<table>
<thead>
<tr>
<th>Title</th>
<th>Absolute embeddings in Hausdorff spaces (Set Theoretic and Geometric Topology and Its Applications)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kawaguchi, Shinji</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2005), 1419: 126-128</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/26309</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td></td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Absolute embeddings in Hausdorff spaces

Arhangel’skii and Tartir [3] characterized compactness by some relative separation property and posed the following problem: characterize Tychonoff spaces X, for which there is a Tychonoff space Y containing disjoint closed copies X_1 and X_2 of X such that these copies cannot be separated in Y by open subsets. Answering this question, Bella and Yaschenko [4] proved the following theorem. We note that this theorem also follows from Matveev, Pavlov and Tartir [6, Theorem 2.3].

Theorem 1 (Bella-Yaschenko [4]; see also [6]). For a Tychonoff space X, the following conditions are equivalent.

(a) X is Lindelöf.

(b) If a Tychonoff space Y contains two disjoint closed copies X_1 and X_2 of X, then these copies can be separated in Y by open subsets.

As another type of absolute embeddings, Bella and Yaschenko [4] also obtained the following characterization of absolute weak C-embeddings; recall that a subspace Y of a space X is weakly C-embedded in X if every continuous real-valued function f on Y has an extension over X which is continuous at every point of Y ([1]). A Tychonoff space X is almost compact if $|\beta X \setminus X| \leq 1$, where βX denotes the Stone-Čech compactification of X.

Theorem 2 (Bella-Yaschenko [4]). A Tychonoff space X is weakly C-embedded in every larger Tychonoff space if and only if X is almost compact or Lindelöf.

Concerning Theorem 2, Arhangel’skii [2] posed the following problem; when is a Hausdorff (Tychonoff) space Y weakly C-embedded in every larger Hausdorff space X? Yamazaki [9] answered this problem as follows.

Theorem 3 (Yamazaki [9]). A Hausdorff space X is weakly C-embedded in every larger Hausdorff space if and only if either X is compact or every continuous real-valued function on X is constant.

In view of these results, it is natural to consider a characterization of spaces X satisfying the condition (b) of Theorem 1 in the realm of Hausdorff spaces. We give a characterization of such spaces as follows.
Theorem 4. For a Hausdorff space X, the following conditions are equivalent.

(a) X is compact.
(b) If a Hausdorff space Y contains two disjoint closed copies X_1 and X_2 of X, then these copies can be separated in Y by open subsets.

For the detail of the proof, see [5].

Remark 5. Using [6, Theorem 2.3], we obtain the regular case of Theorem 1 as follows; for a regular space X, the following conditions are equivalent.

(a) X is Lindelöf.
(b) If a regular space Y contains two disjoint closed copies X_1 and X_2 of X, then these copies can be separated in Y by open subsets.

Remark 6. Yajima [7] proved that the following condition (c) is equivalent to the conditions (a) and (b) in Theorem 1; (c) For every compactification αX of X, any two disjoint closed copies of X in $(X \times \alpha X) \cup (\alpha X \times X)$ are completely separated in it.

Remark 7. It was proved in [8]; for a Tychonoff space X, the following conditions are equivalent.

(a) X is compact.
(b) If a Tychonoff space Y contains two disjoint closed copies X_1 and X_2 of X, then these copies can be completely separated in Y.

How about the corresponding case of regular (Hausdorff) spaces? Indeed, for a non-empty regular (respectively, Hausdorff) space X, we can construct a regular (respectively, Hausdorff) space Y contains two disjoint closed copies X_1 and X_2 of X such that these copies cannot be completely separated in Y ([5]).

References

Doctoral Program in Mathematics,
Graduate School of Pure and Applied Sciences,
University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
E-mail: shinji@math.tsukuba.ac.jp