap, we can define
S(A, B)-names I} and I}, for ¢ < m, such that for each 7 < m,

e p'lFsiam” both I3 and I} are uncountable subsets of I,
o pllFsap” forallae I§ and all 8 € I, U ce N U dg #07,
£€VE, g€l
o PO lrsan” I8 C¥mo (jm> and I? C Ym0 (jm> 7,
and
P rsan I8 C i (f8> and IIt C ;541 (If) .

This can be done because for every i # j < m, if u < p* and 7 € [w1|<* such
that

7 lFS(‘A,B)“ T € G ”,
then v; ;(u) < p? and

i (1) Fsam“ vi; (F) € G



and because of the property of 1; ;'s. (We note that S(A4, B) is not separative.)
We take any p < p™~! and a, 8 € w; such that

p “—S(A,B)“ & € fg”"land B € j'lm_l .
Then by the conditions of I} and I?, we note that for each i < m — 1,
Ym-1i(p) ks & €I and e It 7.

This means that for every i <m, pU T, U7 is a condition in S(A, B) and for
every i < m,

pUTL U Té IFsa,8)" vvg and 1;23 are incompatible in S(C, D) 7.

This implies that P, U Pg is pairwise incompatible in Q and o, and og are com-
patible in §(A, B), hence (Py, 04) and (Pg,05) are compatible in P x S(A, B),
which completes the proof of the claim. —i U

Proof of Theorem 2. Without loss of generality, we may assume that there are
two independent destructible gaps (A, B) and (C, D) both of which strictly admit
finite changes. Since S(A, B) x F(C, D) is ccc and S(A, B) is homogeneous, we
can consider (C, D) as an S(A, B)-name for a gap. As in the proof of Lemma 2.10,
let P be a forcing notion adding an uncountable antichain in S(A, B) x S(C, D)
by finite approximations. Then not only P x F(A, B) and P x S(A, B), but also
P x F(C,D) and P x S(C, D) have the ccc. So in the extension with P, both
(A, B) and (C, D) are still destructible gaps and S(A, B) x S(C, D) does not have
the countable chain condition. U

Proof of Theorem 3. This is just a corollary of Lemma 2.10. We fix one
destructible gap which strictly admits finite changes, and then by an iteration
with a finite support, we can force the desired statement. We note it is upward
closed that the forcing notion Q as in Lemma 2.10 has an uncountable antichain.
We notice that the continuum can be large. O
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