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A new structural control system using damper-installed shear walls in lower stories with
reduced stiffness is proposed for vibration control of high-rise RC buildings. That system
has some design variables, i.e., height of shear wall, degree of stiffness reduction at lower
stories, and quantity of dampers. In this paper, some parametric studies on the shear-
beammodel with a stiff beam against two kinds of ground motion, a pulse-type sinusoidal
wave and a resonant sinusoidal wave, are conducted to clarify the vibration characteristics
of the proposed structural control system. It is shown that the optimal combination of
design parameters depends on the input ground motion. It is also shown that it is possible
to prevent from increasing the response under the one-cycle sinusoidal input resonant
to the lowest mode and reduce the steady-state response under the harmonic input
with the resonant fundamental period by reducing the stiffness in the lower structure and
increasing the damper deformation.

Keywords: earthquake response, vibration control, high-rise building, soft story, shear wall, passive damper

INTRODUCTION

After the occurrence of unexpected earthquake damage, many structural engineers are striving
for resilient building structures tough for extreme earthquake inputs and recoverable fast to an
acceptable level (Bruneau and Reinhorn, 2006, Takewaki et al., 2012). It is aimed at trying to
enhance the earthquake resilience of building structures via innovative technologies for broader
classes of earthquake ground motions (Amadio et al., 2003, Kobori, 2004, Takewaki et al., 2012,
2013, Takewaki, 2013). In developing these innovative techniques, high uncertainty in earthquake
ground motions may disturb the progress (Takewaki et al., 2011a,b, 2012, 2013, Takewaki, 2013).
The variability and uncertainty in building structural properties (especially the properties of added
control systems) should also be taken into account appropriately (Ben-Haim, 2006, Takewaki et al.,
2011b).

In response to these circumstances, various kinds of vibration-controlled systems have been
developed in the last three decades (Housner et al., 1997, Soong and Dargush, 1997, Hanson
and Soong, 2001, Christopoulos and Filiatrault, 2006, Takewaki, 2009, Lagaros et al., 2013). Base-
isolation systems, inter-story damper systems, inter-building damper systems (Fukumuto and
Takewaki, 2015), and tuned-mass damper systems are representative examples. It is well known that
the introduction of large deformation in the damper location is important in the inter-story damper
systems and inter-building damper systems (Takewaki, 2009). This is because the large deformation
in the damper location makes the damper systems effective.

Frontiers in Built Environment | www.frontiersin.org October 2017 | Volume 3 | Article 571

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org/Built_Environment/editorialboard
http://www.frontiersin.org/Built_Environment/editorialboard
https://doi.org/10.3389/fbuil.2017.00057
https://creativecommons.org/licenses/by/4.0/
mailto:takewaki@archi.kyoto-u.ac.jp
https://doi.org/10.3389/fbuil.2017.00057
http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2017.00057&domain=pdf&date_stamp=2017-10-05
http://www.frontiersin.org/Journal/10.3389/fbuil.2017.00057/abstract
http://www.frontiersin.org/Journal/10.3389/fbuil.2017.00057/abstract
http://www.frontiersin.org/Journal/10.3389/fbuil.2017.00057/abstract
http://www.frontiersin.org/Journal/10.3389/fbuil.2017.00057/abstract
http://loop.frontiersin.org/people/453058
http://loop.frontiersin.org/people/453055
http://loop.frontiersin.org/people/166204
http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Tani et al. Soft Lower-Story Vibration Control

Base-isolation systems have been employed mainly in Japan,
New Zealand, China, and US. Various types of base-isolation
systems have been introduced for pulse-type ground motions
(Jangid and Datta, 1994; Hall et al., 1995; Heaton et al., 1995;
Jangid, 1995; Kelly, 1999; Naeim andKelly, 1999; Jangid andKelly,
2001;Morales, 2003; Takewaki, 2005, 2008; Li andWu, 2006; Hino
et al., 2008; Takewaki and Fujita, 2009). But their resilience for
earthquake has never been proved in actual situations for long-
period ground motions with the characteristic period of 5–8 s
(Irikura et al., 2004; Kamae et al., 2004; Ariga et al., 2006). This
problem is closely associated with the resonance of the base-
isolated buildings to those ground motions (Hashimoto et al.,
2015). The long-period ground motions with 5–8 s characteris-
tic periods were greatly concerned in the structural design of
base-isolated buildings and super high-rise buildings after the
Northridge earthquake in 1994 and the Tokachi-oki earthquake in
2003. Such input was shown as a key critical input for those kinds
of buildings during the 2011 off the Pacific coast of Tohoku earth-
quake. It is also of great concern that, while building structures
with passive dampers are effective for long-duration and long-
period ground motions (Takewaki, 2007; Patel and Jangid, 2011;
Takewaki et al., 2011b, 2012; Kasagi et al., 2015), their effectiveness
for pulse-type ground motions is doubtful. This is because the
structures with viscous-type dampers can not necessarily possess
good performance for the impulsive input like near-fault ground
motions resulting from the delay of response in such viscous-
type dampers. The overcome of these two difficulties is of great
significance in the seismic resistant and control design (Koo et al.,
2009, Petti et al., 2010, Karabork, 2011).

Base isolation has been applied even to high-rise buildings. One
is a base-isolated high-rise building without connection and the
other is a base-isolated building connected to another structure
with dampers (Murase et al., 2013, Kasagi et al., 2016, Fukumoto
and Takewaki, 2017). In the latter connected system, a base-
isolated high-rise building structure is linked to another non-
isolated normal structure (free wall) with oil dampers. Because
of the necessity of a substructure supporting the main building,
high-rise residential apartment houses are the main object where
a car parking tower is allocated as the substructure. The connected
high-rise buildings without base isolation and base-isolated high-
rise buildings connected to another structure have been designed
and constructed by Obayashi Corporation and Shimizu Corpora-
tion in Japan (Murase et al., 2013, Kasagi et al., 2016, Fukumoto
and Takewaki, 2017).

Historically tunedmass dampers (TMDs) have often been used
for reducing building responses to wind loading and have been
actually installed in many high-rise buildings (Soong and Dar-
gush, 1997). It should be reminded that TMD is not effective for
earthquake input because of the difficulty in stroke limitation and
realization of large mass ratio TMD.

Nevertheless, largemass ratioTMDshave been exploredmainly
for earthquake inputs (Chowdhury et al., 1987; Feng and Mita,
1995; Arfiadi, 2000; Villaverde, 2000; Zhang and Iwan, 2002;
Mukai et al., 2005; Villaverde et al., 2005; Tiang et al., 2008; Matta
and De Stefano, 2009; Petti et al., 2010; Angelis et al., 2012; Nishii
et al., 2013; Xiang and Nishitani, 2014). It should be pointed
out that several projects are being planned in Japan aiming at

installation of large mass pendulum systems at roof and usage of
upper stories as TMDmasses.

Recently, large mass ratio TMDs were tackled for base-isolated
buildings (Villaverde, 2000; Villaverde et al., 2005; Angelis et al.,
2012; Nishii et al., 2013; Xiang and Nishitani, 2014). While usual
tall buildings exhibit large displacement near the top story because
of contribution of almost uniform inter-story drifts, base-isolated
buildings show relatively large displacement at the base-isolation
story near ground surface. This property is very useful from the
view point of reduction of effect of large vertical loads due to large
mass ratio TMD (Kareem, 1997; Zhang and Iwan, 2002; Mukai
et al., 2005; Petti et al., 2010; Nishii et al., 2013; Xiang and Nishi-
tani, 2014). However, several issues still exist, e.g., avoidance of
excessive vertical load by largemass ratio TMD, reduction of TMD
stroke, and reduction of TMDsupport reactions (Hashimoto et al.,
2015).

The use of a braced or mega-braced core is another effective
method for improvement of structural responses under seismic
loading (Brunesi et al., 2016). Furthermore, alternative solutions
have been presented recently to obtain a kind of controlled struc-
tures by making use of dissipative devices called crescent-shaped
braces (Palermo et al., 2014; Kammouh et al., 2017). Finally,
a bracing system (called strongback system, SB) to control the
deformed shape of framed structures subjected to seismic input
is currently under development (Lai and Mahin, 2014). While
these kinds of structural systems appear to be effective for long-
period ground motions under the condition of possessing suf-
ficient damper systems, the effectiveness for near-fault ground
motions represented by pulse-type ground motions is not clear
and further investigation may be necessary.

It is also important to develop methods for estimation of dis-
placement and velocity profiles for framed structures with added
dampers. The methods proposed by Palermo et al. (2015, 2016)
are representative ones.

The present authors proposed a new vibration-controlled sys-
tem in which large deformation in lower stories is induced and
oil dampers are installed effectively (Tani et al., 2017). A sim-
ilar study was conducted by Kazama and Mita (2006). In the
previous research (Tani et al., 2017), the large deformation of
oil dampers is obtained by the rigid rotation of shear walls. To
ensure the safety in those lower stories, rigid shear-wall systems
are introduced in the oil-damper installation system. Figure 1A
shows the proposed vibration-controlled structure and Figure 1B
presents the modeling of the structure with the proposed system
into a multi-degree-of-freedom model and a reduced model. In
the MDOF model, a rigid beam element (shear walls) with a
pin connection at the bottom is connected to the main structure
with rigid connectors. The added damping by the oil dampers is
installed in the lower stories of the main structure. On the other
hand, in the reduced model, the lower structure is modeled by
a rigid bar supported by a rotational spring at the base and the
lower structure is treated as a single-degree-of-freedom model in
which the mass is concentrated at the point with the equivalent
height.

In this paper, parametric study on shear-beam model with
stiff beam against two kinds of ground motion, pulsed sinusoidal
wave and resonant sinusoidal wave, is conducted to clarify the
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A

B C

FIGURE 1 | Proposed vibration-controlled structure and its modeling into multi-degree-of-freedom model and reduced model: (A) proposed system, (B) MDOF
model, and (C) reduced model.

vibration characteristics. It is shown that the optimal combination
of variables depend on input ground motion, however, consid-
ering damper deformation growth by shear-wall, slight stiffness
reduction at lower stories can achieve smaller story drift than
proportional damping.

NATURAL FREQUENCY AND MODE OF
SYSTEM WITH SHEAR WALL IN LOWER
STORIES

Basic Model and Reduced Model for
Natural Vibration Analysis
Consider a 50-story shear building model, as shown in Figure 1B,
which has an equal floor mass m at each story and an equal

story height. The number of stories is an example of a high-rise
building. Themain structure is connected to a rigid bar (shearwall
including dampers) with rigid connection. The model is assumed
to have a straight-line lowest mode.

Since the analysis of the original model shown in Figure 1B
seems difficult, a simpler model (equivalent to the model in
Figure 1B) as shown in Figure 1C is introduced. Consider the
lower structure in Figure 1B without the super structure (the
lower part of the main structure and the rigid bar with rigid
link). Let D, N, and Hw denote the top displacement of the lower
structure, the number of stories of the lower structure, and the
height of the lower structure, respectively. Furthermore, let me,
He, and kθ denote the equivalent mass of the lower structure,
the equivalent height of the lower structure, and the rotational
stiffness of the spring at the base. When the fundamental natural
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circular frequency of the lower structure is denoted by ωl, the
lowest-mode i-th story shear forceQi of the lower structure in free
vibration, the lowest-mode i-th story overturning moment Mi of
the lower structure, the equivalent story shearQe of the equivalent
SDOF model, and the equivalent overturning moment Me of the
equivalent SDOF model can be expressed by

Qi =
N∑

n=i
mω2

l
n
ND (1a)

Qe = meω2
l
He

Hw
D (1b)

Mi =
N∑

n=i
Qn

Hw

N = mω2
l
DHw

N 2

N∑
j=i

N∑
n=j

n (1c)

Me = QeHe. (1d)

By requiring the equivalence Q1 =Qe, M1 =Me in Eq. 1 in
addition to the equivalence of the fundamental natural circular

frequencies of the lower structure and its equivalent SDOFmodel,
the equivalent quantities He,me and the rotational stiffness of the
spring at the base can be derived as follows:

He

Hw
=

1
N

∑N
i=1

∑N
n=in∑N

n=1n
(2a)

me = m
(∑N

n=1n
)2∑N

i=1
∑N

n=in
(2b)

kθ =
H2

w
N 2

N∑
i=1

ki. (2c)

As N becomes large, He/Hw converges to 2/3 and me/(Nm)
converges to 3/4.

Natural Frequency and Mode
The model shown in Figure 1C is used for the analysis of
natural frequencies and modes. Figure 2A shows the change

A

B

FIGURE 2 | Change of natural period and participation vector to wall height: (A) change of natural period and (B) change of participation vector.
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of natural periods to wall height (ratio of wall height to total
height). The left figure is normalized to the fundamental natural
period of the model without shear wall and the right one is
normalized to each natural period of the model without shear
wall. Since the lowest mode is straight, the fundamental natural
period is not affected by the wall height. It can be observed that
there is no influence until 0.2 and higher natural periods are
affected much.

Figure 2B illustrates the change of participation vector to wall
height. It can be seen that, as the wall height becomes larger, the
lower-part higher-mode participation vectors remain straight and
their slopes become smaller. On the other hand, the slopes of the
upper-part higher-mode participation vectors become larger as
the wall height becomes larger. However, its effect is small until
Hw/H= 0.6 in the secondmode and untilHw/H= 0.4 in the third
mode.

Transfer Function
The model shown in Figure 1C is also used for the analysis of
transfer functions. Figure 3 shows the transfer functions (top
acceleration/base acceleration) for various wall heights. Figure 3A
indicates those of themodel with proportional damping (damping
ratio: 0.03) and Figure 3B presents those of the model with con-
centrated damping in lower parts (total damping quantity is the
same as the left one: damping ratio of 0.01 is distributed uniformly
and the remaining damping ratio of 0.02 is concentrated in the
lower parts). The damping ratio 0.03 is usually used in the design
of reinforced concrete buildings and its comparable quantity of
damping is given to the lower part of the present controlled build-
ings. The stiffness-proportional damping (proportional to overall
structure or partial lower portion) is employed to represent the
damping concentration appropriately. It can be seen in the model
with proportional damping that, as Hw/H becomes larger, the
amplitude at the second mode becomes smaller. This is because
the higher-mode damping ratio becomes larger in the model
with proportional damping. On the other hand, in the model
with concentrated damping in lower parts, the amplitude at the
second mode becomes larger. This is because the higher-mode

deformation becomes smaller in lower parts as Hw/H becomes
larger (see Figure 2B).

RESPONSE TO RESONANT ONE-CYCLE
SINUSOIDAL PULSE WAVE

When the building with the proposed system is subjected to
pulse-type ground motions, the energy dissipation by repeated
vibration cannot be expected. In this case, the strict check of
strength is important in the lower parts. In this section, the
one-cycle sinusoidal waves resonant to the fundamental and
second natural periods are input. The maximum response is
evaluated by the mean of “the absolute sum of the maximum
fundamental and second vibration components” and “the SRSS
value.” The accuracy of this evaluationmethodwill be investigated
later.

Original Model and Comparison Model
In this section, a continuum shear-beam model with uniform
mass density is dealt with in order to enable the closed-form
mathematical treatment. A massless rigid bar with pin at the base
is connected to this shear-beam model in the lower part. The
lowest mode of the upper part is assumed based on data on the
realistic high-rise building models.

Investigation Model
In most high-rise buildings, it is often the case that the inter-story
drifts are almost uniform in the middle stories and they decrease
toward the top and the bottom. Furthermore, in the proposed
model, a rigid bar is installed in the lower part. Based on these
information, the fundamental mode is assumed to be expressed
by Eq. 3:

1φ(x) =


Ax2 + Bx + C (Ht ≥ x > Hl)
Dx + E (Hl ≥ x > Hw)
Fx (x ≤ Hw)

(3)
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FIGURE 3 | Transfer function: (A) proportional damping and (B) concentrated damping.
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where

A =
Φ′

t − 1
{2Hw (Φ′w − 1) + Ht + Hl + HtΦ′t − HlΦ′t} (Ht − Hl)

φt

(4a)

B =
2
(
Ht − Φ′

tHl
)

{2Hw (Φ′w − 1) + Ht + Hl + HtΦ′t − HlΦ′t} (Ht − Hl)
φt

(4b)

C =
2Hw(Ht − Hl)

(
Φ′

w − 1
)

+ Hl
2(Φ′

t − 1
)

{2Hw (Φ′w − 1) + Ht + Hl + HtΦ′t − HlΦ′t} (Ht − Hl)
φt

(4c)

D =
2

2Hw (Φ′w − 1) + Ht + Hl + HtΦ′t − HlΦ′t
φt (4d)

E =
2Hw

(
Φ′

w − 1
)

2Hw (Φ′w − 1) + Ht + Hl + HtΦ′t − HlΦ′t
φt (4e)

F =
2Φ′

w

2Hw (Φ′w − 1) + Ht + Hl + HtΦ′t − HlΦ′t
φt (4f)

Φ′
w =

φ′
w

φ′ l
(4g)

Φ′
t =

φ′
t

φ′ l
(4h)

φ′
l (Hl + 0) = φ′

l (Hl − 0). (4i)

In Eq. 3, Hw, Hl, and Ht(=H) denote the height of the lower
part, the height of the part with straight fundamental mode, and
the building total height and φw, φl, φt, φ′

w, φ′
l, φ′

t indicate the
displacements of the fundamental mode at Hw, Hl, Ht, and the
slopes of the fundamental mode at Hw, Hl, Ht. Φ′

w and Φ′
t

indicate the ratio of the slope at x=Hw (top of the lower structure)
of the lowest mode to that at x=Hl (the top of straight-line
lowest-mode shape) and the ratio of the slope at x=Ht (top of
the upper structure) of the lowest mode to that at x=Hl. In this
investigation, it is assumed that Hl/Ht = 0.6 and Φ′

t = 0.6. The
structural damping is assumed to be stiffness-proportional over
the whole height and the additional damping is added only to the
lower part as stiffness-proportional one.

Comparison Model
The fundamentalmode has the property of Eq. 3 withHl/Ht = 0.6,
Φ′

t = 0.6, and Φ′
w = 1.0. The comparison model does not

have the rigid bar in the lower part. The structural damping and
the additional damping are the same as the investigation model.
However, the additional damping is distributed over the total
height. The quantities of the comparison model are designated by
the over-bar.

Stiffness
The sum of the story stiffnesses in the upper part is the same
between the investigation model and the comparison model. The
sums of the story stiffnesses in the lower part and their distri-
butions are different depending on the adopted mode. In case of
Φ′

w > 1.0, the sum of the story stiffnesses of the whole part in the
investigation model becomes larger than that of the comparison
model. Then, the fundamental natural period becomes longer.

Damping
Since the structural damping is the stiffness-proportional one, the
sum of damping coefficients of the model becomes smaller for the
model with a smaller sum of the story stiffnesses in the lower part
and longer fundamental natural period. The additional damping
coefficients are assumed not to change.

The relations of mass, stiffness, and damping between the
investigation model and the comparison model are expressed as
follows:

m(x) = m̄ (x) =
M
Ht

(5a)

Ht∫
Hw

k (x) dx =

Ht∫
Hw

k̄ (x) dx (5b)

c (x) ∝ k (x) , c̄ (x) ∝ k̄ (x) (5c)
Hw∫
0

Δc (x) dx =

Ht∫
0

Δc̄ (x) dx (5d)

where m(x), k(x), c(x), Δc(x), and m̄(x), k̄(x), c̄(x), Δc̄(x) are the
mass, stiffness, structural damping coefficient, and additional
damping coefficient distributions of the investigation model and
the comparison model, respectively. In addition, M is the total
mass.

Figure 4 shows an example of the fundamental mode and its
story drift angle.

Model to Be Considered (Investigated
Region of Fundamental Mode Shape)
Realistic models are considered here. Figure 5 shows the investi-
gated region of the fundamental mode shape with Hw and Φ′

w
as parameters. 0.2Ht ≤Hw ≤ 0.6Ht and 0.5 ≤ Φ′

w ≤ 2.0 are
considered here.

The additional damping quantity D
1Δh̄ is defined as the sum of

the damping coefficients in the comparisonmodelwith a stiffness-
proportional damping of the lowest-mode damping ratio 1Δh̄. In
the investigation model, the additional damping coefficients with
the same value of D

1Δh̄ are allocated to the lower part.

A B

FIGURE 4 | Fundamental mode and its story drift angle: (A) fundamental
mode shape and (B) story drift angle.
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FIGURE 5 | Investigated region of fundamental-mode shape.

Damping Coefficient of Added Damper and
Second Natural Frequency and Mode
Fundamental Mode
When the fundamental mode is expressed by

1u(x, t) = 1φ(x)exp(i1ωt), (6a)
the dynamic equilibrium of the part from x toHt can be described
by

Ht∫
x

M
Ht

∂2
1u

∂t2 dx + k (x) ∂1u
∂x = 0. (6b)

Substitution of Eqs. 3 and 6a into Eq. 6b leads to the following
form of stiffness.
k(x) =

M1ω2

Ht(2Ax+B)

{
A
3 (H3

t − x3)+ B
2 (H

2
t − x2)

+ C(Ht − x)

}
(Ht ≥ x > Hl)

M1ω2

HtD

{
A
3

(
H3

t − H3
l
)
+ B

2

(
H2

t − H2
l
)
+ C(Ht − Hl)

+D
2

(
H2

l − x2
)
+ E(Hl − x)

}
(Hl ≥ x > Hw)

M1ω2

HtF

{
A
3

(
H3

t − H3
l
)
+ B

2

(
H2

t − H2
l
)
+ C(Ht − Hl)

+D
2

(
H2

l − H2
w
)
+ E(Hl − Hw)+ F

2 (H
2
w − x2)

}
(x ≤ Hw)

.

(7)

The structural damping coefficient of the investigation model
can then be expressed by

c(x) =
21h
1ω

k(x). (8)

Consider the additional damping coefficient of the investiga-
tion model. First of all, the stiffness and structural damping coef-
ficient of the comparison model can be obtained by substituting
Φ′

w = 1.0 into Eqs 7 and 8 (then D= F, E= 0):

k̄(x) =


M1 ω̄2

Ht

Ā
3(H3

t −x3)+ B̄
2 (H2

t −x2)+C̄(Ht−x)
2Āx+B̄ (Ht ≥ x > Hl)

M1 ω̄2

HtD̄

{ Ā
3
(
H3

t − H3
l
)
+ B̄

2
(
H2

t − H2
l
)

+C̄(Ht − Hl)+ D̄
2
(
H2

l − x2
)} (x ≤ Hl)

(9)

Ā =
Φ′

t − 1
(Ht + Hl + HtΦ′t − HlΦ′t) (Ht − Hl)

φt (10a)

B̄ =
2
(
Ht − Φ′

tHl
)

(Ht + Hl + HtΦ′t − HlΦ′t) (Ht − Hl)
φt (10b)

C̄ =
Hl

2(Φ′
t − 1

)
(Ht + Hl + HtΦ′t − HlΦ′t) (Ht − Hl)

φt (10c)

D̄ =
2

Ht + Hl + HtΦ′t − HlΦ′t
φt (10d)

c̄(x) =
21h̄
1ω̄

k̄(x). (10e)

Similarly, the additional damping coefficient of the comparison
model can be expressed by

Δc̄(x) =
21Δh̄
1ω̄

k̄(x). (11)

The sum of the additional damping coefficients of the compar-
ison model can then be obtained as

D
1Δh̄ =

Ht∫
0

Δc̄(x)dx =
21Δh̄
1ω̄

Ht∫
0

k̄(x)dx. (12)

Since the additional damping coefficient of the investigation
model is given only at the lower parts as one proportional to the
corresponding stiffness, the additional damping coefficient of the
investigation model is expressed as follows:

Δc(x) =

{
0 (x > Hw)

k(x)∫ Hw
0 k(x)dxD1Δh̄ (x ≤ Hw)

. (13)

Equations 7 and 12 should be substituted into Eq. 13. The
fundamental natural circular frequency of the investigationmodel
can be determined from the condition that the sum of the stiff-
nesses in the upper part is constant in the investigation model.
The sums of the stiffnesses in the upper parts of the investigation
model and the comparison model are expressed by

Ht∫
Hw

k(x)dx = f
(
Hw, Φ′

w, Φ′
t
)
1ω2 (14)

Ht∫
Hw

k̄(x)dx = g
(
Φ′

t
)
1ω̄2 (15)

where f(Hw, Φ′
w, Φ′

t) is the function derived by substituting Eq. 7
into the left-hand side of Eq. 14 and g(Φ′

t) is the function derived
by substituting Eq. 9 into the left-hand side of Eq. 15. By equating
Eqs 14 and 15, the fundamental natural circular frequency of the
investigation model can be obtained as follows:

1ω =

√
g (Φ′t)

f (Hw, Φ′w, Φ′t)
1ω̄. (16)

The lowest-mode additional damping ratio 1Δh of the
investigation model is predicted approximately by using the
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undamped lowest mode. Using Eq. 3, 1Δh can then be evaluated
by

1Δh = 1ω
2

∫ Hw
0 Δc(x)

(
dφ
dx

)2
dx∫ Ht

0 k(x)
(

dφ
dx

)2
dx

.

= 1ω
2

∫ Hw
0 Δc(x)F2dx∫ Ht

Hl
k(x)(2Ax + B)2dx +

∫ Hl
Hw
k(x)D2dx

+
∫ Hw
0 k(x)F2dx

(17)

Second Mode
It is known that the second mode of a shear-beam with uni-
form mass density and a straight-line fundamental mode can be
expressed by a cubic function in the comparisonmodel. However,
some modification is necessary in the investigation model. For
this reason, the second mode above the point x=Hw is modeled
by an L-th order function (L= 5 is employed here). Then, the
second mode can be expressed by

2φ(x) ≈


L∑

n=0
anxn (x > Hw)

∑L
n=0an(Hw)n

Hw
x (x ≤ Hw)

. (18)

The slope of the second mode can be obtained as

d2φ
dx =


L∑

n=1
nanxn−1 (x > Hw)

∑L
n=0an(Hw)n

Hw
(x ≤ Hw)

. (19)

The dynamic equilibrium of the part from x=Hw toHt can be
described by

k(x)
L∑

n=1
nanxn−1 =

M2ω2

Ht

L∑
n=0

an
n + 1

(
Hn+1

t − xn+1
)

(x > Hw).

(20)

for x = x1, x2, · · · , xL > Hw. L points have been used to
determine L coefficients. When aL is treated as a given value,

a0, a1, · · · , aL−1 are obtained to be the L-th order polynomials of
2ω2. By using Eqs 7 and 19, the continuity condition of the story
shear force at x=Hw leads to

k (Hw + 0)
L∑

n=1
nanxn−1 = k (Hw − 0)

∑L
n=0anHw

n

Hw
(21)

2ω2 satisfying Eq. 21 is regarded as an approximate value of the
second natural frequency.

The second damping ratio of the investigation model is evalu-
ated by using an undamped second natural mode. The additional
damping ratios (the additional damping quantity D2%) of the
investigation model for various shear wall heights are shown in
Figure 6A with respect to Φ′

w for the fundamental mode and
in Figure 6B for the second mode. It can be understood that the
fundamental additional damping ratio becomes larger than that
for the proportional damping case as the stiffness in the lower part
decreases. On the other hand, the second additional damping ratio
depends greatly on Hw. While it increases as the stiffness in the
lower part decreases in the case of small values of Hw, it is almost
constant irrespective of the stiffness in the lower part in the case
of large values of Hw.

Maximum Response Displacement
Consider themaximum story drift angle of themodel subjected to
the resonant (first mode and second mode) one-cycle sinusoidal
wave with constant velocity amplitude of 1m/s. The total response
is evaluated approximately by superposing the first and second
mode vibrations. The maximum response is evaluated by the
mean of the absolute sum of the first and second mode vibrations
and the SRSS value.

The displacement response of the SDOF model under a one-
cycle sinusoidal acceleration wave α sin ωt is well known (Clough
and Penzien, 1975, Yasui et al., 2010) and can be expressed by

u(t) = e−hω̄t(X cos ω̄dt + Y sin ω̄dt)

− α{(ω̄2 − ω2) sin ωt − 2hω̄ω cos ωt}
(ω̄2 − ω2)2 + (2hω̄ω)2

(22)

A B

FIGURE 6 | Damping ratio with respect to Φ′
w: (A) first mode and (B) second mode.
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where ω̄, ω̄d, h are the undamped natural circular frequency, the
damped natural circular frequency, and the damping ratio and
X, Y are given by

X =
−2hω̄ωα

(ω̄2 − ω2)2 + (2hω̄ω)2
(23a)

Y = α ω
ω̄d

ω̄2 − ω2 − 2h2ω̄2

(ω̄2 − ω2)2 + (2hω̄ω)2
. (23b)

Equation 22 is the solution during the input and the response
after the input can be expressed in terms of free vibration. The time
at which the maximum displacement occurs in the undamped
model is expressed by the following one (Kamei et al., 2010):

tdmax =
n

(Tp/T + 1)
Tp before the input termination (24a)

tdmax =
kT + Tp

2
after the input termination (24b)

where T is the natural period of the SDOF model, n is a positive
integer satisfying tdmax ≤Tp, and k is a positive integer satisfying
tdmax ≥Tp. Therefore, this expression is used approximately for
damped vibration.

Since the lower structure exhibits a straight-line displacement
due to the existence of the rigid shear wall, the story drift angle

shows a constant distribution. In case of Φ′
t = 0.6, the lowest

mode exhibits the maximum story drift angle in the upper struc-
ture in Hw < x≤Hl and the second mode exhibits the maximum
story drift angle in the upper structure at x=Ht. Let iu′

j(x) and
iū′j(x) denote the j-th mode maximum story drift angle at x
of the investigation model subjected to the one-cycle sinusoidal
input resonant to the mode i and that of the comparison model.
Furthermore, let iu′

max and iū′max denote the maximum story
drift angle of the investigation model subjected to the one-cycle
sinusoidal input resonant to themode i and that of the comparison
model.

Resonant Wave to First Mode
Figures 7A–C show 1u′

j(Ht), 1u′
j(Hl), and 1u′

j(0) and Figure 7D
presents 1u′

max for the structural damping ratio 0.01 and the
additional damping quantity D2%. It should be noted that the story
drift angles are expressed under the condition of Ht = 1. (If the
fundamental natural period= 1.0 s and the total height= 40m,
the number 60 in the vertical axis means 0.015 rad.) It can
be observed that the influence of the second mode is small
and its small effect exists only around the top. As the stiff-
ness of the lower structure decreases, the story drift angle in
the upper structure becomes small and the story drift angle in
the lower structure increases. This phenomenon is prominent
for the larger value of Hw in the upper structure and for the

A B

C D

FIGURE 7 | Maximum story drift angle for lowest-mode resonance pulse: (A) 1u
′
j(Ht), (B) 1u

′
j(Hl), (C) 1u

′
j(0), and (D) 1u

′
max.
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smaller value of Hw in the lower structure. The model with the
original stiffness distribution exhibits the smallest value irrespec-
tive of Hw and this value is almost the same as the compari-
son model. It can also be seen that the increase of additional
damping in the lower structure cannot prevent the response
amplification due to the reduction of the stiffness in the lower
structure.

Resonant Wave to Second Mode
Figures 8A–C show 2u′

j(Ht), 2u′
j(Hl), and 2u′

j(0) and Figure 8D
presents 2u′

max for the structural damping ratio 0.01 and the
additional damping quantity D2%. It can be observed that,
although the response by the second mode becomes larger than
that by the fundamental mode around the top, the response by
the fundamental mode becomes dominant except around the
top. Since the difference of the fundamental and second natural
periods becomes large asHw becomes large, the response exhibits
a different property even if the lowest mode shape is the same(
Φ′

w = 1
)
. Since the effect of the second mode becomes small

as the stiffness in the lower structure becomes small, the response
in the lower structure due to the second mode does not become
larger. The region exists where the response of the investigation
model becomes smaller than that of the comparison model. This
region becomes wider as Hw becomes larger.

Accuracy Check by Time–History Response Analysis
for MDOF Model
Figure 9 shows the comparison of themaximum story drift angles
by the proposedmethodwith those by theMDOFmodel as shown
in Figure 1B. It can be observed that, although the proposed esti-
mation gives a slightly larger response under the input resonant to
the lowest mode, the accuracy is almost satisfactory. On the other
hand, the proposed estimation provides a slightly smaller response
under the input resonant to the second mode in Φ′

w ≤ 1. This is
because the maximum story drift angle becomes the largest at the
top and the third-mode effect at the top becomes large compared
to the response in the lower structure. In addition, the third-mode
vibration is easy to be induced in the response resonant to the
second mode than that resonant to the lowest mode.

Effect of Damping
Figure 10 shows the maximum story drift angle with respect to
Φ′

w under various damping quantities for Hw/H= 0.4. It can
be observed that, although the response reduction is possible by
the introduction of the additional damping, its effect is small.
When the stiffness in the lower structure is reduced, the response
reduction effect becomes larger slightly. Furthermore, when the
stiffness in the lower structure is reduced, the response under the
one-cycle sinusoidal wave resonant to the lowest mode becomes

A B

C D

FIGURE 8 | Maximum story drift angle for second-mode resonance pulse: (A) 2u
′
j(Ht), (B) 2u

′
j(Hl), (C) 2u

′
j(0), and (D) 2u

′
max.
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A B

FIGURE 9 | Comparison of approximation with time-history response analysis: (A) 1u
′
max and (B) 2u

′
max.

FIGURE 10 | Maximum story drift angle under various damping quantities
(Hw/H:0.4).

larger than that under the one-cycle sinusoidal wave resonant to
the second mode.

When the stiffness in the lower structure is reduced, the
response of the investigation model under the one-cycle sinu-
soidal wave resonant to the lowest mode becomes larger than that
of the comparison model. The proposed model has an advan-
tage that the reduction of the stiffness in the lower structure
enhances the performance of the dampers. Figure 11 presents
the necessary damper deformation growth rate with respect to
φw under various shear-wall heights for D2% and D5%. As the
damper quantity becomes larger, the necessary damper growth
rate becomes smaller. The influence of Hw is very small.

STEADY-STATE RESPONSE TO
RESONANT HARMONIC BASE INPUT

Since the long-period, long-duration ground motions can be rep-
resented approximately by long-duration sinusoidal waves and
steady-state vibrations are predominant in such vibration, the
resonant input to the fundamental natural period is considered
here.

FIGURE 11 | Necessary damper deformation growth rate.

FIGURE 12 | Correspondence of participation vectors and story shear forces
between shear-beam model and 2DOF model.

Reduction of Original Model into 2DOF
Model
It is well known that, since the steady-state response to the reso-
nant harmonic input can be influenced greatly by the magnitude
and distribution of damping in the structure, it may be difficult
to use the undamped vibration mode for response evaluation.
For this reason, the shear beam treated in the previous section
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is reduced to the 2DOF model in which one mass is located
at x=Hw =H1 and the other mass is located at x=H2. The
accuracy of this model will be investigated later. The height H2
is determined from the equivalence of the participation vectors of
these two models. In addition, the fundamental natural frequen-
cies, the participation vectors at x=Hw, the lowest-mode story
shears at x= 0, Hw are made equal (see Figure 12: equivalence
conditions). The damping coefficients are determined so that the
energy dissipations by the damping are equal. The parameters are
Hw, Φ′

w, and D
1Δh̄.

Parameter of Reduced 2DOF Model
Let 1β denote the lowest-mode participation factor of the shear-
beammodel. The masses, stiffnesses, and damping coefficients of
the reduced 2DOF model can be expressed as follows in terms
of the parameters Hw and Φ′

w from the equivalence conditions
introduced just above:

m̂2 = 1β1Q(Hw)2

{(1 − 1βφw) φwm11ω2 + 1Q (Hw)} 1ω2 (25a)

m̂1 =
MHw

2Ht
(25b)

k̂2 = 1Q (Hw) m̂21ω2

1Q (Hw) − m̂21ω2φw
(26a)

k̂1 =
m̂2k̂21ω2

k̂2 − m̂21ω2
+ m̂11ω2 (26b)

ĉ2 =
21h
1ω

k̂2 (27a)

ĉ1 =
21h
1ω

k̂1. (27b)

The quantities with that indicate the quantities of the 2DOF
model. The additional damping coefficient in the lower part can
be obtained as

Δĉ1 =
21Δh
1ω

k̂2
(

φ̂2 − φ̂1

)2
+ k̂1 φ̂2

1

φ̂2
1

. (28)

The story shear 1Q (Hw) at x=Hw in the lowest mode of the
shear-beam model may be expressed by

1Q (Hw) = k (Hw)
d1φ
dx (Hw) . (29)

The height H2 at which the equivalence of the participation
vectors of the twomodels, i.e.,AH2

2+BH2+C = 1β̂φ̂2, is satisfied
can be derived as

H2 = −
−B +

√
B2 − 4A

(
C − 1β̂φ̂2

)
2A (30)

where A, B, C have been defined in Eq. 3.

A B

C D

FIGURE 13 | Maximum story drift angle ratio (variable: Hw/H): (A) upper structure (D2%), (B) lower structure (D2%), (C) upper structure (D5%), and
(D) lower structure (D5%).
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Maximum Response Displacement
The amplitude of the steady-state displacement of the 2DOF
model under the harmonic input with constant velocity amplitude
is computed for various shear wall heights. These values are drawn
with respect to the parameter Φ′

w.
Figure 13A shows the ratio of the story drift angle in the upper

structure of the investigation model to that of the comparison

model under various shear-wall heights for the additional damp-
ing level of D2% and Figure 13B presents the corresponding one
in the lower structure. Figures 13C,D illustrate the corresponding
ones for the additional damping level of D5%.

Figure 14A shows the ratio of the story drift angle in the
upper structure of the investigation model to that of the com-
parison model under various additional damping levels for the

A B

C D

FIGURE 14 | Maximum story drift angle ratio (variable: D
1Δh̄): (A) upper structure (Hw/H:0.2), (B) lower structure (Hw/H:0.2), (C) upper structure (Hw/H:0.5), and

(D) lower structure (Hw/H:0.5).

A B

FIGURE 15 | Comparison of time–history responses between 2DOF and MDOF: (A) Hw/H:0.2, D5% and (B) Hw/H:0.6, D5%.
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shear-wall height of Hw/Ht = 0.2 and Figure 14B presents the
corresponding one in the lower structure.Figures 14C,D illustrate
the corresponding ones for the shear-wall height of Hw/Ht = 0.5.

It can be observed that, as the stiffness in the lower struc-
ture decreases, the story drift angle in the upper structure also
decreases. While the story drift angle in the lower structure also
decreases according to the decrease of the stiffness in the lower
structure in the case of large additional damping in the lower
structure, it increases in the case of small additional damping
in the lower structure. This means that the effect of response
reduction due to the damping in the steady-state vibration is
larger than the effect of response amplification due to the stiffness
reduction in the case where a certain level of additional damping
is introduced. Furthermore, the influence of Hw on the response
is rather small.

Figure 15 presents the comparison of the time–history analysis
result by the 2DOF model with that by the MDOFmodel. “2DOF
upper” indicates the maximum story drift angle in the upper
structure by the 2DOF model and “MDOF upper” means that
by the MDOF model. Furthermore, “2DOF lower” indicates the
maximum story drift angle in the lower structure by the 2DOF
model and “MDOF lower” means that by the MDOF model. It
can be seen that the accuracy of the 2DOF model is satisfactory.

CONCLUSION

A new structural control system using damper-installed shear
walls with a pin connection at the bottom has been proposed for
vibration control of high-rise RC buildings. The response analysis
for one-cycle sinusoidal ground motions resonant to the lowest
and second natural modes and for the harmonic ground motion
has been performed. The obtained results are summarized as
follows.

(1) The lowest-mode component is predominant in the response
resonant to the lowest mode and the maximum response
becomes the smallest in the model with a straight-line lowest
mode. It is more effective to control the stiffness and the
mode shape than concentrating the additional dampers into
the location with larger story drift angles (see Figure 7).

(2) The lowest-mode component is predominant in the response
of the lower structure resonant even to the second mode.

Since the difference of the fundamental and second natural
periods becomes large as Hw becomes large, the lowest mode
is hard to be induced and the response in the lower struc-
ture becomes smaller (see Figure 8). It may be possible to
reduce the response by decreasing the stiffness in the lower
structure.

(3) The steady-state vibration resonant to the lowest mode
becomes smaller by reducing the stiffness in the lower struc-
ture (see Figure 13). However, the region exists that the
response becomes larger partially when the additional damp-
ing quantity is extremely small.

(4) Since the rigid shear wall makes the story drift angle dis-
tribution uniform and reduces the maximum response, the
response amplification by the second mode in the lower
structure is prevented as Hw becomes large. For this reason,
when the additional dampers are concentrated in the lower
part, the second damping ratio becomes smaller compared
to the stiffness-proportional damping model and it does not
increase even if the stiffness in the lower structure is reduced
(see Figures 2B and 6B).

(5) It may be possible to prevent from increasing the response
under the one-cycle sinusoidal input resonant to the low-
est mode and reduce the steady-state response under the
harmonic input with the resonant fundamental period by
reducing the stiffness in the lower structure and increasing
the damper deformation (see Figure 11).

(6) The maximum response evaluation under the resonant one-
cycle sinusoidal input using the undamped natural modes
is accurate and reliable. However, as the higher-mode effect
becomes larger, the accuracy may deteriorate slightly (see
Figure 9).

(7) The response amplitude evaluation under the harmonic input
can be made within a reliable accuracy by using the 2DOF
model which is reduced from the shear-beam model (see
Figure 15).
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