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Abstract

The double-impulse input is introduced as a substitute for the fling-step near-

fault ground motion, and a closed-form solution for the approximate elastic-plas-

tic response of a structure with viscous damping under the “critical double

impulse” is derived. Since only the free vibration appears under such a double

impulse, the energy approach plays an important role in the derivation of the

closed-form solution for a complicated elastic-plastic response with viscous damp-

ing. The quadratic function approximation for the damping force-deformation

relationship is introduced. The validity and accuracy of the proposed theory are

investigated through comparison of the results of the response analysis to the

corresponding one-cycle sinusoidal input and actual recorded ground motions.
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1. Introduction

After large earthquake events, such as the Parkfield earthquake
in 1966, the San Fernando earthquake in 1971, the Northridge
earthquake in 1994, the Hyogoken-Nanbu (Kobe) earthquake
in 1995 and the Chi-Chi (Taiwan) earthquake in 1999, various
aspects of near-fault ground motions have been clarified. A
near-fault ground motion is characterized by a few series of
pulse-like wavelets, and the effects of near-fault ground
motions on structural response have been investigated exten-
sively.1-5 In recent papers, fling-step and forward-directivity
inputs have been characterized by two or three sinusoidal
wavelets.1,4,6,7

In the previous studies, it was noted that such pulse-like
ground motions cause large deformations in elastic-plastic
structures, and it was made clear that the maximum response
under a pulse-like ground motion is related to the ratio of the
period of the pulse-like ground motion to the fundamental

natural period of the structure. Minami and Hayashi reduced a
multi-story building structure to a shear beam model and
showed that the number of modes to be included for represent-
ing the deformation concentration differs depending on the
ratio of the period of the pulse-like ground motion to the fun-
damental natural period of the structure.8

Although not limited to near-fault ground motions, some
effective methods that represent the ground motion as a
one-cycle sinusoidal wave have been proposed.9,10 Sakai
et al. showed that the elastic-plastic response under such
ground motion can be expressed by using the maximum
ground acceleration and the effective period.9 In other stud-
ies, the response characteristics under impulsive ground
motions were clarified from the viewpoint of energy input
per half-cycle.11,12

Most of the previous works on near-fault ground motions using
the half-cycle sinusoidal wave or wavelets address the elastic
response because the number of parameters (e.g., duration and
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amplitude of pulse, ratio of pulse frequency to structure natural
frequency) to be considered on this topic is large. In the previous
studies on treating the elastic-plastic response, the responses were
calculated numerically by using time-history response analysis.
Kojima and Takewaki introduced a double impulse or a triple

impulse as a substitute for the one-cycle sinusoidal wave or 1.5-
cycle sinusoidal wave for representing the main part of the near-
fault ground motion and derived the closed-form expression of
the elastic-plastic response of the undamped single-degree-of-
freedom (SDOF) elastic-perfectly plastic system and the
undamped SDOF bilinear hysteretic system under the critical
double impulse (or the critical triple impulse).13-16 The Fourier
amplitude of the double impulse and the triple impulse is similar
to that of the one-cycle sinusoidal wave and the 1.5-cycle sinu-
soidal wave in a certain frequency range, and the maximum
Fourier amplitude of the double impulse and the triple impulse
was adjusted to that of the one-cycle sinusoidal wave and the
1.5-cycle sinusoidal wave. Since the response under the impulse
can be expressed by the instantaneous change in the velocity of
the structural mass and only the free vibration appears after the
impulse input, the closed-form expression of a complicated elas-
tic-plastic response can be derived in a simple manner by using
the energy balance law. In particular, this approach focuses on
finding the critical timing that maximizes the peak deformation
and this theory is based on the concept of “critical excita-
tion.”17,18 The second impulse of the critical double impulse
acts at the zero restoring force timing after the first impulse (at
this timing the velocity of the undamped system attains its max-
imum). Therefore, the closed-form expression of the resonant
input period (the critical time interval of the double impulse)
can also be derived by using the double impulse. Although the
resonant response and the resonant equivalent frequency of the
elastic-plastic system under the sinusoidal input must be com-
puted for a specified input level by changing the excitation fre-
quency in a parametric manner when using the equivalent
linearization method19,20 or time-history response analysis, the
critical response and the critical time interval of the elastic-plas-
tic system can be obtained directly without the repetitive proce-
dure when using the proposed method. The closed-form
expression of the uncritical response can also be obtained by
using the analytical solution of free vibration that corresponds
to the initial condition.
In this study, the closed-form expression of the maximum

deformation of the undamped SDOF elastic-perfectly plastic
system under the critical double impulse is extended to a
SDOF system with both viscous damping and the elastic-per-
fectly plastic restoring force characteristic. Once the present
study has been completed, the critical excitation theory for
the elastic-plastic system can be used for vibration control
and base-isolation structures including additional damping.
However, it may be difficult to obtain the analytical solution
for the response of a system with both viscous damping and
elastic-plastic hysteretic damping when solving the differen-
tial equation, even by using the double impulse. Therefore,
quadratic function approximation of the damping force-defor-
mation relation is introduced here. The work done by the
damping force can be evaluated simply by using the quadratic
function approximation, and the closed-form maximum elas-
tic-plastic response can be derived approximately by using
the energy balance law and the assumption of the critical tim-
ing. The accuracy of the quadratic function approximation of
the damping force-deformation relation and the validity of
the assumption of the critical timing are investigated by using
time-history response analysis.

It may be possible to design a building with high robust-
ness and redundancy by evaluating the worst-case response
(critical response) to near-fault ground motion. Although the
maximum ground velocity is given as a specified index of
ground motions in the current structural design procedure of
high-rise buildings and base-isolated buildings, the character-
istic period of ground motions is extremely uncertain. There-
fore, it may be possible to design a building with higher
safety by evaluating the critical elastic-plastic response with
variable ground motion period for the specific input level.

2. Modeling of near-fault ground motion with a double
impulse

The fling-step input (fault-parallel) of a near-fault ground motion
can be characterized by a one-cycle sinusoidal wave, and the for-
ward-directivity input (fault-normal) can be characterized by a
series of three sinusoidal wavelets as shown in Figure 1.6,7 The
double impulse and the triple impulse were introduced as substi-
tutes for the fling-step input and the forward-directivity input in
the previous papers.13-16 In this paper, the double impulse is
used. The critical time interval in the double impulse for the
undamped system (with corresponds to the resonant frequency
in the one-cycle sinusoidal wave) can be obtained directly. In
contrast, the resonant frequency of the one-cycle sinusoidal
wave has to be computed for a specified input level by changing
the input frequency in a parametric manner and transforming the
structural model in the conventional approach.19,20

A ground acceleration €ugðtÞ in terms of the double impulse
is expressed by

€ugðtÞ ¼ VdðtÞ � Vdðt � t0Þ; ð1Þ

where V is the given initial velocity (the input velocity of each
impulse), t0 is the time interval between two impulses and d(t)
is the Dirac delta function. The comparison of the double
impulse with the corresponding one-cycle sinusoidal wave is
shown in Figure 1A. The Fourier transform of €ugðtÞ of the
double impulse can be derived as

€UgðtÞ ¼
Z 1

�1
fVdðtÞ � Vdðt � t0Þge�ixtdt ¼ Vð1� e�ixtÞ; ð2Þ

where i denotes the imaginary unit.
It is necessary to adjust the input level of the double impulse

to that of the one-cycle sinusoidal wave for the comparison of
the elastic-plastic responses. In this paper, the input level of the
double impulse and the one-cycle sinusoidal wave is adjusted
based on the equivalence of the maximum Fourier ampli-
tude.13,15,16 The validity of this adjustment method has been
shown for undamped bilinear hysteretic and elastic-perfectly
plastic systems.13,15,16 The ratio of the maximum ground veloc-
ity Vp of the one-cycle sinusoidal wave to the input velocity
level of the double impulse can be shown to be constant by
using the adjustment method based on the equivalence of the
Fourier amplitude.16 Therefore, the one-cycle sinusoidal wave
that corresponds to the double impulse based on the equiva-
lence of the Fourier amplitude can be obtained as follows.

€uSWg ðtÞ ¼ 0:5xpVp sinðxptÞ ð0� t� Tp ¼ 2t0Þ; ð3Þ

where Vp/V = 1.2222,16 and Tp and xp = 2p/Tp denote the per-
iod and the circular frequency, respectively, of the correspond-
ing one-cycle sinusoidal wave. The relation between the time
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interval t0 and the period Tp is Tp = 2t0. The starting times of the
double impulse and the corresponding one-cycle sinusoidal
wave differ by t0/2, as shown in Figure 1A. This difference does
not affect the Fourier amplitude of the one-cycle sinusoidal
wave. The one-cycle sinusoidal wave that is defined in Equa-
tion (3) is used for verification of the closed-form expression of
the elastic-plastic response under the critical double impulse.

3. SDOF elastic-perfectly plastic system with viscous
damping

Consider an SDOF elastic-perfectly plastic system of mass m,
stiffness k, and damping coefficient c. The damping coefficient

is constant, regardless of yielding. x1 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
, T1 = 2p/x1

and h ¼ c=ð2 ffiffiffiffiffiffi
km

p Þ denote the undamped natural circular fre-
quency, the undamped natural period, and the damping ratio,

respectively. x0
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
x1 and T 0

1 ¼ 2p=x0
1 denote the

damped natural circular frequency and the damped natural per-
iod, respectively. u, fR, and fD are the displacement of the mass
relative to the ground (deformation of the system), the restor-
ing force of the model, and the damping force, respectively. dy
and fy denote the yield deformation and the yield force. These
parameters will be treated as normalized parameters to capture
the intrinsic relation between the input parameters and the
elastic-plastic response.

4. Elastic-perfectly plastic response of the undamped
system under the critical double impulse

Kojima and Takewaki have derived a closed-form expression
of the elastic-perfectly plastic response of an undamped SDOF
system under the critical double impulse.13 The maximum
elastic-plastic responses of the undamped SDOF system under
the critical double impulse can be derived by an energy
approach without solving directly the equation of motion. In
other words, the maximum deformation can be calculated by

using the energy balance law, in which the kinetic energies
given at the times of the first impulse and the second impulse
are transformed into the sum of the elastic strain energy corre-
sponding to the yield deformation and the energy dissipated
during the plastic deformation. The critical elastic-plastic
response can be derived in closed form, and the critical time
interval (corresponding to a half of the resonant period) can be
derived automatically for the increasing input velocity level of
the double impulse by using this method. Since a similar the-
ory can be developed for deriving the elastic-plastic response
of a damped SDOF system, the closed-form expression of the
maximum deformation of the undamped elastic-perfectly plas-
tic system that was derived in the previous paper13 is
explained briefly in this section.
The maximum deformations after the first impulse and the

second impulse are denoted by umax1 and umax2 (umax1 and
umax2 are the absolute values), respectively, as shown in Fig-
ure 2, and the maximum deformation under the critical double
impulse is evaluated by umax = max(umax1, umax2). The plastic
deformations after the first impulse and the second impulse are
denoted by up1 and up2, respectively. The maximum elastic-
perfectly plastic response of the undamped SDOF system
under the critical double impulse can be classified into one of
three cases, depending on the input velocity level (yielding
stage). CASE 1 is the case of elastic response even after the
second impulse. CASE 2 is the case of plastic deformation
only after the second impulse. CASE 3 is the case of plastic
deformation after the first impulse. Figure 2 shows a schematic
diagram of CASE 1, CASE 2, and CASE 3. Let Vy(=x1dy)
denote the input velocity level of the double impulse at which
the maximum deformation of the undamped SDOF system just
attains the yield deformation after the first impulse: this param-
eter is a strength parameter of the SDOF system. Vy is used
for normalizing the input velocity level, and V/Vy is simply
called the input velocity level. umax1 and umax2 with respect to
V/Vy in CASES 1–3 can be obtained as follows by using the
energy balance law.

Figure 1. Modeling of near-fault ground motion: (A) Fling-step input and double impulse, (B) Forward-directivity input and triple impulse
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umax1

dy
¼ V=Vy for 0�V=Vy\1:0 ðCASE1;2Þ

0:5f1þðV=VyÞ2g for 1:0�V=Vy ðCASE3Þ
�

ð4Þ

umax2

dy
¼

2V=Vy for 0�V=Vy\0:5 ðCASE1Þ
0:5 1þð2V=VyÞ2

n o
for 0:5� V

Vy
\1:0 ðCASE2Þ

1:5þðV=VyÞ for 1:0�V=Vy ðCASE3Þ

8><
>:

ð5Þ

Figure 3 shows the maximum deformation of the undamped
SDOF elastic-perfectly plastic system under the critical double
impulse normalized by the yield deformation with respect to
input velocity level V/Vy. The critical timing of the second
impulse (the critical time interval), which maximizes the maxi-
mum deformation umax2 after the second impulse, is character-
ized as the time when the restoring force is zero in the
unloading process after the first impulse.13 In CASES 1 and 2,
since the response after the first impulse is in an elastic range,
the critical time interval tc0 is half of the initial natural period
T1 of the SDOF system. In CASE 3, since the SDOF system
enters the yielding stage after the first impulse, it is necessary
to derive the expression by solving the equation of motion.
The critical time interval tc0 can be obtained by solving the
equation of motion as follows.

t0
c

T1
¼

0:5 for 0�V=Vy\1:0 ðCASE1; 2Þ
arcsinðVy=VÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV=VyÞ2 � 1

q� �
=ð2pÞ þ 1=4

for 1:0�V=Vy ðCASE 3Þ

8>><
>>:

ð6Þ

Figure 4 shows the critical time interval tc0, normalized by
T1, with respect to input velocity level V/Vy.

5. Linear elastic response of the damped system under
the critical double impulse

In this section, a closed-form expression for the maximum
deformation of an elastic SDOF system with viscous damping
under the critical double impulse is derived to investigate the

effect of viscous damping on the response under the double
impulse.
Since the response of the linear elastic SDOF system after

the second impulse can be obtained by simply superposing
the free vibrations after the first impulse and the second
impulse, the deformation response and the velocity response
after the first impulse and the second impulse can be
obtained, respectively, with respect to general time interval t0
as follows.

uðtÞ ¼ �ðV=x0
1Þe�hx1t sinðx0

1tÞ ðt\t0Þ; ð7aÞ

_uðtÞ¼�ðV=
ffiffiffiffiffiffiffiffiffiffiffiffi
1�h2

p
Þe�hx1tcosðx0

1tþ/Þ ðt\t0Þ; ð7bÞ

uðtÞ¼� V

x0
1

e�hx1 t sinðx0
1tÞ þ

V

x0
1

e�hx1ðt�t0Þ sinfx0
1ðt�t0Þg

¼� V

x0
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2ehx1 t0 cosðx0

1t0Þþe2hx1t0

q
e�hx1tsinðx0

1tþhÞ
ðt�t0Þ;

ð8aÞ

_uðtÞ ¼ � V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ehx1t0 cosðx0

1t0Þ þ e2hx1t0

1� h2

r
e�hx1t

cosðx0
1t þ hþ /Þ ðt� t0Þ;

ð8bÞ

where

/ ¼ arctanðh=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
Þ; ð9aÞ

h¼

arctan
ehx1 t0 sinðx0

1
t0Þ

1�expðhx1t0Þcosðx0
1
t0Þ 1�ehx1t0 cosðx0

1t0Þ�0
� �

arccos
1�ehx1 t0 cosðx0

1
t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�2ehx1 t0 cosðx0
1
t0Þþe2hx1 t0

p 1�ehx1t0 cosðx0
1t0Þ\0

and ehx1t0 sinðx0
1t0Þ�0

� �

�arccos
1�ehx1 t0 cosðx0

1
t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�2ehx1 t0 cosðx0
1
t0Þþe2hx1 t0

p 1�ehx1t0 cosðx0
1t0Þ\0

and ehx1t0 sinðx0
1t0Þ\0

� �

8>>>>><
>>>>>:

:

ð9bÞ

The deformation responses after the first impulse and the
second impulse are maximized at the time at which _u ¼ 0. The

Figure 2. Maximum deformation of the elastic-perfectly plastic model under the critical double impulse: (A) CASE 1: elastic range, (B) CASE 2:
yielding after 2nd impulse, (C) CASE 3: yielding after 1st impulse (●: 1st impulse, ▲: 2nd impulse)
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maximum deformations umax1 and umax2 (absolute values) after
the first impulse and the second impulse, respectively, can be
obtained as follows.

umax 1 ¼ ðV=x0
1Þ expð�hx1t0Þ sin x0

1t0
� �

t0\tmax 1ð Þ
ðV=x0

1Þ expð�hx1tmax 1Þ sin x0
1tmax 1

� �
t0 � tmax 1ð Þ

�
;

ð10aÞ

umax 2 ¼�V

x0
1

e�hx1tmax 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ehx1t0 cosðx0

1t0Þ þ e2hx1t0

q

sin x0
1tmax 2 þ h

� �
;

ð10bÞ

where

tmax 1 ¼ f0:25� /=ð2pÞgT 0
1; ð11aÞ

tmax 2 ¼ ð4N � 1Þ=4� ðhþ /Þ=ð2pÞf gT 0
1: ð11bÞ

N is a positive integer satisfying N � 1�ðt0=T 0
1Þ\N.

From Equations (10a), (10b), (11a), and (11b), the relation
between the time interval t0 and the maximum deformation
umax = max(umax1, umax2) can be obtained explicitly. Figure 5
shows the maximum deformation umax = max(umax1,umax2)
with respect to the time interval t0 for various damping ratios
h = 0.01,0.02,0.05,0.1,0.2,0.5. The abscissa is the time interval
t0, normalized by the critical time interval tc0, and the ordinate
is the maximum deformation umax, normalized by 2V/x1,
which is the maximum deformation of the undamped SDOF
system under the critical double impulse. The critical time
interval of the elastic SDOF system is tc0 ¼ T 0

1=2. This can be
proved by setting dumax 2=dt0jt0¼tc

0
¼ 0 (see Appendix 1), and

the restoring force is zero at the time t ¼ T 0
1=2 after the first

impulse (the first impulse acts at the time t = 0). One should
ensure that the velocity response of the damped SDOF system
does not attain the maximum at the critical timing (the zero
restoring force timing) after the first impulse. The maximum
deformation umax1, umax2 of the elastic SDOF system with vis-
cous damping under the critical double impulse can be
obtained as follows by substituting t0 ¼ T 0

1=2 into Equa-
tions (10a), (10b), (11a) and (11b).

umax 1 ¼ V

x1

exp � hffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p p
2
� arctan

hffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
� �� �

ð12aÞ

umax 2 ¼ V

x1

exp � hffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p 3

2
p� arctan

hffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
� �� �

1þ exp
phffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
� �� � ð12bÞ

Figure 6 presents a comparison of the maximum deforma-
tion under the double impulse with respect to the time interval
t0 and the maximum deformation under the corresponding one-
cycle sinusoidal wave with respect to the input period Tp. The
damping ratios are taken as h = 0.05,0.2 in Figure 6. The
input period Tp is changed for the specific maximum velocity
calculated by Vp = 1.2222V with the input velocity level V.
The critical input period Tc

p is double the critical time interval
tc0 because of the correspondence between the double impulse
and the one-cycle sinusoidal wave. The abscissa
t0=t

c
0ð¼ Tp=T

c
pÞ for the corresponding sinusoidal wave denotes

the input period Tp, normalized by the approximate critical
period Tc

pð¼ 2tc0Þ. Although the maximum deformation under
the corresponding one-cycle sinusoidal wave is maximized at a
period that is slightly shorter than the critical input period Tc

p
that is calculated by using the critical double impulse, the
maximum deformation under the critical double impulse is in
good correspondence with the upper bound of the maximum
deformation under the corresponding one-cycle sinusoidal
wave.

6. Elastic-plastic response of the damped system under
the critical double impulse

6.1 Approximate critical response of the elastic-plastic system

with viscous damping based on the energy balance law

In this section, a closed-form expression is derived for the
maximum deformation of the elastic-perfectly plastic system
with viscous damping under the critical double impulse. The

Figure 3. Maximum deformation umax/dy for input level V/Vy
13

Figure 4. Critical impulse timing tc0/T1 for input level V/Vy
13
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maximum deformation of the undamped elastic-perfectly plas-
tic system under the critical double impulse can be evaluated
by using the energy balance law, in which the kinetic energies
given at the time of the first impulse and the second impulse
are transformed into the sum of the hysteretic energy and the
maximum elastic strain energy corresponding to the yield
deformation. In the elastic-plastic system with viscous damp-
ing, the kinetic energies given at the first impulse and the sec-
ond impulse are equal to the sum of the elastic strain energy

corresponding to the yield deformation, the energy dissipated
during the plastic deformation and the work done by the
damping force (the energy consumed by viscous damping).
This corresponds to the energy balance law for the elastic-plas-
tic system with viscous damping (Figure 7). However, it is dif-
ficult to obtain the exact analytical solution for the response of
the system with both hysteretic damping and viscous damping
by solving the differential equation, even by using a simple
input such as a double impulse. In this study, a method is

Figure 5. Maximum elastic deformation umax/dy with viscous damping under the double impulse for varied impulse timing: (A) h = 0.01, (B)
h = 0.02, (C) h = 0.05, (D) h = 0.1, (E) h = 0.2, (F) h = 0.5

Figure 6. Comparison of maximum elastic deformation umax/dy with viscous damping under the double impulse and the equivalent one-cycle
sine wave for varied impulse timing: (A) h = 0.05, (B) h = 0.2
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developed for approximating the damping force-deformation
relation by using a quadratic function whose vertex is at the
zero-velocity point (the point of maximum displacement). A
quadratic function that passes through both the acting point of
the first or second impulse, and the zero-velocity point may be
the simplest function that can represent the behavior of the
damping force-deformation relation near the zero-velocity
point. Using this approximation, the work done by the damp-
ing force can be represented by using the damping force that
is calculated based on the initial velocity (the velocity just
after the first or second impulse) and the maximum deforma-
tion.
According to Sections 4 and 5, the critical timing of the sec-

ond impulse of both the linear elastic system with viscous
damping and the undamped elastic-plastic system is the zero
restoring force timing in the unloading process after the first
impulse. Therefore, it can be assumed that the critical timing
of the second impulse of the elastic-plastic system with vis-
cous damping is also the zero restoring force timing in the
unloading process after the first impulse. The validity of this
assumption will be investigated numerically in Section 6.5. In
this section, the closed-form expression is derived approxi-
mately for the maximum deformation of the SDOF elastic-per-
fectly plastic system with viscous damping under the critical
double impulse by using (i) the quadratic function that approx-
imates the damping force-deformation relation, (ii) the assump-
tion that the zero restoring force timing is the critical timing
of the second impulse and (iii) the energy balance law for the
elastic-plastic system with viscous damping. Furthermore, the
accuracy of the quadratic function approximation for the
damping force-deformation relation and the validity of the
assumption that the zero restoring force timing is the critical
timing of the second impulse are investigated by using time-
history response analysis.
The maximum deformations after the first impulse and the

second impulse are denoted by umax1 and umax2 (umax1 and
umax2 are the absolute values), respectively, as shown in Fig-
ure 7, and the maximum deformation under the critical dou-
ble impulse is evaluated by umax = max(umax1,umax2). The
elastic-plastic response of the SDOF elastic-perfectly plastic
system with viscous damping under the critical double
impulse can be classified into one of three cases, depending
on the input velocity level. CASE 1 is the case of elastic
response, even after the second impulse. CASE 2 is the case
of plastic deformation only after the second impulse. CASE 3
is the case of plastic deformation after the first impulse. Fig-
ure 8 shows a schematic diagram of CASE 1, CASE 2, and
CASE 3. In this section, Vy is equal to Vy(=x1dy), as defined
in Section 4.

6.2 CASE 1: Elastic response even after second impulse

First, consider CASE 1, which is the case of the elastic
response, even after the second impulse. Figure 8A shows the
evaluation process of the maximum deformations umax1, umax2

after the first impulse and the second impulse, respectively, for
the elastic case (CASE 1). Although the exact solution for the
elastic response of the system with viscous damping was
derived in Section 5, an approximate closed-form solution of
the maximum deformation is derived here by using the quadra-
tic function approximation for the damping force-deformation
relation. The approximate solution that is derived in this sec-
tion is a good approximation of the exact solution that was
obtained in Section 5.
The work done by the damping force after the first impulse

is derived by using the quadratic function approximation for
the damping force-deformation relation. The damping force-
deformation relation after the first impulse is approximated by
a quadratic function with vertex (u, fD) = (�umax1, 0) and
passing through the point (u, fD) = (0, �cV). fD can be
obtained as follows.

fD ¼ �cV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðu=umax 1Þ

p
ð13Þ

The work done by the damping force can be obtained by
integrating Equation (13) from u = 0 to u = �umax1.Z �umax1

0

fDdu¼
Z �umax1

0

f�cV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðu=umax1Þ

p
gdu¼ð2=3ÞcVumax1

ð14Þ

The energy balance law between the point of the first
impulse and the point at which the maximum deformation is
attained can be expressed as follows by using Equation (14).

mV2=2 ¼ kumax 1
2=2þ ð2=3ÞcVumax 1 ð15Þ

From Equation (15), umax1 can be obtained by

umax 1=dy ¼ f�ð4=3Þhþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð16=9Þh2 þ 1

p
gðV=VyÞ: ð16Þ

Similarly, umax2 can be derived. The velocity vc at the zero
restoring force timing can be obtained as follows by using the
critical time interval tc0 ¼ T 0

1=2 and Equation (7b).

vc ¼ V expð�ph=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
Þ ð17Þ

The work done by the damping force is derived by using the
quadratic function approximation. The damping force-deforma-
tion relation after the second impulse is approximated by a

Figure 7. Quadratic approximation of damping force-deformation relation and its application to evaluation of maximum deformation of the
elastic-perfectly plastic model with viscous damping: (A) Restoring force-deformation relation, (B) Damping force-deformation relation
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quadratic function with vertex (u, fD) = (umax2, 0) and passing
through the point (u, fD) = (0, c(vc + V)), as shown in Fig-
ure 8A. fD can be obtained as follows.

fD ¼ cðvc þ VÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðu=umax 2Þ

p
ð18Þ

The work done by the damping force after the second
impulse can be obtained by integrating Equation (18) from
u = 0 to u = umax2.Z umax 2

0

fDdu ¼
Z umax 2

0

fcðvc þ VÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðu=umax 2Þ

p
gdu

¼ ð2=3Þcðvc þ VÞumax 2

ð19Þ

The energy balance law between the point of the second
impulse and the point at which the maximum deformation is
attained can be expressed as follows by using Equation (19).

mðvc þ VÞ2=2 ¼ kumax 2
2=2þ ð2=3Þcðvc þ VÞumax 2 ð20Þ

From Equations (17) and (20), umax2 can be obtained by

umax2=dy ¼ 1þ e�ph=
ffiffiffiffiffiffiffiffi
1�h2

p	 

�ð4=3Þhþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð16=9Þh2 þ 1

pn o
ðV=VyÞ

ð21Þ

6.3 CASE 2: Plastic deformation only after the second impulse

Second, consider CASE 2, where the system enters the yield-
ing stage only after the second impulse. Figure 8B shows the
evaluation process of the maximum deformations umax1,umax2

after the first impulse and the second impulse, respectively, in
CASE 2. If the maximum deformation umax2 after the second
impulse attains the yield deformation dy, the system enters the
plastic range after the second impulse for input that is larger
than this boundary. Therefore, the boundary input velocity
level between CASE 1 and CASE 2 can be obtained as follows
from Equation (21) and umax2 = dy.

V=Vy ¼ 1þ e�ph=
ffiffiffiffiffiffiffiffi
1�h2

p	 
�1

ð4=3Þhþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð16=9Þh2 þ 1

pn o
ð22Þ

Since the maximum deformation just after the first impulse
is in the elastic range, umax1 in CASE 2 is also obtained by
Equation (16). umax2 in CASE 2 is derived in this section. The
work done by the damping force in CASE 2 is derived by
using the quadratic function approximation. As in CASE 1, vc
in CASE 2 can be obtained by Equation (17) due to the elastic
response just after the first impulse. The work done by the
damping force after the second impulse in CASE 2 can be
expressed by Equation (19) by using the quadratic function
approximation, as in CASE 1. The energy balance law
between the point of the second impulse and the point at
which the maximum deformation is attained can be expressed
as follows by using Equation (19).

mðvc þ VÞ2=2 ¼ fydy=2þ fyðumax 2 � dyÞ þ ð2=3Þcðvc þ VÞumax 2

ð23Þ

From Equations (17) and (23), umax2 can be obtained as

umax 2

dy
¼

1þ 1þ exp ð�ph
. ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h2
p

Þ
n o2

ðV=VyÞ2

2þ ð8h=3Þ 1þ exp ð�ph
. ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h2
p

Þ
n o

ðV=VyÞ
: ð24Þ

6.4 CASE 3: Plastic deformation, even after the first impulse

Finally, consider CASE 3, where the system enters the yield-
ing stage, even after the first impulse. Figure 8C shows the
evaluation process of the maximum deformations umax1,umax2

after the first impulse and the second impulse, respectively, in
CASE 3. If the maximum deformation umax1 after the first
impulse attains the yield deformation dy, the system enters the
plastic range after the first impulse for input that is larger than

Figure 8. Evaluation of maximum elastic-plastic deformation under the critical double impulse using energy balance and quadratic approxima-
tion of the damping force-deformation relation: (A) CASE 1: elastic range, (B) CASE 2: yielding after 2nd impulse, (C) CASE 3: yielding after 1st
impulse (●: 1st impulse, ▲: 2nd impulse)
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this boundary. Therefore, the boundary input velocity level
between CASE 2 and CASE 3 can be obtained as follows from
Equation (16) and umax1 = dy.

V=Vy ¼ ð4=3Þhþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð16=9Þh2 þ 1

p
ð25Þ

The maximum deformation umax1 after the first impulse is
derived. The work done by the damping force after the first
impulse in CASE 3 can be expressed by Equation (14) by
using the quadratic function approximation, as in CASE 1. The
energy balance law between the point of the first impulse and
the point at which the maximum deformation is attained can
be expressed as follows by using Equation (14).

mV2=2 ¼ fydy=2þ fyðumax 1 � dyÞ þ ð2=3ÞcVumax 1 ð26Þ

From Equation (26), umax1 can be obtained by

umax 1=dy ¼ fðV=VyÞ2 þ 1g=f2þ ð8h=3ÞðV=VyÞg ð27Þ

The maximum deformation umax2 after the second impulse is
derived next. The velocity vc at the zero restoring force timing
after the first impulse can be obtained as follows by solving
the equation of motion in the unloading process.

vc¼Vy exp ð�h=
ffiffiffiffiffiffiffiffiffiffiffiffi
1�h2

p
Þ 0:5pþarctanðh=

ffiffiffiffiffiffiffiffiffiffiffiffi
1�h2

p
Þ

n oh i
ð28Þ

The detailed derivation of Equation (28) is shown in
Appendix 2. The work done by the damping force is derived
by using the quadratic function approximation. The damping
force-deformation relation after the second impulse is approxi-
mated by a quadratic function with vertex (u, fD) = (umax2,0)
and passing the point (u, fD) = (�umax1 + dy, �c(vc + V)), as
shown in Figure 8C. fD can be obtained as follows.

fD ¼ cðvc þ VÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðumax 2 � uÞ=ðumax 1 þ umax 2 � dyÞ

q
ð29Þ

The work done by the damping force after the second
impulse can be obtained by integrating Equation (29) from
u = umax1 + dy to u = umax2.Z umax2

�umax1þdy

fcðvcþVÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðumax2�uÞ=ðumax1þumax2�dyÞ

q
gdu

¼ð2=3ÞcðvcþVÞðumax1þumax2�dyÞ
ð30Þ

The energy balance law between the point of the second
impulse and the point at which the maximum deformation
is attained can be expressed as follows by using Equa-
tion (30).

mðvc þ VÞ2=2 ¼fydy=2þ fyðumax 1 þ umax 2 � 2dyÞ
þ ð2=3Þcðvc þ VÞðumax 1 þ umax 2 � dyÞ

ð31Þ

From Equations (28) and (31), umax2 can be obtained by

umax2

dy
¼� umax1

dy
þ 1

þ
V
Vy
þ exp �hffiffiffiffiffiffiffiffi

1�h2
p p

2
þ arctan hffiffiffiffiffiffiffiffi

1�h2
p

	 
n oh i2
þ 1

2þ 8h
3

V
Vy
þ exp �hffiffiffiffiffiffiffiffi

1�h2
p p

2
þ arctan hffiffiffiffiffiffiffiffi

1�h2
p

	 
n oh i :
ð32Þ

6.5 Maximum deformation under the critical double impulse

with respect to the input velocity level

Figure 9 shows a comparison of an approximate solution for
the maximum deformation umax/dy = max(umax1/dy,umax2/dy)
under the critical double impulse with respect to the input
velocity level V/Vy, with the maximum deformation calcu-
lated by the time-history response analysis without the quad-
ratic function approximation of the damping force-
deformation relation. The Newmark-b method (the constant
average acceleration method: Δt/T1 = 10�4) is used in the
time-history response analysis, and the maximum deformation
under the critical double impulse for various time intervals is
calculated by changing the time interval t0 in a parametric
manner. The damping ratios h = 0,0.02,0.05,0.1,0.2,0.5 are
employed in Figure 9. The approximate solution with h = 0
is equal to the closed-form solution of the undamped system
that is derived in a previous paper.13 In comparison with the
critical response that was obtained by the time-history
response analysis, the approximate closed-form solution that
was derived in Sections 6.2-6.4 can simulate the elastic-plas-
tic response of the system with viscous damping under the
critical double impulse with reasonable accuracy, except
when V/Vy > 3 in the model with h = 0.2,0.5. The region in
which umax2 > umax1 is satisfied decreases as the damping
ratio increases.
Figure 10 shows the critical time interval tc0 that was cal-

culated by time-history response analysis with respect to the
input velocity level. The closed-form expression of the criti-
cal time interval tc0 of the undamped system was derived by
solving the equation of motion in the previous paper.13

Since it is difficult to derive the critical time interval for
the system with viscous damping by solving the equation of
motion, the critical time interval is obtained here by using
time-history response analysis. From Figure 10, the time
interval becomes shorter as the damping ratio increases at
the input velocity level at which the system enters the plas-
tic region.
Figure 11 shows a comparison of the restoring force defor-

mation relation and the damping force-deformation relation
that were obtained by using the quadratic function approxima-
tion with those that were obtained by time-history response
analysis. h = 0.05 is employed and Figures 11A-C present the
comparisons for V/Vy = 0.4 in CASE 1, V/Vy = 0.8 in CASE
2, and V/Vy = 2.0 in CASE 3, respectively. According to Fig-
ure 11, the damping force-deformation relation can be approxi-
mated properly by a quadratic function.
Figure 12 shows umax 2=u

c
max 2 with respect to the varying

time interval t0 and the restoring force at the time t = t0 after
the first impulse for V/Vy = 2.0, h = 0.05, obtained by time-
history response analysis. In Figure 12, umax2 and ucmax 2 denote
the maximum deformations after the second impulse under the
double impulse with the varying time interval and under the
critical double impulse (the maximum value of umax2), respec-
tively. umax2 and ucmax 2 are calculated by time-history response
analysis. One of the ordinates of Figure 12 denotes umax2, nor-
malized by ucmax 2, and the other denotes the restoring force f at
t = t0, normalized by the yield force fy. According to Fig-
ure 12, the restoring force becomes zero at the time t = t0 at
which umax2 reaches ucmax 2. Therefore, the zero restoring force
timing after the first impulse is the critical timing of the sec-
ond impulse of the SDOF elastic-perfectly plastic system with
viscous damping.
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7. Accuracy check by time-history response analysis to
the one-cycle sinusoidal wave

To check the accuracy of using the double impulse as a substi-
tute for the one-cycle sinusoidal wave in representing the fling-
step near-fault ground motions, time-history response analysis of
the SDOF elastic-perfectly plastic system with viscous damping
under the one-cycle sinusoidal wave is conducted. The maxi-
mum velocity Vp of the corresponding one-cycle sinusoidal
wave is adjusted so that the maximum Fourier amplitude of the
one-cycle sinusoidal wave is equal to that of the double
impulse.13,15,16 Equation (3) is used as an acceleration wave-
form of the one-cycle sinusoidal wave. The period Tp of the one-
cycle sinusoidal wave is Tp ¼ 2tc0, where tc0 is calculated by
time-history response analysis, as shown in Figure 10.
Figure 13 shows a comparison of the maximum deformation

of the SDOF elastic-perfectly plastic system with viscous
damping under the critical double impulse with that under the
corresponding one-cycle sinusoidal wave for the damping
ratios h = 0,0.02,0.05,0.1,0.2,0.5. The maximum deformation
of the undamped system under the critical double impulse is in

Figure 9. Comparison of the maximum elastic-plastic deformation umax/dy of the model with viscous damping under the critical double impulse
using the quadratic approximation of the damping force-deformation relation with that obtained by time-history response analysis: (A) h = 013,
(B) h = 0.02, (C) h = 0.05, (D) h = 0.1, (E) h = 0.2, (F) h = 0.5

Figure 10. Critical impulse timing tc0/T1 for varied input level V/Vy in
models with various damping ratios
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good agreement with that under the one-cycle wave in the
range of the input velocity level V/Vy < 3. As the damping
ratio increases, the maximum deformation under the critical
double impulse corresponds to that under the one-cycle sinu-
soidal wave in a wider range of input velocity level. This is
because the maximum deformation after the first impulse exhi-
bits better correspondence with that under the first half-cycle
of the corresponding one-cycle sinusoidal wave as the damping
ratio increases. The adjustment method of the input level of
the double impulse and the corresponding one-cycle sinusoidal
wave based on the equivalence of the maximum Fourier ampli-
tude is appropriate for the elastic-plastic system with viscous
damping.

8. Applicability of the proposed theory to actual
recorded ground motion

The applicability of the proposed theory to actual recorded
ground motion is investigated through the comparison of the
critical elastic-plastic response under the near-fault ground
motion with the elastic-plastic response under the critical dou-
ble impulse. The Rinaldi station fault-normal component dur-
ing the Northridge earthquake in 1994 and the Kobe

Figure 11. Comparison of elastic-plastic responses under the critical double impulse that were obtained using quadratic approximation of
damping force-deformation relation with those that were obtained by time-history response analysis (h = 0.05): (A) V/Vy = 0.4, (B) V/Vy = 0.8, (C)
V/Vy = 2.0

Figure 12. Maximum deformation after the 2nd impulse umax2/dy

and restoring force f/fy at t = t0 for t0/t
c
0 (V/Vy = 2.0, h = 0.05)
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University NS component (almost fault-normal) during the
Hyogoken-Nanbu (Kobe) earthquake in 1995 are used as the
near-fault ground motions. The accelerograms of these two
ground motions are shown in Figure 14. Although these are
the fault-normal ground motions, these are represented by the

double impulse in this paper. The main part of the recorded
ground motion acceleration is modeled as a one-cycle sinu-
soidal wave, as shown in Figure 14, and the one-cycle sinu-
soidal wave is substituted by the double impulse by using the
method shown in Section 2.

Figure 13. Comparison of the maximum elastic-plastic deformation umax/dy of the model with viscous damping under critical double impulse
(quadratic function approximation) with that under the equivalent one-cycle sine wave: (A) h = 0,13 (B) h = 0.02, (C) h = 0.05, (D) h = 0.1, (E)
h = 0.2, (F) h = 0.5

Figure 14. Recorded near-fault ground motion and corresponding one-cycle sine wave: (A) Rinaldi Station FN comp. (Northridge 1994), (B)
Kobe Univ. NS comp. (Hyogoken-Nanbu 1995)
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Although the critical double impulse is determined for a
given structural parameter Vy in Section 6, the structural
parameter is selected to approximately maximize the response
for a given input velocity V of the actual recorded ground
motion in this section. This procedure is similar to the elastic-
plastic response spectrum (changing the strength parameter),
which was developed in 1960-1970.21 In this paper, a method
for evaluating the critical elastic-plastic response under the
near-fault ground motion that is used in the literature16 is
employed. The input velocity level of the Rinaldi station fault-
normal component is V = 1.64[m/s] and that of the Kobe
University NS component is V = 0.677[m/s] by the method in
the literature.16

Figures 15A and B show a comparison of the critical elas-
tic-plastic response under the Rinaldi station fault-normal com-
ponent and the Kobe University NS component with the
proposed closed-form expression of the elastic-plastic response
under the critical double impulse. The ordinate presents the
maximum amplitude of deformation (the sum of umax1 and
umax2), and the abscissa is the input velocity level V/Vy. In
comparison with the undamped case shown in figures 15a and
16a in the literature,16 the elastic-plastic response under the
critical double impulse corresponds well to the critical elastic-
plastic response under the actual recorded ground motion in a
wide range of the input velocity level, owing to the existence
of viscous damping.

9. Conclusions

The double impulse was introduced as a substitute for the one-
cycle sinusoidal wave in representing the main part of a near-
fault ground motion. A closed-form expression was derived for
the maximum deformation of the SDOF elastic-perfectly plas-
tic system with viscous damping under the critical double
impulse. The detailed conclusions are summarized as follows:

(1) A closed-form solution was derived approximately for
the maximum deformation of the SDOF elastic-perfectly
plastic system with viscous damping under the critical
double impulse. It is difficult to obtain the exact analyti-
cal solution of the response of the elastic-plastic system
with viscous damping by solving the differential equa-
tion, even by using the double impulse. Therefore, an
approximate closed-form solution for the critical response
of the system with viscous damping was proposed by
using (i) a quadratic function that approximates the
damping force-deformation relation, (ii) the assumption

that the zero restoring force timing is the critical timing
of the second impulse, and (iii) the energy balance law
for the elastic-plastic system with viscous damping. By
using the proposed method, an approximate critical
response of the elastic-plastic system with viscous damp-
ing under the double impulse can be evaluated effi-
ciently.

(2) The accuracy of the quadratic function approximation of
the damping force-deformation relation and the validity of
the assumption on the critical timing were investigated by
using time-history response analysis. Through comparison
with the result of the time-history response analysis, the
damping force-deformation relation can be approximated
by a quadratic function with reasonable accuracy. Accord-
ing to the investigation in which a variable time interval
was considered, the zero restoring force timing is the criti-
cal timing of the second impulse, which maximizes the
peak deformation after the second impulse.

(3) The validity of using the double impulse as a substitute
for the near-fault ground motion was investigated
through the comparison with the elastic-plastic response
under the corresponding one-cycle sinusoidal wave.
Although the response of the undamped system under
the critical double impulse does not exhibit good corre-
spondence with that under the corresponding one-cycle
sinusoidal wave in the range of the larger input velocity
level V/Vy > 3, the maximum deformation of the system
with larger viscous damping under the critical double
impulse corresponds well to that under the correspond-
ing one-cycle sinusoidal wave, even in the range of the
larger input velocity level.

(4) The applicability of the proposed method using the critical
double impulse (defined in Section 6) to actual earthquake
ground motions was investigated through comparison with
the critical elastic-plastic response under actual recorded
ground motions. The elastic-plastic response of the system
with viscous damping under the critical double impulse
corresponds well to the critical elastic-plastic response
under the recorded near-fault ground motions in the wider
range of the input velocity level, in comparison with the
undamped system.
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Appendix 1: Critical impulse timing for the linear elastic
system with viscous damping

The critical timing of the second impulse for a linear elastic
system with viscous damping is explained. The maximum
deformation umax2 after the second impulse for a variable
impulse time interval can be obtained by Equation (10b). umax2

is maximized at the time interval at which the derivative of
Equation (10b) with respect to the time interval t0 becomes
zero. From Figure 5, the maximum value of umax2 decreases
due to the effect of viscous damping as the time interval
becomes longer. Therefore, the maximum value of umax2 is
investigated in the range 0\t0\T 0

1. However, it is compli-
cated to obtain the derivative of Equation (10b) with respect to
the time interval t0. In a simple manner, t0 ¼ T 0

1=2 is substi-
tuted into the equation of dumax2/dt0. It is confirmed that
dumax2/dt0 is zero at that value. tmax2,/,h in Equation (10b)
can be obtained from Equations (9a), (9b), (11a), and (11b),
respectively. It is noted that tmax2 and h are functions of t0.

Appendix 2: Velocity at zero restoring force after
attaining umax1 in CASE 3

The velocity at the zero restoring force timing after the first
impulse in CASE 3 can be obtained by solving the equation of
motion in the unloading process. An outline of the derivation
of vc is shown here. The restoring force characteristic can be
obtained as follows by using umax1.

fR ¼ kuþ kðumax 1 � dyÞ; ðA1Þ

where an approximate solution of umax1 is obtained from Equa-
tion (27). The equation of motion (free vibration) in the
unloading process can be expressed by using Equation (A1).

m€uþ c _uþ kuþ kðumax 1 � dyÞ ¼ 0 ðA2Þ

From Equation (A2), the deformation and velocity in the
unloading process can be obtained by

u ¼ �ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
Þdye�hx1t cosðx0

1t � /Þ � ðumax 1 � dyÞ;
ðA3Þ

_u ¼ ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
ÞVye

�hx1t sinðx0
1tÞ; ðA4Þ

where the starting time of the unloading process (the point
�umax1 in Figure 8C) is taken as t = 0. / is obtained from Equa-
tion (9a). From Equations (A1) and (A3), the time tc at which
the restoring force becomes zero can be obtained as follows.

tc ¼ 0:25þ farctanðh=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
Þg=ð2pÞ

h i
T 0
1 ðA5Þ

vc can then be obtained by substituting Equation (A5) into
Equation (A4).

vc ¼ Vy exp ð�h=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
Þf0:5pþ arctanðh=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
Þg

h i
ðA6Þ
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