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Abstract The damping effects on the free-surface motions due to the presence of the deformable solid bodies
suspended in the fluid were numerically investigated. The computational method is based on a full Eulerian
model that can deal with the interactions between Newtonian fluids and visco-hyperelastic solid bodies. In the
numerical predictions, the free-surface motions caused by the so-called dam-break conditions, including four
spherical visco-hyperelastic bodies, were calculated with two cases of non-dimensional shear moduli, G = 0.1 and
10.0, of the visco-hyperelastic bodies, which have the same density as that of the liquid phase. As a result of the
computations, the following reasonable results were obtained; when the solid bodies are highly flexible (G = 0.1),
the free-surface motions are almost the same as those having no solid bodies. In contrast, it was demonstrated
that the damping effects are obviously large in case that the stiffness of solid bodies increases (G = 10.0).
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1．Introduction
It is widely known that the free-surface motions are

affected by the solid objects included in the fluid. In many

instances actually observed, various efforts have been made

to reduce the free-surface wave motions, sloshing and

splashing by setting up some solid objects and structures in

the flows, since they can cause damages and unfavorable

outcomes. Such examples can be found in the rigid and

flexible devices employed in storage tanks to suppress slosh

dynamics as well as in the breakwaters to prevent large

coastal waves due to typhoons and tsunamis.

A lot of numerical studies have been conducted to solve

these problems with various computational methods: an

Eulerian-Lagrangian method to simulate the interactions

between an elastic body and fluids1) and floating buoys

affected by free-surface motions2), a fully Eulerian method

for a suspended soft body in cavity flows3,4) as well as a fully

Lagrangian method for a deformable floating structure in

free-surface flows5).

In most of the previous studies, however, it is seen that

the effects of solid bodies on the free-surface motions were

mainly studied without focusing on how the flexibility of the

bodies can affect the wave motions. In case that the solid

objects are made of highly flexible material and their density

is almost the same as that of the fluid, it is expected that the

effects on the free-surface motions decrease as the flexibility

of the material increases. In the present study, numerical

predictions are conducted to demonstrate the effects of

deformable solid objects included in the fluids on the wave

motions to understand that such tendencies can be treated

with numerical simulations.

For this purpose, a fully Eulerian numerical method for

visco-hyperelastic solid objects6,7) is employed and it is

implemented in our computational method, in which a finite

volume method (FVM) is used in the collocated grid

system8). Since the governing equations for gas, liquid and

solid phases can be treated in the Eulerian grid system

without tracking individual solid objects, it is easy to adopt a

domain decomposition method to parallelize the computa-

tions in the distributed memory system.

In this study, the dam-break flows including spherical

visco-hyperelastic bodies were calculated to investigate the

damping effects of the flexibility of the suspended objects

on free-surface motions. Thus, two cases of computations

were conducted with non-dimensional shear moduli G = 0.1

and 10.0. As a result of the computations, it was

demonstrated that the free-surface motions are almost the

same as those having no solid bodies when the visco-
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hyperelastic bodies are highly flexible (G = 0.1), while the

damping effects are large in case that the stiffness of solid

bodies relatively increases (G = 10.0).

2．Numerical Methods
2.1 Phase-averaged governing equations
In the present paper, numerical predictions are conducted

for the multiphase field, consisting of three phases: gas,

liquid and visco-hyperelastic solid phases. In order to deal

with such multiple phases in the Eulerian method rather than

usual Lagrangian or Eulerian-Lagrangian methods, the

governing equations for all phases are averaged in a similar

way to the multiphase model proposed by Ushijima et al.9).

The derived phase-averaged governing equations are able to

be discretized in the Eulerian grid system.

The phase-averaged governing equations are derived for

the multiphase fields consisting of incompressible gas and

liquid in addition to the incompressible visco-hyperelastic

solid. In the derivation of the multiphase model, the

governing equations are averaged in a fluid cell as shown

in Fig. 1. The volume fractions of gas, liquid and solid

phases in a computational cell are indicated as ϕG, ϕL and ϕS

respectively as illustrated in Fig. 1. The computational cell

is a minimum unit used in FVM as will be explained in

detail later on. The volume fractions satisfy the following

relationship:

ºG þ ºL þ ºS ¼ 1 （1）

Regarding the momentum equations, since the equations

with conservative forms are used in the process of phase

averaging, the obtained velocity is defined as a mass-

averaged velocity. Meanwhile, the other variables are

treated as the volume-averaged ones9).

Firstly, the following incompressible condition estab-

lishes due to the assumption of incompressibility of all

phases:

@uj
@xj

¼ 0 （2）

where uj is the averaged velocity component in xj direction

in three-dimensional Cartesian coordinates. Then, the mass

conservation equation is derived as follows:

@µ

@t
þ @ðµujÞ

@xj
¼ 0 （3）

where t is time and ρ is volume-averaged density. The

momentum equations are given by

@ðµuiÞ
@t

þ @ðµuiujÞ
@xj

¼ � @p

@xi
þ @ð®DijÞ

@xj
þ @ðGº1

2

SB
�0
ijÞ

@xj
þ µfi （4）

where p is pressure, fi is the external force in xi direction, μ

is the coefficient of viscosity and G is the shear modulus of

the hyperelastic material. The form of the third term on the

right-hand side of Eq. (4) is determined with reference to the

preceding study6). In case that the fluid cell does not include

solid phase, which means ϕS = 0, the corresponding term is

neglected and Eq. (4) turns to be a usual Navier-Stokes

equation.

In Eq. (4), Dij is the component of the deformation rate

tensor defined by

Dij ¼ @ui
@xj

þ @uj
@xi

（5）

In addition, Bij is a component of the left Cauchy-Green

deformation tensor B, while B�
ij is the component of its

deviation tensor given by

B�
ij ¼ Bij � 1

3
trðBÞ¤ij （6）

where tr(B) is the trace of tensor B and δij is the Kronecker's

delta. The tensor component B�0
ij in Eq. (4) is defined with

reference to the preceding study6) as follows:

B�0
ij ¼ º

1=2
S B�

ij （7）

In order to determine the B�
ij in Eq. (7), the following

governing equations are used

@B�
ij

@t
þ @ðB�

ijukÞ
@xk

¼ LikB
�
kj þ B�

ikLkj （8）

where Lij is a component of velocity gradient tensor given

by Lij ¼ @ui=@xj.

Finally, the convection equations for ϕL and ϕS withFig. 1　A computational cell and volume fractions (ϕG, ϕL and ϕS)
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conservative forms are given by

@ºL

@t
þ @ðºLujÞ

@xj
¼ 0 （9）

and

@ºS

@t
þ @ðºSujÞ

@xj
¼ 0 （10）

The remaining volume fraction ϕG can be estimated as

ºG ¼ 1 � ºL � ºS.

2.2 Numerical procedures

Figure 2 shows a schematic view of the whole computa-

tional area including three phases with the computational

cells and the subdomains. The scale of the computational

cell is set up finer than the solid object. The computational

domain is decomposed into multiple subdomains as shown

in Fig. 2, so that the computations of the discretized

governing equations can be parallelized with message

passing interface (MPI)10) in the distributed memory system.

Compared with the computational methods in which solid

objects are treated in a Lagrangian way, the present Eulerian

method enables us to easily parallelize the computations of

the movements of the solid objects, since individual solid

objects need not to be tracked among subdomains.

The governing equations shown in the above subsection

are discretized with FVM in the three-dimensional collo-

cated grid system8). A computational cell in the collocated

grid system is shown in Fig. 3.

The discretized variables are located at the cell center

point C as well as the cell boundaries indicated by B in

Fig. 3. The velocity components uci at cell center points are

spatially interpolated to obtain ubi defined on the cell

boundaries. In a way similar to the computational method8)

based on FVM, the convection and diffusion equations are

implicitly calculated at the center point of each cell using the

estimated fluxes on the cell boundaries. In particular, the

fluxes for the convection terms are calculated with the 5th-

order TVD scheme11). In particular, the interpolated uci is

used to calculate pressure-Poisson equations to satisfy

incompressible condition on the basis of the C-HSMAC

method12) in order to avoid so-called pressure-velocity

coupling oscillations.

3．Application of Computational Method
3.1 Conditions of numerical experiments

The present computational method was applied to the

dam-break flows including four deformable spheres as

illustrated in Fig. 4. All variables in computations are non-

dimensionalized with representative values.

The lengths of the computational region in Fig. 4 are

L1 = 2.1, L2 = 1.0 and L3 = 1.0 in x1, x2 and x3 directions,

respectively. The initial liquid depths of the dam-break

Fig. 2　Schematic view of computational domain

x 2

x 3

x 1

Δx i

C

B

uci

ubi

Fig. 3　Computational cell in collocated grid system

Fig. 4　Computational area with initial free-surface profile and solid
spheres (top = plan view, bottom = side view)
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condition are 0.8 (x1 � 0:25L1) and 0.5 (x1 > 0:25L1),

which means h1 ¼ 0:25L1, hd ¼ 0:3 and h3 ¼ 0:5 shown

in Fig. 4. The gravitational acceleration g is −10.0 acting in

x3 direction.

In the initial conditions shown in Fig. 4, the initial radius

rs of the spherical visco-hyperelastic bodies is 0.2 and the

interval of the center points of the neighboring two spheres

is 0.5, which means d = 0.1 in Fig. 4. The initial center

point of the sphere located on the leftmost side is set at

(x1S, x2S, x3S) = (0.3, 0.5, 0.3).

On all boundaries, the pressure boundary conditions are

@p=@n ¼ 0, while non-slip conditions are used for velocity

except on the top wall where the free-slip condition is

adopted. The densities of the gas and liquid are 1.0 and

1.0 × 103 respectively, while the viscous coefficients of the

gas and liquid phases are set at 1.0 × 10−2. Similarly, the

viscous coefficient of the visco-hyperelastic body is also

1.0 × 10−2. The density of visco-hyperelastic bodies is

1.0 × 103, which is the same as that of the liquid phase.

Thus, four visco-hyperelastic bodies are suspended in the

liquid.

The computational domain was decomposed into

6 × 1 × 2 subdomains in x1, x2 and x3 directions, respec-

tively. The parallel computations were conducted with 12

cores of the Intel Xeon Broadwell (2.1GHz). The elapsed

computational time was about 1 hour to calculate 5,000

steps which correspond to t = 5.0.

In order to investigate the relationships between the wave

motions of the free-surface and the stiffness of the

deformable bodies, two cases of computations were

conducted; shear moduli are set at G = 10.0 and G = 0.1.

The computational results of free-surface profiles and the

shapes of the spheres are visualized, while the free-surface

levels are quantitatively compared between two cases with

reference to the dam-break flow without spheres.

3.2 Results and discussion
Figure 5 shows the free-surface profiles and the shapes

of the four visco-hyperelastic bodies with G = 10.0, while

Fig. 6 shows the results with G = 0.1. Comparing two

results having different G, it can be seen that the initial

spherical shapes are almost unchanged in case that G = 10.0

and that they are largely deformed due to the interactions

with the free-surface flows in case that G = 0.1.

In order to compare the wave motions in the two results

having different G, the time histories of the liquid levels hL
on the left wall (on the x1 = 0 section) are shown in Fig. 7 as
well as the results calculated without solid bodies in the

flow. Comparing with the hL obtained without solid bodies,

the amplitudes of the liquid levels hL are largely decreased

when G = 10.0 as shown in Fig. 7 (a), while the damping

effects are scarcely found in case that G = 0.1 in Fig. 7 (b).

It can be thought reasonable that the damping effects on the

free-surface motions generally increase as the stiffness of the

deformable bodies increases. Conclusively, it can be seen

that such tendencies are successfully demonstrated with the

present computational results.

4．Conclusions
In this study, the damping effects of the suspended

deformable bodies on the free-surface motions were

numerically investigated. The computational method is

based on the full Eulerian method that can deal with the

(a)

(b)

(c)

(d)
Fig. 5　Free surfaces and deformable bodies (G = 10.0)
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interactions between the Newtonian fluids and visco-

hyperelastic solid bodies. Thus, all phases, consisting of

gas, liquid and solid, are treated in the Eulerian collocated

grid system. This computational method has some advan-

tages; it is easy to apply the domain decomposition method

to parallelize the numerical procedures and individual solid

bodies need not be tracked among the subdomains, differ-

ently from the Lagrangian treatments for solid objects.

In the numerical predictions, the free-surface motions

caused by the dam-break conditions, including four

spherical visco-hyperelastic bodies, were calculated with

two cases of non-dimensional shear moduli, G = 0.1 and

10.0, of the visco-hyperelastic bodies, which have the same

density as that of the liquid. As a result of the computations,

it is shown that the following reasonable results were

obtained; when the solid bodies are highly flexible

(G = 0.1), the free-surface motions are almost the same as

those having no solid bodies. In contrast, it was demon-

strated that the damping effects are obviously large in case

that the solid bodies are relatively rigid (G = 10.0), in which

the deformations of solid bodies are relatively small.

It is expected that the present computational method

allows us to predict the free-surface motions in the flows,

including many deformable solid bodies suspended in the

liquid and fixed on boundaries as well, in various

engineering equipment, such as storage tanks, in addition

to the natural hydraulics problems in the waves arising in

near-shore regions. Furthermore, the present method

possibly enables us to estimate the transportation of many

deformable bodies in the flow with and without free-

surfaces in the bio-engineering problems and the other

various engineering fields.

(a)

(b)

(c)

(d)
Fig. 6　Free surfaces and deformable bodies (G = 0.1)

(a) (b)
Fig. 7　Comparisons of time histories of hL with and without deformable bodies
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