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HOMOTOPY TYPES OF THE COMPONENTS OF SPACES OF
EMBEDDINGS OF COMPACT POLYHEDRA INTO 2-MANIFOLDS

HE TEMMEKRE Ko W EE (TATSUHIKO YAGASAKI)
KYOTO INSTITUTE OF TECHNOLOGY

Homotopy types of the identity components of homeomorphism groups of 2-manifolds have
been classified in [2, 7, 9]. In this article we classify the homotopy type of connected components

of spaces of embeddings of compact connected polyhedra into 2-manifolds [11].

1. BACKGROUND

The homotopy type of the identity component H(M)o of the group H(M) of (C°, PL, C*)
homeomorphisms on a surface M of finite type was studied in 1960’s and its classification is
now a classical result. In the C%category, M. E. Hamstrom et al. [2, 7] studied the homotopy
groups of H(M)o and R.Luke - W.K.Mason (3] showed that H(M) is an ANR (absolute
neighborhood retract). After the development of infinite-dimensional manifold theory in 1970°s
[4] it was shown that H(M) is a topological £5-manifold, and the topological type of H (M),
was determined based on its homotopy type.

The study of homeomorphism groups is closely related to the study of embedding spaces.
For example, the following properties of embedding spaces played crucial roles in the works of
Hamstrom and Luke - Mason: the triviality of the homotopy groups of the space of embeddings
of a one point union of circles, ANR property of the space of embeddings of a circle, etc.
However, these results on spaces of embeddings into 2-manifolds were restricted to partial
cases.

In another viewpoint, the theory of conformal mappings in the complex plane [6] palyed an
important role in 2-dimensional topology. Conformal mappings give canonical coordinates to
domains in the complex plane. Those coordinates are used to extend homeomorphisms on the
boundaries canonically to homeomorphisms on the domains.

Based upon these backgrounds, we have studied the remaining parts: a bundle theorem which
connects homeomorphism groups of surfaces with spaces of embeddings into surfaces, homeo-
morphism groups of surfaces of infinite type and spaces of embeddings of compact polyhedrs
into surfaces, etc.

In the C*-category, it is well known that the restriction maps from the homeomorphism
group of a manifold IV to the space of embeddings of a submanifold L into N is a principal
bundle [5]. We have shown a similar result for any topological 2-manifold M and any compact
subpolyhedron X of M [8]. Again the conformal mapping theorem is used to obtain canonical

extension of embeddings of X to homeomorphisms of M. This bundle theorem has been used
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to show that the space £(X, M) of embeddings of X into M is an £?-manifold [8]. We have
also provided a sufficient condition that the fiber of this bundle is connected [9]. Combining
these results with the results on H(M) for M of finite type together, we have determined the
homotopy type and the topological type of H(M) for M of infinite type [9].

Now we are in a position to answer the following problem:

Problem. For any 2-manifold M and any compact connected subpolyhedron X of M, deter-
mine the homotopy type and the topological type of the connected components of the space
E(X, M) of embeddings of X into M.

2. MAIN RESULTS

2.1. Main Theorem.

Suppose M is a connected 2-manifold and X is a compact connected subpolyhedron of M
with respect to some triangulation of M. Let £(X, M) denote the space of topological embed-
dings of X into M with the compact-open topology and let £(X, M), denote the connected
component of the inclusion map ix : X C¢ M in E(X, M).

If X is a point of M then £(X, M) = M, and if X is a closed 2-manifold then X = M and
E(X, M) = H(M)o, whose homotopy type is already known [2, 7\

Assumption 1. Below we assume that X is neither a point nor a closed 2-manifold.

The inclusion map ix : X € M induces a homomorphism on the fundamental group ix, :

m(X) = m(M). Denote the image of ix, by G. We have the following three cases:
[1] G : not a cyclic group [2] G : a nontrivial cyclic group B G=1

The homotopy type of £(X, M)p can be classified in the term of this subgroup G. (The

symbols S, T?, P2, K? denote the circle, torus, projective plane and Klein bottle respectively.)

Theorem 1. Suppose G is not a cyclic group.
(1) E(X,M)g~=* if M #T? K.
(2) E(X,M)g ~T? if M = T2,
(3) E(X, M)y ~S! if M = K2,

Theorem 2. Suppose G is a nontrivial cyclic group.
(1) (X, M) ~ St if M 2 P2 T? K2,
(2) E(X,M)g ~T? if M = T2,
(3) Suppose M = K?.
(i) E(X,M)g =~ T? if X is contained in an annulus which does not separate M.
(ii) £(X, M) ~ S! otherwise.
(4) Suppose M =2 P2,
(i) E(X,M)o ~ SO(3)/Zy if X is an orientation reversing circle in M.
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(ii) £(X,M)o ~ SO(3) otherwise.

When G = 1, under Assumption 1, X is contractible in M and X has a disk neighborhood.
The 2-manifold M admits a smooth structure and has a Riemannian metric. By S(TM) we

denote the unit circle bundle of the tangent bundle TM. When M is nonorientable, let M

denote the orientable double cover of M.

Theorem 3. Suppose G = 1.

(1) E(X,M)o ~ S(TM) if X is an arc or M is orientable.
(2) E(X,M)g ~ S(TM) otherwise.

Complement. If we choose a base point zop € X and condier the map p : £(X, M)y —
M, p(f) = f(zo), then in Theorem 3 (1), (2) £(X, M) is fiber preserving (f.p.) homotopy
equivalent over M to S(T'M) and S(T M ) respectively.

To determine the topological type of £(X, M) we can apply the theory of infinite-dimensional
manifolds {4]. Since £(X, M) is a topological £2-manifold [8], the topological type of £(X, M)y
is determined by its homotopy type [4]. If £(X, M)y has the homotopy type of a compact
polyhedron P, then £(X, M)o 2 P x ¢2. In [10] we study the space of embedded images of X
in M, K(X,M)={f(X)]| f€&X,M)}, equipped with the Frechet topology, and show that
the natural map £(X, M) — K(X, M) is a principal #(X) - bundle.

2.2. Idea of Proof.

Theorems 1-3 are proved by the following considerations: First we take a regular neigh-
borhood N of X and compare the homotopy types of £(X, M)y and £(N, M)g through the
restriction map (N, M)y — E(X, M)y : f— flx. It is shown that, except two cases, this
restriction map is a homotopy equivalence. The exceptional cases are treated separately. Below
we consider the generic case. By Assumption 1 N has a boundary and admits a core Y which
is a one point union of circles.

(1) If G is not a cyclic group, Y includes at least two independent essential circles. In this case
it is shown that the restriction map H(M)y — E(N, M), is a homotopy equivalence and we
have the conclusion follows from the homotopy type of H(M)p.

(2) If G is a nontrivial cyclic group, Y includes only one independent essential circle. One can
eliminate dependent circles from Y without changing the homotopy type of £(Y, M)y. Thus
the general case reduces to the case where X is an essential circle. In the latter case, we
can deduce the conclusion by comparing with H(M )¢ (cf.[7]). Generically, H(M )y ~ * yields
E(X, M)y ~ S (the circle of the rotations of X along itself).

(3) When G = 1, under Assumption 1, X has a disk neighborhood D. For simplicity we
consider the case where M is orientable. The unit circle bundle S(T'M) can be embedded into
E(X,M)o in the following form: Fix a base point xo of X. We identify (D, zy) with the unit
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disk (D(1),0) in the plane R%. Thus we can regard as X ¢ D(1). If we choose a sufficiently
small function e(z) : M — (0,00), then at each point £ € M the exponential map exp, is
defined on the e(z)-neighborhood of the origin in T, M. For each v € S(T;M) we take the
unique orientation preserving (0.p.) isometric embedding j;, : (D(1),0) — (1>M,0) with
Jew(1,1) = v and define iz, € E(X,M)o by icp = expg(e(2)jzsv|x). Theorem 3 is verified
by constructing a strong deformation retraction of £(X, M)y onto S(T'M). To deform any
topological embedding of (X, zg) into (D(1),0) to a rotation around 0 canonically, we need
SO(2)-equivariant canonical extension of embeddings of X into D(1). This is obtained by

using the conformal mapping theorem in the complex function theory [6].

3. SKETCH OF PROOF

Let M and X be as in Section 2.1. By Hx (M) we denote the group of homeomorphisms 7
of M onto itself with h|x = id, equipped with the compact-open topology, and by Hx (M )y we
denote the identity component of Hx(M). When K is a subpolyhedron of X, let £x (X, M)
denote the subspace of £(X, M) consisting of embeddings f : X — M with f|x = id. and let
Ex (X, M)y denote the connected component of the inclusion map ix : X € M in Ex(X, M).

By pulling M into Int M with using a collar of M, it is shown that the inclusion £(X,Int M) C
E(X, M) is a homotopy equivalence. Thus there is no loss of generality under the following

assumption.
Assumption 2. Below we assume that OM = (.

3.1. Homotopy types of connected components of homeomorphism groups of sur-
faces.

When M is a surface of finite type, the homotopy type of Hx (M) is well known. When M
is a surface of infinite type, the homotopy type of Hx (M) is classified as follows [9]:

Proposition 1. Suppose M is a noncompact connected 2-manifold and X is a compact sub-
polyhedron of M.

(i) Hx(M)o =~ S' if (M, X) = (R%,0), (R?, 1pt), (S' xR%,0), (S x[0,1),8) or (P?\ 1pt, ).
(ii) Hx (M) ~ * otherwise.

3.2. Bundle Theorem.

The homeomorphism group Hg(M)o and the embedding space Ex(X, M)y are joined by
the restriction map 7 : Hx(M)o = Ex(X,M)o, 7(f) = flx. In [8] we have investigated some
extension property of embeddings of a compact polyhedron into a 2-manifold, based upon the

conformal mapping theorem. The result is summarized as follows [9]:

Proposition 2. (i) The restriction map © : Hg(M)o = Ex(X, M)g is a principal bundle with
fiber G = Hyg(M)o N Hx (M), where the group G acts on Hyx(M)o by right composition.
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(i) Suppose K C'Y are compact subpolyhedra of X. Then the restriction map p : Ex (X, M)g —
8K(Y, M)(), p(f) = fly 15 a fiber bundle with fiber F = EK(X, M)O n Ey(X, M)

The next proposition provides a sufficient condition for the fiber G to be connected [9]. (#A4
denotes the cardinality of a set A.)

Proposition 3. Suppose N is a compact 2-submanifold of M and Y is a subset of N. [f
(M, N,Y) satisfies the following conditions, then Hy (M)o N Hy (M) = Hn(M)o.
(i) (a) If H is a disk component of N, then #(HNY) > 2.
(b) If H is an annulus or Mébius band component of N, then HNY # .
(i) (a) If L is a disk component of cl(M \ N), then #(LNY) > 2.
(b) If L is a Mcbius band component of cl(M \ N), then LNY # 0.

3.3. Embedding spaces of regular neighborhoods.
Suppose N is a regular neighborhood of X in M. By Proposition 2 (ii) we have the fiber
bundle

F = E(N,M)o M Ex (N, M) = E(N,M)o = E(X, Mo, p(f)= flx-
Consider the following conditions:

(i) X is an arc and M is nonorientable.  (ii) X is an orientation reversing (o.r.) circle.

Proposition 4.

(1) If (M, X)) is neither in the case (1) nor (i1), then F = Ex (N, M)o ~ * and the map p
is a homotopy equivalence.

(2) In the case (i) or (ii) E(N, M)y has a natural Zy-action and the map p factors as
p: E(IVJ M)O i} 8(]\77 M)O/Z2 _q—) g(Xa M)O
The map 7 is a double cover and the map q is a homotopy equivalence.

3.4. Proof of Theorem 1.

Once we show that the restriction map p : H(M)o — £(X, M) is a homotopy equivalence,
then the conclusion follows from the homotopy type of H(M)o.

Let N be a regular neighborhood of X and let N; be the union of N and the disk or M&bius

band components of ¢l(M \ N). The map p factors to the restriction maps
H(M)o 5 £y, 1)g B2 £(N, Mo B £(X, M),

By Proposition 4 (1) the map p3 is a homotopy equivalence. The map py is also a homotopy
equivalence since Hy(E) ~ * if £ is a disk or a M6bius band. The map p; is a principal bundle
with fiber G = H(M)o N Hn, (M). By Proposition 3 we have G = Hy, (M) ~ * and so p; is a

homotopy equivalence. Therefore the map p is a homotopy equivalence. 0]
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3.5. Simplification of embedded polyhedra — Elimination of circles.
In this section we apply Proposition 4 to modify the polyhedron X without changing the
homotopy type of £(X, M)o.

Proposition 5.

(1) If E is a disk or a Mébius band in M and OE C X, then the restriction map p :
E(X UE, M)y — E(X, M) is a homotopy equivalence.

(2) Suppose X =Y UC is a one point union of an inessential circle C and a compact con-
nected subpolyhedron Y which satisfies the condition of Proposition 4 (1). Then the restriction
map p: E(X, M)y — E(Y, M) is a homotopy equivalence.

(3) Suppose X =Y UCy UC, is a one point union of two essential circles Cy and Cy and
a compact connected subpolyhedronY (# Ipt), where if one of C1 and Cy is an o.r. circle, we
relabel them so that Cy is an o.r. circle. If G =Im (ix)« is a cyclic group, then the restriction

map p: E(X, M)o — E(Y UCq, M) is a homotopy equivalence.

3.6. Proof of Theorem 2.

We treat the generic case (1). So we assume that M % P2 T2 K? and show that £(C, M) ~
S!. The remaining cases are treated separately.
[1] Case where X is a circle (cf. [7]):

Suppose C is an essential circle in M. Fix a base point z € C and let a € w1 (M, z) be the
clement represcnted by C with an appropriate orientation. By (o) we denote the subgroup of

71 (M, x) generated by «. Consider the following fiber bundles:
F o= ECM0N&CM) c ECMy B M ¢ op(f)=fl),
G = M (MpNHo(M) C H (M) > E(C,M)o : gqlh)=hlc.
Inspecting these bundles, we see that
(1) EL(C, M )o =~ *.
(i1) me(E(C, M)o) =0 (k> 2) and p,:m1(E(C, M)o,ic) =5 Imp, C M (M, z).
(iii) (a) a € Imp, C m(M,z), (b) af = Ba (B € Imp.).
(iv) Imp, = (a) = Z.
Since £(C, M)g is an ANR and K(Z, 1),it follows that £(C, M)o ~ S*.

(2] Case where X is not a circle:

This case reduces to the circle case through the following argument: Let N be a regular
neighborhood of X. By Assumption 1 N has a boundary and includes a subpolyhedron Y such
that N is a regular neighborhood of Y in M and Y = AU (U, C;) U (Uf; C}) is a one point
union of essential circles C; (i = 1,---m) (m > 1), inessential circles C} (j = 1,---n) (n = 0)
and an arc A. Let Y1 = AU (U, C;). By Propositions 4 (1) and 5 (2) the following restriction
maps are homotopy equivalences:

E(XaM)O — 8(N:M)O R g(}/:M)O — g(YbM)O
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Since 1y;,m1 (Y1) = ix,m1(X) is a cyclic subgroup of 7 (M), by the repeated application of
Proposition 5 (3) we can find some Cj such that the restriction map

g(}fl,M)o — 5(AUCk,M)o
is a homotopy equivalence.
Let N1 be a regular neighborhood of AU Cy. Then NV; is a regular neighborhood of Cy and

it is an annulus or a Mdbius band. We set C = Cy when Nj is an annulus and C = dN; when

Ny is a Mobius band. The restriction maps
E(AUCy,, M) +— E(N1,M)o — E(C, M)g

are homotopy equivalences. We have the required conclusion by applying Case [1] to the circle
C. O

3.7. Proof of Theorem 3.

For the sake of simplicity, below we assume that M is oriented and X is not an arc. We
choose a smooth structure and a Riemannian metric on M. Let d denote the distance function
induced from this Riemannian metric. The tangent bundle ¢ : TM — M is a 2-dim oriented
vector bundle with an inner product. By the assumption X has a disk neighborhoof D, which

inherits a natural orientation from M. Fix a base point zg of X.

Notation 1. For the embedding space, the symbol “+” denotes “orientation preserving”. For

example, when E is an oriented disk, Y C E and N is an oriented surface, we define as follows:
EY(E,N)={f € E&(E,N) | f preserves the orientations }
EX(Y,N)={f € E(Y.N)| f admits an extension f € £¥(E, N)}
For X C D C M, we have E(D, M) = ET(D,M) and £(X, M)y = ET (X, M).
3.7.1. Spaces of c-embeddings.
Forz € M andr >0, let Uy(r) = {y € M | d(z,y) <r} and Ou(r) = {ve T.M | |vi < r}.
If e : M — (0,00) is a sufficiently small continuous function, then at each point € M the
exponential map exp, defines an o.p. diffeomorphism exp, : O, (e(x)) =, Uz(2(x)). Since exp,

is smooth in z € M, if we set

Orm(e) = | Osle(z)) cTM Unm(e) = | J {z} x Usle(z)) € M x M
zeM zeM
then we obtain a f.p. diffeomorphism over M:

exp : Ormie) — Unm(e), exp(v) = (z,exp,(v)) (v € O(e(x))).
Next consider the following subspaces of £(X,TM) and £*(X, M) defincd by

5 (X, x0; Orm(€),0) = | €7(X,z0; Oxle(2)),0) C E(X.TM)
TeEM

where  £7(X, zo; Oz(e(x)),0) = {f € ET(X; Oz(e(x))) | fzo) = 0}
EN(X, M) ={f € EX(X, M) | f(X) C Uz (e(f(z0)))} C EH(X, M),
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The space £f(X,zo; Orm(€),0) has a natural projection onto M. The projection p :
EY(X,M) —> M, p(f) = f(xo), induces the projection p: EFH(X, M) — M.

Lemma 1. The f.p. diffeomorphism exp induces a f.p. homeomorphism over M
Exp E;(X, z0; Orar(€),0) 2 EF(X, M), Ezp(f)=exp,of (f €& (X, zo;0-(e(x)),0))}

Remark 1. With multiplying e(z) on T, M, we see that Orar(g) and Orp(1) are f.p. home-
omorphic over M. Thus (X, zo; Orm(e),0) and &S (X, z0; Orp(1),0) are also f.p. homeo-

morphic over M.
Lemma 2. The inclusion EX(X, M) C ET(X, M) is a f.p. homotopy equivalence over M.

This lemma is verified by extending f € £7(X, M) to f € £¥(D, M) canonically and shrink-
ing f(D) towards f(zo).

3.7.2. Reduction to the complex plane.

By the argument in the previous section it remains to construct a f.p. homotopy equivalence
& (X, 10;0rpr(1),0) =~ S(TM). Since £ (X, 20;0rpe(1),0) is locally trivial, it suffices to
construct a canonical homotopy equivalence E¥ (X, zo; Oy (1),0) ~ S(V) for any 2-dim oriented
vector space V with an inner product.

First we work on the complex plane C. Let D(r), O(r) and C(r) denote the closed disk, the
open disk and the circle in C with the center 0 and the radius r. We fix an 0.p. homeomorphism
(D,z0) = (D(1),0) and regard as 0 € X C D(1). Let Oy and SO, denote the orthogonal
group and the rotation group on R? respectively. SO acts on £7(X,zg;0(1),0) by the left
composition. For each z € C(1), we have the rotation 8, of C defined by 8,(w) = z-w, by which
we can identify C(1) with SOq. The circle C(1) is naturally embedded into £¥ (X, zg; O(1),0)

by z - 6,|x. The next proposition is verified in the next section.

Proposition 6. There exists a canonical SO, -equivariant strong deformation retraction Fy of
E7(X,x0;0(1),0) onto C(1).

Suppose V is any oriented 2-dim vector space with an inner product and let Oy (1) and
Cv(1)(= S(V)) denote the open disk and the circle in V' with the center 0 and the radius 1.
For cach v € Cy (1) there exists a unige o.p. linear isometry a, : C = V such that «,(1) = v.
Cy (1) can be embedded naturally into £7(X, zg; Oy (1),0) by Cv(1) 3 v+ au|x-

Choose any o.p.linear isometry  : C 2 V. Then we can define a strong deformation
retraction ¢} of E¥(X, z; Ov(1),0) onto Cy (1) by the following formula:

o) (f) = aFy(a'f).
This definition is independent of the choice of o due to the SOj-equivariance of Fy. When
X is an arc, it suffices to consider the case where X = [-1/2,1/2] C O(2). In this case, O3

acts on £(X,0;0(1),0) and we can construct an Op-equivariant strong deformation retraction
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Fy of £(X,0;0(1),0) onto C(1) (cf. §3.8.3 Lemma 5). Therefore, even if V is not oricnted,
any linear isometry a : C 2 V can be used to define a strong deformation retraction Y of
E(X, 20; Oy (1),0) onto Cy(1). Thus, when X is an arc, we need no assumption on orientation.

We have completed the proof of Theorem 3 except Proposition 6.

3.8. Canonical extension and deformation of embeddings into a disk.

We identify the complex plane C with the plane R?. Let A(r,1) (0 < r < 1) denote the
annulus region in R? between the circles C(r) and C(1) and A, : A(1/2, 1) = A(r,1) the natural
radial homeomorphism. We fix a tuple of three points ag = (—4,1,7) on C(1).

Below we use the conformal mapping theorem to give a canonical parametrization of Ol)-X
(§3.8.1), and construct a canonical extension ®(f) of f € £¥(X,0(1)) (§3.8.2). The extension
map ® is SO;-equivariant, and using this property, we construct a SQOj-equivariant canonical
deformation Fy(f) of f to a rotation (§3.8.3).

3.8.1. Canonical parametrization.

We show that O(1)~ X has a canonical parametrization under normalization data. In general,
when G is a compact graph, V(G) denotes the set of points of G which has no neighborhood
homeomorphic to R. Each point of V(@) is called a vertex of G and the closure of each
component of G — V(G) in G is called an edge of G.

Suppose X is a compact connected polyhedron (# 1 pt) topologically embedded in O(1).
Then O(1) — X is a disjoint union of an open annulus U and finitely many open disks U,
(t=1,---,m). Since the frontier Fro(1)U is a compact connected graph, there exists a unique
cyclic chain of oriented edges e, - - - , e, of Fr U such that if we move on these edges in this order,
we obtain a unique loop £y which runs on Fr U once in the “counterclockwise” orientation with
seeing U in the right-hand side. Similarly, each Frpo()U; is a compact connected graph and we
can find a unique cyclic chain of oriented edges €t, - - - , e}, of Fr U; such that if we move on these
edges in this order, we obtain a loop ¢y, which runs on FrU; once in the “counterclockwise”
orientation with seeing U in the left-hand side. To normalize the data for U;, we choose an
ordered set a; = (z;,¥i, z;) of three distinct points lying on the loop £y, in the positive order.
The data a = (a;) is called normalization data for X.

By the conformal mapping theorem (existance and boundary behaviour) [6] we have canon-

ical parametrizations of U and U;’s.

Lemma 3. (1) For the annulus component U, there exists a unique r € (0,1) and a unique o.p.
map g : A(r,1) = clU C D(1) such that g maps Int A(r,1) conformally onto U and g(1) = 1.
Furthermore, g satisfies the following conditions:
(i) g maps C(1) homeomorphically onto C(1),
(i) (a) g(C(r)) =FrU and
(b) There exists a unigue collection of points {u1, - ,un} lying on C(r) in counter-

clockwise order such that g maps each positively oriented circular arc [ujujy,] on
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C(r) onto the oriented edge e; in 0.p. way and maps Int [uju;+1] homeomorphically

onto e;—V (FrU). (Here uny1 = u1, and when n = 1, we mean that [uyui] = C(r).)

(2) For each (U, a;) there exists a unigque o.p. map g; : D(1) — clU; C D(1) such that g; maps
O(1) conformally onto U; and g(ao) = a;. Furthermore, g; satisfies the following conditions:

(a) g(C(1)) =FrU; and

(b) There exists a unique collection of points {ut,- - ,ufh} lying on C(1) in counterclock-

wise order such that g; maps each positively oriented circular arc [u;ujH] on C(1)

onto the oriented edge e

;» in o.p. way and maps Int [u;uzﬂ] homeomorphically onto

et — V(FrU;). (Here vt . = ut, and when n; = 1, we mean that [uiui] = C(1).)
J ni+1 1 1%

We set go = gAr : A(1/2,1) = clU. The collection of maps (go, (g:)) obtained in Lemma
3 is called the canonical parametrization of O(1) — X with respect to the normalization data

a == ((Li).

3.8.2. Canonical extensions.

We fix normalization data a = (a;) for X. We show that each f € £7(X,0(1)) has a canon-
ical extension ®(f) € H*(D(1)). The map f has an extension f € H*(D(1)). Corresponding
with the connected components U, (U;) of O(1) — X and normalization data a = (a;) of X,
we obtain the connected components V = f(U), (V;) = (f(U;)) of O(1) — f(X) and normal-
ization data f(a) = (f(a;)) of f(X). (These are independent of the choice of f.) Applying
the argument in §3.8.1 to (f(X), f(a)), we obtain the canonical parametrization (hg, (h;)) of
O(1) — f(X) with respect to the normalization data f(a).

(1) For (U, V) there exists a unique 6(f) € H*(C(1/2)) such that hof(f) = fgo. Let ©(f) €
HT(A(1/2,1)) denote the radial extension of (f). Then there exists a unique homeomorphism
©(f) 1 U — 'V such that hg®(f) = ¢©(f)go. The map ¢(f) is an extension of f : FrU &
Frv.

(2) For each (U;, Vi) (i = 1,---,m), there exists a unique 8;(f) € H7(C(1)) such that
hi6;(f) = fgi. Let ©;(f) € H(D(1)) denote the conical extension of #;(f). Then there exists
a unique homeomorphism ;(f) : clU; — ¢l V; such that h;0;(f) = @i(f)g:. The map ¢;(f) is
an extension of f: FrU; = FrVj.

I on X
Finally we define ®(f) € H*(D(1)) by (f) =< (f) ondU
wi(f) onclU;
The map ® = @(x,) : E7(X,0(1)) —» HT(D(1)) is continuous since conformal mappings

depend upon their ranges continuously.

3.8.3. Symmetry of the extension map &.

Next we study the naturality and symmetry properties of the extension map ®(x q) : £€7(X,0(1)) —
H+(D(1)). We use the following notations: The rotation group SO; acts on £¥(X,0(1))
and H7(D(1)) by the left composition, and SO, is naturally embedded into these spaces by
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v = 7lx,7Ipa). Let n : R? = R? denote the reflection n(z,y) = (z,—y). The restriction of
v € Oy onto D(r), O(r) etc. are denoted by the same symbol 7.

Lemma 4. (1) ®x,0)(9f) = P(5(x),a() (9)@(x,0)(f)  (f € ET(X,0(1)), g € ET(F(X),0(1))).
(2) @ x0)(7Ix) =7 (v € 809).
(3) (x4 : ET(X,0(1)) = HT(D(1)) is SOz-equivariant.

When X is an arc, by the similar argument, we can construct the following canonical ex-
tension map. We set £*(X,0(1)) = £(X,0(1)) x {£}. For each (f,8) € £*(X,0(1)) we
obtain a canonical extension ®(f,§) € H*(D(1)). The canonical extension map ® = ®y :

EX(X,0(1)) = H(D(1)) is continuous and has the following properties:

Lemma 5. (Case where X is an arc)
(1) ox(gf,€9) = 5(x)(9,€)2x(f,0)  ((f,0) € £*(X,0(1)), (g,2) € E*(f(X),0(1))).
(2) ex(7lx,0(v) =7 (v € O).
(3) (i) &x : £(X,0(1)) — H(D(1)) is Oq-equivariant.
(i) @nxy(fnlnx),0) = n@x(f,6)n  ((f,9) € £7(X,0(1))).

Proof of Proposition 6. Using the Alexander trick, we can construct a SOy-equivariant
strong deformation retraction Hy of Hg (D(1)) onto SO;. Then we can define a SOy-equivariant
strong deformation retraction Fy of £7(X, 0; O(1),0) onto SOy = C(1) by Fy(f) = H (@ x(f)) x
O
Now we have completed the proofs of Theorems 1- 3.
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