<table>
<thead>
<tr>
<th>Title</th>
<th>Geometry of finite-dimensional maps (Set Theoretic and Geometric Topology and Its Applications)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kato, Hisao</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 数理解析研究所講究録</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/26305</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Geometry of finite-dimensional maps (Pasynkov の定理の精密化)

筑波大学・数理物質科学研究科・加藤 久男 (Hisao Kato)

Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan

Abstract. In [2 and 3], Pasynkov proved the following theorem: If $f : X \to Y$ is a map of compacta such that f is a k-dimensional map and $\dim Y = p < \infty$, then the set of maps g in the space $C(X, I^{p+2k+1})$ such that the diagonal product $f \times g : X \to Y \times I^{p+2k+1}$ is an embedding is a G_δ-dense subset of $C(X, I^{p+2k+1})$. In this paper, furthermore we investigate the geometric properties of finite-dimensional maps and finite-to-one maps. We prove that if $f : X \to Y$ is a map as above, then for each $0 \leq i \leq p + k$, the set of maps g in the space $C(X, I^{p+2k+1-i})$ such that the diagonal product $f \times g : X \to Y \times I^{p+2k+1-i}$ is an $(i+1)$-to-1 map is a G_δ-dense subset of $C(X, I^{p+2k+1-i})$. The case $i = 0$ implies the result of Pasynkov. Also, if Y is a one point set, our result implies the following Hurewicz's theorem: If $\dim X = n < \infty$ and $0 \leq i \leq n$, then the set of maps g in the space $C(X, I^{2n+1-i})$ such that $g : X \to I^{2n+1-i}$ is an $(i+1)$-to-1 map is a G_δ-dense subset of $C(X, I^{2n+1-i})$. As a corollary, we have the following representation theorem of finite-dimensional maps: For a map $f : X \to Y$ of compacta such that $0 \leq k < \infty$ and $\dim Y = p < \infty$, f is a k-dimensional map if and only if f can be represented as the composition $f = g_{p+2k+1} \circ \ldots \circ g_{p+k+2} \circ g_{p+k+1} \circ g_{p+k} \circ \ldots \circ g_{1}$ of maps g_{i} $(i = 1, 2, \ldots, p + k + 1)$ parallel to the unit interval I such that g_{i} is an $(i+1)$-to-1 map for each $i = 1, 2, \ldots, p + k$ and g_{p+k+1} is a zero-dimensional map.

\[X = X_{0} \xrightarrow{g_{1}} X_{1} \xrightarrow{g_{p+k}} X_{p+k} \xrightarrow{g_{p+k+1}} X_{p+k+1} \]
\[\xrightarrow{g_{p+k+2}} X_{p+k+2} \xrightarrow{g_{p+2k+1}} X_{p+2k} = Y \]

1 Introduction.

All spaces considered in this paper are assumed to be separable metric spaces. Maps are continuous functions. Let $I = [0, 1]$ be the unit interval. By a compactum we mean a nonempty compact metric space. Let X and Y be compacta. Then $C(X, Y)$ denotes the space of all maps $g : X \to Y$ with the usual sup-metric. Note that $C(X, Y)$ is a complete metric space.

A map $f : X \to Y$ is a k-dimensional map ($0 \leq k < \infty$) if for each $y \in Y$ $\dim f^{-1}(y) \leq k$, where $\dim Z$ denotes the topological dimension of a space Z. If a map $f : X \to Y$ is a k-dimensional map, we write $\dim f \leq k$. A map $f : X \to Y$ is a k-to-1 map if for each $y \in Y$, the cardinal number $|f^{-1}(y)|$ of $f^{-1}(y)$ is equal to or less than k.
In [2 and 3], Pasynkov proved that if \(f : X \rightarrow Y \) is a \(k \)-dimensional map from a compactum \(X \) to a finite dimensional compactum \(Y \), then there is a map \(g : X \rightarrow I^k \) such that \(\dim (f \times g) = 0 \). Also, he proved that if \(f : X \rightarrow Y \) is a map of compacta such that \(f \) is a \(k \)-dimensional map and \(\dim Y = p < \infty \), then the set of maps \(g \) in the space \(C(X, I^{p+2k+1}) \) such that the diagonal product \(f \times g : X \rightarrow Y \times I^{p+2k+1} \) is an embedding is a \(G_\delta \)-dense subset of \(C(X, I^{p+2k+1}) \).

In this paper, furthermore we investigate the geometric properties of finite-dimensional maps and finite-to-one maps. We prove that if \(f : X \rightarrow Y \) is a map of compacta such that \(f \) is a \(k \)-dimensional map and \(\dim Y = p < \infty \), then for each \(0 \leq i \leq p + k \), the set of maps \(g \) in the space \(C(X, I^{p+2k+1-i}) \) such that the diagonal product \(f \times g : X \rightarrow Y \times I^{p+2k+1-i} \) is an \((i+1)\)-to-1 map is a \(G_\delta \)-dense subset of \(C(X, I^{p+2k+1-i}) \). Note that the restriction \(g|f^{-1}(y) : f^{-1}(y) \rightarrow I^{p+2k+1-i} \) is an \((i+1)\)-to-1 map for each \(y \in Y \). Also, note that the case \(i = 0 \) implies the result of Pasynkov, and our proof in this paper is different from the proof of Pasynkov (see [3]). Also, if \(Y \) is a one point set, our result implies that if \(\dim X = n < \infty \) and \(0 \leq i \leq n \), then the set of maps \(g \) in the space \(C(X, I^{2n+1-i}) \) such that \(g : X \rightarrow I^{2n+1-i} \) is an \((i+1)\)-to-1 map is a \(G_\delta \)-dense subset of \(C(X, I^{2n+1-i}) \). As a corollary, we have the following representation theorem of finite-dimensional maps: For a map \(f : X \rightarrow Y \) of compacta such that \(0 \leq k < \infty \) and \(\dim Y = p < \infty \), \(f \) is a \(k \)-dimensional map if and only if \(f \) can be represented as the composition \(f = g_p \circ g_{p+k+1} \circ \cdots \circ g_{p+k+2} \circ \cdots \circ g_1 \) of maps \(g_i \) \((i = 1, 2, \ldots, p + 2k + 1)\) parallel to the unit interval \(I \) (for the definition, see section 3) such that \(g_i \) is an \((i+1)\)-to-1 map for each \(i = 1, 2, \ldots, p + k \) and \(g_{p+k+1} \) is a zero-dimensional map.

\[
\begin{array}{cccccccccc}
X = X_0 & \xrightarrow{g_1} & X_1 & \xrightarrow{\ldots} & \xrightarrow{g_{p+k}} & X_{p+k} & \xrightarrow{g_{p+k+1}} & X_{p+k+1} \\
& \xrightarrow{g_{p+k+2}} & X_{p+k+2} & \xrightarrow{\ldots} & X_{p+2k} & \xrightarrow{g_{p+2k+1}} & X_{p+2k+1} = Y
\end{array}
\]

Note that the maps \(g_i \) \((p + k + 2 \leq i \leq p + 2k + 1)\) are 1-dimensional maps.

2 Main theorem.

A map \(h : X \rightarrow Y \) is a \((p, \epsilon)\)-map \((\epsilon > 0)\) if for each \(y \in Y \), there are subsets \(A_1, A_2, \ldots, A_p \) of \(h^{-1}(y) \) such that \(h^{-1}(y) = \bigcup_{i=1}^{p} A_i \) and \(\text{diam} \ A_i < \epsilon \) for each \(i \). Let \(f : X \rightarrow Y \) be a map and \(A \subset X \). Then \(f|A : A \rightarrow Y \) is a strict embedding for \(f \) if \(f|A \) is an embedding and \(f^{-1}(f(A)) = A \). Note that \(f|A : A \rightarrow Y \) is a strict embedding for \(f \) if and only if \(A \subset \{ x \in X | f^{-1}(f(x)) = \{x\} \} \).

In this paper, we need the following key lemma of Toruńczyk [4, Lemma 2].

Lemma 2.1. Let \(\epsilon > 0 \). Suppose that \(f : X \rightarrow Y \) is a map of compacta with \(\dim f = 0 \) and \(\dim Y = p < \infty \). For each \(i = 1, 2, \ldots, l \), let \(K_i \) and \(L_i \) be closed
disjoint subsets of X. Then there are open subsets E_i of X separating X between K_i and L_i such that $f|(Cl(E_1) \cup \ldots \cup Cl(E_i))$ is a (p, ε)-map.

The next proposition was proved by Pasynkov in [2] (see also [4, Corollary 1] and [1, p. 48]).

Proposition 2.2. If $f : X \to Y$ is a k-dimensional map from a compactum X to a finite dimensional compactum Y, then the set of maps g in $C(X, I^k)$ such that $\dim (f \times g) = 0$ is a G_{δ}-dense subset of $C(X, I^k)$.

The following lemma is easily proved.

Lemma 2.3. Let X and Y be compacta and A a closed subset of X. Let $C(X, Y; A, p)$ be the set of all maps $g : X \to Y$ such that $g|A$ is a p-to-1 map. Then $C(X, Y; A, p)$ is G_{δ} in $C(X, Y)$.

Theorem 2.4. If $f : X \to Y$ is a map of compacta such that f is a k-dimensional map and $\dim Y = p < \infty$, then for each $0 \leq i \leq p + k$, the set of maps g in the space $C(X, I^{p+2k+1-i})$ such that the diagonal product $f \times g : X \to Y \times I^{p+2k+1-i}$ is an $(i+1)$-to-1 map is a G_{δ}-dense subset of $C(X, I^{p+2k+1-i})$. Hence the restriction $g|f^{-1}(y) : f^{-1}(y) \to I^{p+2k+1-i}$ is an $(i+1)$-to-1 map for each $y \in Y$.

3 Finite-dimensional maps and compositions of maps parallel to the unit interval.

A map $f : X \to Y$ is said to be **embedded in a map** $f_0 : X_0 \to Y_0$ (see [2 and 3]) if there exists embeddings $g : X \to X_0$ and $h : Y \to Y_0$ such that $h \circ f = f_0 \circ g$. A map $f : X \to Y$ is **parallel** to the unit interval I (see [2 and 3]) if f can be embedded in the natural projection $p : Y \times I \to Y$. In [2 and 3], Pasynkov proved the following theorem: If $f : X \to Y$ is a map such that $\dim f = k$ and $\dim Y < \infty$, then f can be represented as the composition $f = h_k \circ \ldots h_1 \circ g$ of a zero-dimensional map g and maps h_i ($i = 1, 2, \ldots, k$) parallel to the unit interval I (see Proposition 2.2).

In this section, furthermore we study the properties of finite-dimensional maps and compositions of maps parallel to the unit interval. In fact, we show that the zero-dimensional map g as in the above theorem of Pasynkov can be represented as a composition of some special maps parallel to I.

First, we prove the following proposition (Proposition 3.2) which is related to results of Uspenskij [6], Tuncali and Valov [5]. Our proof is similar to the proof of Theorem 2.4. We give the proof which is different from the proofs of Uspenskij, Tuncali and Valov (see [6] and [5]).

Lemma 3.1. Let X, Y and Z be compacta and $0 \leq k < \infty$. Let T be the set of maps $g = u \times v : X \to Y \times Z$ in $C(X, Y \times Z)$ such that $\dim v(u^{-1}(y)) \leq k$ for each $y \in Y$. Then T is a G_{δ}-set of $C(X, Y \times Z)$.
Proposition 3.2. Let \(f : X \to Y \) be a map of compacta such that \(f \) is a \(k \)-dimensional map and \(\dim Y = p < \infty \). Let \(T \) be the set of all maps \(h = q \times u : X \to I^k \times I \) in \(C(X, I^{k+1}) \) such that \(\dim h(f^{-1}(y)) \leq k \), \(\dim u((f \times g)^{-1}(y, t)) = 0 \) for each \(y \in Y \), \(t \in I^k \), \(\dim (f \times g) = 0 \) and \(f \times h \) is an \((p + k + 1)\)-to-1 map. Then \(T \) is a \(G_\delta \)-dense subset of \(C(X, I^{k+1}) \).

Corollary 3.3. Let \(f : X \to Y \) be a map of compacta such that \(f \) is a \(k \)-dimensional map and \(\dim Y = p < \infty \). Let \(\tilde{E}(X, I^{p+2k+1}) \) be the set of maps \(g \) in the space \(C(X, I^{p+2k+1}) \) such that (1) \(f \times g \) is an embedding, (2) for each \(1 \leq i \leq p + k \), \(f \times (p_i \circ g) : X \to Y \times I^{p+i} \) is an \((i+1)\)-to-1 map, and (3) for \(h = p_{p+k} \circ g = g' \times u : X \to I^k \times I \), \(\dim h(f^{-1}(y)) \leq k \), \(\dim u((f \times g')^{-1}(y, t)) = 0 \) for each \(y \in Y \) and \(t \in I^k \), and \(\dim (f \times g') = 0 \), where \(p_i : I^{p+2k+1} \to I^{p+i} \) is the natural projection. Then \(\tilde{E}(X, I^{p+2k+1}) \) is a \(G_\delta \)-dense subset of \(C(X, I^{p+2k+1}) \).

Now, we have the following representation theorem of finite-dimensional maps.

Theorem 3.4. Let \(f : X \to Y \) be a map of compacta such that \(0 \leq k < \infty \) and \(\dim Y = p < \infty \). Then \(f \) is a \(k \)-dimensional map if and only if \(f \) can be represented as the composition

\[
\begin{align*}
Y \times I^{p+2k+1} & \overset{f \times g}{\longrightarrow} X \\
\downarrow P_r & \quad \downarrow P_r \\
Y \times I^{p+2k+1-i} & \overset{p_{r-i}}{\longrightarrow} Y
\end{align*}
\]

Remark. In the proof of Theorem 3.4, the maps \(g_i \) \((i = 1, 2, \ldots, p + k + 1)\) parallel to \(I \) such that \(g_i \) is an \((i+1)\)-to-1 map for each \(i = 1, 2, \ldots, p + k \) and \(g_{p+k+1} \) is a zero-dimensional map.

\[
X = X_0 \overset{g_1}{\longrightarrow} X_1 \ldots \overset{g_{p+k}}{\longrightarrow} X_{p+k} \overset{g_{p+k+1}}{\longrightarrow} X_{p+k+1} = Y
\]

Remark. In the proof of Theorem 3.4, the maps \(g_i \) \((i = 1, 2, \ldots, p + k)\) satisfy the condition that \(g_i \circ \ldots \circ g_1 \) \((i \leq p + k)\) is an \((i+1)\)-to-1 map. In particular, \(g_i \) \((i \leq p + k)\) is an \((i+1)\)-to-1 map.
References

