Nagata spaces and wN-spaces which are preserved by quasi-perfect maps

四條畷学園短期大学 新田 眞一(Shin-ichi Nitta)*
Shijonawate-gakuen Junior College
岡山大学・理学部 吉岡 巌(Iwao Yoshioka)†
Department of Mathematics, Okayama University

1. きっかけとなった問題と否定的解答

Good, Knight and Stares は[3]で、次の命題を示し、それに関連して 『wN-space は quasi-perfect map でその構造が保存されるか?』という問題を提出した。

Proposition 1.1[3, Proposition 18]. The closed, finite to one image of a wN-space is a wN-space.

この問題に対して、[14]で Ying and Good は Lutzer が与えた例:

Example 1.2[10, Example 4.3]. A perfect image of a first countable startifiable space that is not even a q-space.

が、否定的解答となることを指摘した。それは、Nagata space, wN-space, q-space の定義、そして既に知られている次の事実より明らかである。

Theorem 1.3[1, Theorem 3.1]. A space is a Nagata space if and only if it is first countable and stratifiable.

Lutzer が示した Example 1.2 は、次の事実も示している。

Fact 1.4. Every quasi-perfect image of any Nagata-space is not Nagata.

^{*} e-mail address: nitta @jc.shijonawate-gakuen.ac.jp

[†] e-mail address: yoshioka@math.okayama·u.ac.jp

ところで、次の事実はよく知られている。

Fact 1.5. The quasi-perfect image of a metrizable space is a metrizable space.

そこで、ここでは wN-space と metrizable space の間に位置し、quasi-perfect map でその構造が保存される空間を定義し、その空間に関する結果を報告する

2. よく知られている空間の定義

ここでは、space は T_1 -space を、map は continuous で onto map を意味する。space X の subspace A に対し Cl(A) で A の closure を、N で自然数全体からなる集合を表す。 また、ここで特に定義されていない術語などは[2][6]を参照のこと。

Definition 2.1. For a space (X, τ) , a function $g: X \times N \to \tau$ is called a *g-function* if $x \in g(x,n)$ and $g(x,n+1) \subseteq g(x,n)$ for each $(x,n) \in X \times N$. For a subset A of X and $n \in N$, we put $g(A,n) = \bigcup \{g(x,n) \mid x \in A\}$.

この g-function について、いくつかのよく知られている以下の性質を考える:

- (N) If $g(x,n) \cap g(x_n,n) \neq \emptyset$ for each $n \in \mathbb{N}$, then x is a cluster point of the sequence $\langle x_n \rangle$,
- (wN) If $g(x,n) \cap g(x_n,n) \neq \emptyset$ for each $n \in \mathbb{N}$, then the sequence $\langle x_n \rangle$ has a cluster point,
- (γ) If $x_n \in g(y_n, n)$ and $y_n \in g(x, n)$ for each $n \in \mathbb{N}$, then x is a cluster point of the sequence (x_n) ,
- $(w\gamma)$ If $x_n \in g(y_n, n)$ and $y_n \in g(x, n)$ for each $n \in \mathbb{N}$, the sequence $\langle x_n \rangle$ has a cluster point,
- (1st) If $x_n \in g(x,n)$ for each $n \in \mathbb{N}$, then x is a cluster point of the sequence $\langle x_n \rangle$,
- (q) If $x_n \in g(x,n)$ for each $n \in \mathbb{N}$, the sequence (x_n) has a cluster point,
- (wM) If $x_n \in g(y_n, n)$, $g(y_n, n) \cap g(z_n, n) \neq \emptyset$ and $z_n \in g(x, n)$ for each $n \in \mathbb{N}$, then the sequence (x_n) has a cluster point,
- (α) For each $x \in X$, $\cap \{g(x,n) \mid n \in N\} = \{x\}$ holds and, if $y \in g(x,n)$, then $g(y,n) \subseteq g(x,n)$.

ここでは、g-function を用いて空間の定義を与える。

Definition 2.2. For a space (X, τ) with a g-function $g: X \times N \rightarrow \tau$,

- (1) X is a Nagata space if g satisfies the condition (N),
- (2) X is a wN-space if g satisfies the condition (wN),
- (3) X is a γ -space if g satisfies the condition (γ),
- (4) X is a $w \gamma$ -space if g satisfies the condition $(w \gamma)$,
- (5) X is a 1st-counable space if g satisfies the condition (1st),
- (6) X is a q-space if g satisfies the condition (q),
- (7) X is a wM-space if g satisfies the condition (wM),
- (8) X is an α -space if g satisfies the condition (α).

Nagata space については[1][4][6]、wN-space、 γ - space、 $w\gamma$ -space、1st-countable space、q-space についてはそれぞれ[6]、wM-space については[6][7]、そして α -space については[5]にオリジナルの定義または g-function による特徴づけがある。

これらの空間の関係は次の通りである。

3. Kotake の定理と新しい空間の定義

Nagata space と wN-space の関係について、Kotake は次の定理を示した。

Theorem 3.1[9, Theorem1.3] A space is a Nagata space if and only if it is a regular, α and wN-space.

ここで、 α -space の概念に着目して、wN-space の構造を含む空間を定義する。

Definition 3.2. For a space (X, τ) ,

- (1) X is called α_0 -wN-space, if there exists a g-function g: $X \times N \to \tau$ satisfying the conditions (α_0) and (wN), where (α_0) if $y \in g(x,n)$, then $g(y,n) \subseteq g(x,n)$,
- (2) X is called α -wN-space, if there exists a g-function g: $X \times N \rightarrow \tau$ satisfying the conditions (α) and (wN),
- (3) X is called $s\alpha-wN$ -space, if there exists a g-function $g: X \times N \to \tau$ satisfying the conditions $(s\alpha)$ and (wN), where $(s\alpha)$ For for each $x \in X$, $\cap \{Cl(g(x,n)) \mid n \in N\} = \{x\}$ holds and, if $y \in g(x,n)$, then $g(y,n) \subseteq g(x,n)$.

定義より、これらの空間の関係は次の通りである。

上の定義から α -space に関連して、次の空間が定義される。ここで、strongly α -space は Yoshioka が[15]で定義した。

Definition 3.3. For a space (X, τ) ,

- (1) X is called α_0 -space, if there exists a g-function g: $X \times N \rightarrow \tau$ satisfying the condition (α_0),
- (2) X is called strongly α -space, if there exists a g-function g: $X \times N \rightarrow \tau$ satisfying the condition (s α).

Remark 3.4. Every strongly α -space is T_2 (hence, $\alpha - wN$ -space is T_2).

ここで、注意しなければならない事柄は、《 α -wN-space》と《 α , wN-space》は同じ空間を意味しないことである。前者は条件(α)と(wN)を同時に満たす g-function が存在する空間を、後者は条件(α)を満たす g-function g と条件(wN)を満たす g-function h が存在する空間を意味する。

4. s α -wN-space, α -wN-space \neq \cup \cup \cup \cup 0-wN-space

Definition 3.3 で定義した空間が、よく知られている空間とどのような関係にあるかを調べると、つぎの結果が得られる。

Proposition 4.1. For a space X, the following statements hold:

- (1) If X is a countably compact space, then X is an α_0 -wN-space.
- (2) If X is an α_0 -wN-space, then X is a wM-space..

Proof. (1): For each $(x,n) \in X \times N$, define a g-function g(x,n) = X. Then this g-function g satisfies the conditions (α_0) and (wN).

(2):Let g be g-function satisfying condition (α_0)and(wN). To show that X is wN, it is sufficient that g-function g satisfies condition ($w\gamma$), because of [12; Theorem 5.2] . Let $x_n \in g(y_n, n)$ and $y_n \in g(x, n)$ for each $n \in N$, then $g(y_n, n) \subseteq g(x, n)$ by the (α_0)-ness of g-function g. So $x_n \in g(x, n) \cap g(x_n, n)$, and g satisfies the condition (wN). Thus, $\langle x_n \rangle$ has a cluster point.

上の命題(1)に関連して、coutably compact spaces と α_0 -wN-spaces の間に位置する空間について、後で関連する問題として述べる。 また、(2)の逆は成り立つかどうか? 不明である。

Question 4.2. Does there exist a wM-space which is not α_0 -wN?

なお、wM-space と α_0 -wN-space の関係については、次が示される。

Proposition 4.3. Every subparacompact wM-space is an α_0 -wN-space.

Proof. Let X be a subparacompact wM-space. Since X is wN, X is matacompact by [6;Corollary 3.5]. Since X is wM, there is a sequence $\langle \gamma_n \rangle$ of open covers of X such that $x_n \in st^2(x, \gamma_n)$ for each $n \in N$, then $\langle x_n \rangle$ has a cluster point (this is the original definition by Ishii [7]). For each $n \in N$, let δ_n be a point-finite open refinement of γ_n . Let $g(x,n) = \bigcap \{U \in \delta_n \mid x \in U\}$ for each $(x,n) \in X \times N$. Then it is easily seen that g-function g satisfies the condition (α) . Now let $g(x,n) \cap g(x_n,n) \neq \phi$ for each $n \in N$, then $x_n \in st^2(x, \delta_n) \subseteq st^2(x, \gamma_n)$ for each $n \in N$. Thus $\langle x_n \rangle$ has a cluster point, so X is α_0 -wN.

 $s\alpha-wN$ -space と $\alpha-wN$ -space については次が成り立つことがわかる。

Theorem 4.4. For a space X, the following conditions are equivalent:

- (1) X is a metrizable space.
- (2) X is a α -wN-space.

(1) X is a regular α -wN-space.

Proof. (1)⇒(2):For each n∈ N, let β n={ B(x;1/n) | x∈ X}, where B(x;1/n) is the 1/n-neighbourhood of x and let ζ n be a locally finite closed refinement of β n. For each (x,n)∈ X×N, define a g-function g(x,n)=X\∪ {F∈ ζ n | x∈F}. To verify this g-function satisfies condition (N), let g(x,n) ∩ g(xn,n) ≠ φ for each n∈ N. There exist yn∈ g(x,n) ∩ g(xn,n), F∈ ζ n and B∈ β n such that xn ,x∈ F⊆B. Then g(x,n) ⊆ st(x,β n) and xn∈ st(x,β n). It follows that the sequence ⟨xn⟩ clusters at x. So, g satisifies the condition (wN). And it is obvious that this g-function satisfies the condition (s α). (2) ⇒(3):Let g be a g-function with conditions(s α) and(wN). To show the regulality of X, let any x∈ X and any open set U with x∈ U. Suppose that for each n∈ N, there exist xn∈ Cl(g(x,n))\U. Then g(x,n) ∩ g(xn,n) ≠ φ for each n∈ N, so there is a cluster point p∈ X\U of the sequence ⟨xn⟩. Now we have for each n∈ N, p∈ cl({xk | k≥n}⊆Cl(g(x,n)), so p∈ ∩{Cl(g(x,n)) | n∈ N}={x}. Hence p=x, this is a contradiction.

(3) \Rightarrow (1):Since X is regular α and wN-space, X is Nagata by Theorem 3.1. And X is wM by Proposition 4.1(2), it follows that X is $w\gamma$. By [6; Theorem 4.7], X is metrizable.

 $s \alpha - wN$ -space(=metrizable space), $\alpha - wN$ -space そして $\alpha \odot wN$ -space の概念は互いに異なるものであることが、次の例によって示される。

Example 4.5. There exists an α -wN-space which is not s α -wN.

Proof. Let X be the space N with the cofinite topology { $U\subseteq N \mid |N\setminus U|$ is finite} $U \notin A$. It is well known that X is compact T_1 but not T_2 . Since X is not T_2 , X is not $S_2 \cap W$. To show that X is a $S_2 \cap W$ -space, let $S_2 \cap W$ for each $S_2 \cap W$. Then g is a g-function satisfying the condition $S_2 \cap W$ and by the compactness of X, g satisfies the condition $S_2 \cap W$ (see [15;Example 4.10].

Example 4.5 の空間は T₂-space でない。Theorem 4.4 の結果より次の質問が考えられる。

Question 4.6. Is every $T_2 \quad \alpha$ -wN-space, metrizable?

Example 4.7. There exists an α_0 -wN-space which is not α -wN.

Proof. Let X be the space of all coutable ordinal numbers with order topology. Since X is countably compact, X is α_0 -wN by Proposition 4.1(1). Suppose that X is an α -wN-space. Then X is metrizable by Theorem4.4. This is a contradiction.

このセクションの内容は次のようになる。

なお、WN-space であって、WM でない空間の例は Remark 5.4 を参照のこと。

5. α -**wN** space సి \downarrow \mathcal{U} α $_0$ -**wN** space \mathcal{O} quasi-perfect image

Theorem 4.4 より s α – wN-space は metrizable であるから s α – wN-space の quasi-perfect image は s α – wN-space (=metrizable space) である。 α $_0$ -wN-space および α -wN-space の quasi-perfect image については次の定理が成り立つ。

Theorem 5.1. The following statements hold:

- (1) The quasi-perfect image of an $\alpha_{\mathcal{O}}$ -wN-space is $\alpha_{\mathcal{O}}$ -wN.
- (2) The quasi-perfect image of an α -wN-space is α -wN.

Proof. (1): Let $f: X \rightarrow Y$ be a quasi-perfect map, and X an $\alpha \circ wN$ -space. The space X has a q-function g satisfying the conditions (α_0) and (wN). Let $h(y,n)=Y \setminus f(X \setminus g(f^{-1}(y),n))$ for each $(y,n) \in Y \times N$, then Y has a g-function h by the closedness of f. We will show that h satisfies the condition (α_0) and (wN). Let $z \in h(y,n)$, then for each $u \in f^{-1}(z)$ there exists $x_u \in f^{-1}(y)$ such that $u \in g(x_n, n)$. Since g satisfies the condition (α_0) , $g(u,n) \subseteq g(x_u,n) \subseteq g(f^{-1}(y),n)$. Then $g(f^{-1}(z),n) \subseteq g(f^{-1}(y),n)$. It follows that $h(z,n)\subseteq h(y,n)$ holds. Next to verify that h satisfies the condition (wN), let $z_n \in h(y,n) \cap h(y_n,n)$ for each $n \in N$. Let $n \in N$, there exist u_n and w_n such that $u_n \in f^{-1}(y)$ and $w_n \in f^{-1}(z_n) \cap g(u_n,n)$, and since $z_n \in h(y_n,n)$, there is an $x_n \in f^{-1}(y_n)$ such that $w_n \in g(x_n, n)$. The sequence $\langle u_n \rangle$ has a cluster point p in $f^{-1}(y)$ by the countable compactness of $f^{-1}(y)$. For each $k \in \mathbb{N}$, there is a $u_{n(k)} \in g(p,k)$ with n(k) < n(k+1). Since g satisfies the condition (α 0), $g(u_{n(k)}, n(k)) \subseteq g(p,n(k)) \subseteq g(p,k)$ hold. Then $w_{n(k)} \in g(p,k) \cap g(x_{n(k)},k)$ for each $k \in N$. Since g satisfies the condition (wN), the sequence $\langle x_{n(k)} \rangle$ clusters, so $\langle x_n \rangle$ has a cluster point. Thus $\langle f(x_n) \rangle$ has a cluster point, that is, $\langle y_n \rangle$ has a cluster point.

(2): Let $f: X \to Y$ be a quasi-perfect map, and X an α -wN-space. The space X has a g-function g satisfying the conditions (α) and (wN). Let $h(x,n)=Y \setminus f(X \setminus g(f^{-1}(y),n))$ for each $n \in N$, then Y has a g-function h by the closedness of f. We will show that h satisfies the conditions (α) and (wN). From the proof of (1), we only show that $h_n(y) \mid n \in N$ for each $y \in Y$. Suppose that there is a $y \in Y$ such that $h_n(y) \neq \{y\}$. Then there is an $x \in h_n(g(f^{-1}(y),n) \mid n \in N\} \setminus f^{-1}(y)$. For each $n \in N$, there exists $x_n \in f^{-1}(y)$ such that $x \in g(x_n,n)$. The sequence (x_n) has a cluster point p in $f^{-1}(y)$ by the countable compactness of $f^{-1}(y)$. For each $k \in N$, there is an $h_n(k) \in N$ such that $h_n(k) \in g(y,k)$ with $h_n(k) \cdot h_n(k+1)$. Then $h_n(k) \in g(x_n(k),n(k)) \subseteq g(x_n(k),k) \subseteq g(y,k)$ hold. Thus we have $h_n(k) \in N \in N$ hold. Thus we have $h_n(k) \in N \in N$ so $h_n(k) \in N$ so $h_n(k) \in N$.

Remark 5.2. The fact that the quasi-perfect image of an α -spaces is also α can be shown in the same manner as the proof of Theorem 5.1.

Remark 5.3. In [8], Ishi showed that the quasi-perfect image of a wM-space is also a wM-space.

Remark 5.4. As stated in section 1, Lutzer showed in [10, Example 4.3] there exists a perfect map $f: X \rightarrow Y$ where X is a Nagata space and Y is not q-space. We can find this space X is not wM by Proposition 4.3 and Theorem 5.1(1). Thus, this space X is a wN space which is not wM.

ところで、metrizability が closed map で保存されないことはよく知られている。

Example 5.5 (see[11, Example 10.1]). A closed image of a metrizable space is not a q-space.

この例は、 $s\alpha-wN$, $\alpha-wN$ そして α_0-wN のそれぞれの性質は closed map で保存されないことをも示している。

6. Nagata space の場合

これまでは wN-spaces に関して述べてきた。 同様な事柄を Nagata-space について調べてみる。

Definition 6.1. For a space (X, τ) ,

X is called an α_0 -Nagata space, if there exists a g-function g: $X \times N \rightarrow \tau$ satisfying the conditions (α_0) and (N).

Theorem 6.2. For a space X, the following conditions are equivalent:

- (1) X is a metrizable space.
- (2) X is an α_0 -Nagta space.

Proof. (1) \Rightarrow (2):In the proof of Theorem 4.4(1) \Rightarrow (2), we have shown this implication.

(2) \Rightarrow (1):Let g be a g-function satisfying the condition (α_0) and (N). We will show that g satisfies the condition (γ). Let $x_n \in g(y_n, n)$ and $y_n \in g(x, n)$ for each $n \in N$, then $x_n \in g(y_n, n) \subseteq g(x, n)$, because g satisfies (α_0). Since $x_n \in g(x,n) \cap g(x_n,n)$ and g satisfies the condition (N), the sequence $\langle x_n \rangle$ clusters at x. Thus, X is γ . By [6;Theorem 4.7], X is metrizable.

Definition 3.2 (2),(3) と同様に、 α -Nagata space と s α -Nagata space を 定義することは可能である。しかし、Theorem 4.4 の証明より、 α -Nagata space および s α -Nagata space は metrizable であることがわかる。

Nagata space と wN-space の関係について述べられていた Theorem 3.1 と同様な定理が成り立つ。

Theorem 6.3. A space is a Nagata space if and only if it is a strong α , wN-space.

Proof. Let X be a Nagata space. We will show that X is strong α . Since every Nagata space is semi-stratifiable and paracompact T_2 , X has a G_δ -diagonal sequnce $\langle \delta_n \rangle$. And for each $n \in \mathbb{N}$, there is a locally finite closed refinement ζ_n of δ_n . For each $(x,n) \in X \times \mathbb{N}$, let $g(x,n) = X \setminus \bigcup \{F \in \zeta_n | x \notin F\}$. Then it is easily verified that if $y \in g(x,n)$, then $g(y,n) \subseteq g(x,n)$ holds. We will show that $x \in \bigcap \{Cl(g(x,n)) | n \in \mathbb{N}\} = \{x\}$ for each $x \in X$. For any $y \in X$ with $y \neq x$, there is an $m \in \mathbb{N}$ such that $y \notin st(x, \zeta_m)$. Then we have $g(x,m) \cap g(y,m) = \phi$. Suppose that there is a $z \in g(x,m) \cap g(y,m)$, then $z \in F \in \zeta_m$. Since ζ_m is a refinement of δ_m , we have $x, y \in F \subseteq G$ for some $G \in \delta_m$. Then we have that $y \in st(x, \delta_m)$, this is a contradiction. Thus, X is a strongly α , wN-sapce.

Conversely, Let X be a strongly α , wN-space. Let h be a g-function satisfying condition $(s\alpha)$, and k g-function satisfying condition (wN). Let $g(x,n)=h(x,n)\cap k(x,n)$ for each $(x,n)\in X\times N$, then g is a g-function. We will verify that X is regular. Suppose that U be an open neighbourhood of x and $x_n\in Cl(g(x,n))\setminus U$ for each $n\in N$. Since $k(x,n)\cap k(x_n,n)\neq \emptyset$, the sequence $\langle x_n\rangle$ has a cluster point $p\notin X\setminus U$. And $p\in cl(\{xk\mid k\geq n\}\subseteq Cl(g(x,n)))$ for each $n\in N$. On the other hand, $\bigcap\{Cl(h(x,n))\mid n\in N\}=\{x\}$, since h satisfies the condition $(s\alpha)$. Then, $p\in \bigcap\{Cl(g(x,n))\mid n\in N\}=\{x\}$, so we have x=p. This is a contradiction. Thus, X is a regular α , wN-space. By Theorem 3.1, X is Nagata.

7. 関連する問題

Proposition 4.1(1) で countably compact space は α_0 -wN-space であることを述べた。 countably compact の一般化された空間としてよく知られているものとして Morita が定義した M-space がある。さらに、M-space の一般化として、 Siwiec and Nagata は[13]において M*-space を定義した。

Definition 7.1. A space X is called an M*-space if it has a sequence $\{\zeta_n\}$ of closure-preserving closed covers of X such that whenever $x_n \in st(x, \zeta_n)$ for each $n \in \mathbb{N}$, then the sequence $\langle x_n \rangle$ has a cluster point.

M*-space に対して次の命題が成り立つ。

Proposition 7.2. Every M^* -space is an α_0 -wN-space.

Proof. Let $\langle \zeta_n \rangle$ be a sequence of closure-preserving closed covers of X such that whenever $x_n \in st(x, \zeta_n)$ for each $n \in N$, then the sequence $\langle x_n \rangle$ has a cluster point, where we may assume that ζ_{n+1} is a refinement of ζ_n . Let $g(x,n)=X\setminus \bigcup \{F\in \zeta_n \mid n\in N\}$ for each $n\in N$, then

the g-function g satisfies condition (α_0) . And let $g(x,n) \cap g(x_n,n) \neq \phi$ for each $n \in \mathbb{N}$, then $x_n \in st(x, \zeta_n)$ for each $n \in \mathbb{N}$. So the sequence $\langle x_n \rangle$ has a cluster point. Thus X is α_0 -wN.

上の命題について、逆が成り立つかどうか不明である。

Question 7.3. Does there exist an α_0 -wN-space which is not $M^{\#}$?

なお、 α_0 -wN-space と M#-space の関係については、次が示される。

Proposition 7.4. Every paracompact T₂, wM-space is an M*-space.

Proof. Let X be a paracompact T_2 , wM-space. Let $\{\gamma_n\}$ be a sequence of open covers of X such that $x_n \in st^2(x, \gamma_n)$ for each $n \in \mathbb{N}$, then $\langle x_n \rangle$ has a cluster point. For each $n \in \mathbb{N}$, there is a locally finite closed refinement ζ_n of γ_n . Then the sequence $\{\zeta_n\}$ is the one of closure-preserving closed covers of X such that whenever $x_n \in st(x, \zeta_n)$ for each $n \in \mathbb{N}$, then the sequence $\langle x_n \rangle$ has a cluster point. Thus X is an M*-space.

M-space, M*-space そして α₀-wN-space の関係は次の通りである。

M*-space であって M-space でない例は[12]で示されている。

最後に、wN-space および Nagata space の距離化について、Hodel が示した 定理に着目する。

Theorem 7.5. The following statements hold:

- (1)[6:Theorem 4.3] Every $T_2 \gamma$, wN-space is metrizable.
- (2)[6; Theorem 4.7] Every $w \gamma$, Nagata space is metrizable.

この定理より、次の2つの問題は Question 4.6 と同値な問題となる。

Question 7.6. Is every $T_2 \alpha$ -wN-space, Nagata?

Question 7.7. Is every $T_2 \alpha$ -wN-space, γ ?

References

- [1] Ceder J.G, Some generalizations of metric spaces, Pacific J.Math., 11 (1961), 105-125,
- [2] Engelking R, General Topology, Polish Sci. Publ., Warsaw, 1977.
- [3] Good C, Knight R and Stares I, Monotone countable paracompactness, Topology and its Appl., 101 (2000), 281-298.
- [4] Heath R.W, On open mappings and certain spaces satisfying the first countability axioms, Fund.Math.,57 (1965), 91-96.
- [5] Hodel R.E, Moore spaces and w Δ -spaces, Pacific J.Math.38 (1971), 641-652.
- [6] Hodel R.E., Spaces defined by sequences of open covers which gurantee that certain sequences have cluster points, Duke Math.,39 (1972), 253-263.
- [7] Ishii T, wM-spaces I, II, Proc.Japan Acad., 46 (1970), 5-10, 11-15.
- [8] Ishii T, wM-spaces and closed maps, Proc.Japan Acad.,46 (1970), 16-21.
- [9] Kotake Y, On Nagata spaces and wN-spces, Science Reports of the Tokyo Kyoiku Daigaku, Sec.A,12 (1973), 46-48.
- [10] Lutzer J, Semi-metrizable and stratifiable spaces, General Top.and its Appl.,1 (1971), 43-48.
- [11] Michael E, A quintuple quotient quest, General Top. And its Appl., 2 (1972), 91-138.
- [12] Morita K, Products of normal spaces with metric spaces, Math. Ann., 154 (1964), 365-382
- [13] Siwiec F and Nagata J, A note on nets and metrization, Proc.Japan Acad.,44 (1968), 623-627.
- [14] Ying G and Good C, A note on monotone countable paracompactness, Comment.Math.Univ.Carolinae,42 (2001), 771-778.
- [15] Yoshioka I, Closed images of spaces having g-functions, Topology and its Appl., to appear.