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The purpose of this note is to introduce some results in [6] and to show some
additional ones. Let $X$ be atopological space and $Y$ atopological vector space.
Symbols $2^{Y}$ $\mathcal{K}(Y)$ , and $\mathcal{F}_{c}(Y)$ stand for the set of all non-empty subsets of
Y. the set of all non-empty convex subsets of Y. and the set of all non-empty
closed convex subsets of $Y$ , respectively. Amapping $f$ : $Xarrow Y$ is called a
selection of amapping $\varphi$ : $Xarrow 2^{Y}$ if $f(x)\in\varphi(x)$ for every $x\in X$ . A mapping
$\varphi$ : $Xarrow 2^{Y}$ is lower semicontinuous (l.s.c. for short) if the set $\varphi^{-1}(V)=\{x\in$

$X|\varphi(x)\cap V\neq\emptyset\}$ is open in $X$ for every open subset $V$ of $Y$ . Asubset $S$ of $X$

is azerO-set (respectively acozerO-set) if $S=\{x\in X|f(x)=0\}$ (respectively
$S=\{x\in X|f(x)\neq 0\})$ for some real-valued continuous function $f$ on $X$ $\mathrm{A}$

Hausdorff space $X$ is paracompact if every open cover has alocally finite open
refinement. ATychonoff space $X$ is called realcompact if every $z$-ultrafilter(that
is, amaximal filter consisting of zer0-sets) on $X$ with the countable intersection
property has non-empty intersection. For undefined notations and terminology
we refer to [1] or $\lfloor \mathrm{r}_{3]}$ .

The following is awell-known selection theorem due to Michael.

Theorem 1(Michael [4]). A $T_{1}$ space $X$ is paracompact if and only if, for
every Banach space $Y,\backslash$ every $l.s.c$ . mapping $\varphi$ : $Xarrow F_{c}(Y)$ admits a continuous
selection.

This result not only guarantees the existence of aselection but describes para-
compactness in terms of continuous selections. In addition to this theorem, some
topological properties have been characterized by means of continuous selections.
Among these results, Blum and Swaminathan [$2_{\mathrm{I},\lrcorner}^{\rceil}$

, characterized realcompactness
for Tychonoff spaces of non-measurable cardinal as in Theorem 2.

Before stating Theorem 2, let us recall some terminology introduced by Blum
and Swaminathan [2]. An l.s.c. mapping $\varphi$ : $Xarrow 2^{Y}$ is said to be of infinite
character if there exists aneighborhood $V$ of the origin of $Y$ such that the open
cover $\{\varphi^{-1}(y+V)|y\in Y\}$ of $X$ has no finite subcover; and otherwise $\varphi$ is called

finite character. For afamily $S$ of subsets of a space $X$ , a mapping $\varphi$ : $Xarrow 2^{Y}$

is $S$ -fixed if $\cap\{\varphi(x)|x\in S\}\neq\emptyset$ for every $S\in S$ . For agiven Tychonoff space
$X$ , let $B$ be afamily of subsets of $X$ defined as follows
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$B=$ { $B\subset X|B$ is a realcompact cozer0-set in $X$ and $X\backslash B$ is not compact}.

A cardinality $\tau$ is called measurable if the discrete space of cardinal $\tau$ admits
a non-trivial {0, 1}-valued countably additive measure.

Theorem 2 (Blum-Swaminathan [2]). For a Tychonoff space X of non-
measurable $cardinal_{f}$ the following are equivalent:

(a) $X$ is realcompact;

(b) for every locally convex topological vector space $Y_{j}$ every B-fifixed $l.s.c$ . map-
ping $\varphi$ : $Xarrow \mathcal{K}(Y)$ is of fifinite character

(c) for every locally convex topological vector space Y. every B-fifixed $l.s$ . $c$ . map-
ping $\varphi$ : $Xarrow \mathcal{K}(Y)$ of infinite character admits a continuous selection.

Let us recall that a Tychonoff space $X$ is Dieudonn\’e complete if there exists
a complete uniformity on the space $X$ . For a Tychonoff space $X$ , Blum and
Swaminathan defined the collection $\mathrm{C}$ of subsets of $X$ as follows:

$\mathrm{C}$ $=\{C\subset X|C$ is a Dieudonn\’e complete cozer0-set in $X$

and $X\backslash C$ is not compact}.

In [6] the following characterizations of realcompactness and of Dieudonn\’e com-
pleteness analogous to Theorem 1 are obtained.

Theorem 3 ([6]). A Tychonoff space $X$ is realcompact if and only if, for every
Banach space $Y$ , every $B$ -fixed $l.s.c$ . mapping $\varphi$ : $Xarrow \mathcal{F}_{\mathrm{c}}(Y)$ admits a continuous
selection $f$ such that $f(X)$ is separable.

Theorem 4 ([6]). A Tychonoff space $X$ is Dieudonne complete if and only $i_{u}f$,

for every Banach space $Y$ , every $\mathrm{C}$ -fixed $l.s.c$ . mapping $\varphi$ : $Xarrow F_{c}(Y)$ admits $a$

continuous selection.

In this note, we give characterizations (Theorems 5 and 9) analogous to The-
orem 2.

In the implication $(c)\Rightarrow(a)$ of Theorem 2, the assumption that $X$ is of non-
measurable cardinal cannot be dropped. Indeed, a discrete space $D$ of measurable
cardinal satisfies the condition (c) of Theorem 2 since every set-valued mapping

on $D$ has a continuous selection. But $D$ is not realcompact (see [3, $3.11.\mathrm{D}]$ ) . It is

known that every realcompact space is Dieudonn\’e complete and that Dieudonn\’e

complete space of non-measurable cardinal is realcompact (see [3, 8.5.13 (h)]).

Thus Theorem 2 is valid with substitution of the phrases “Dieudonn\’e complete
for $\zeta$ “realcompact”, and $\zeta‘ \mathrm{C}$ -fixed” for “$B$-fixed” In fact, Theorem 2 with this
substitution is true for Tychonoff spaces of any cardinal, that is, the following

holds
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Theorem 5. For a Tychonoff space X the following are equivalent:

(a) $X$ is Dieudonn\’e complete;

(b) for every locally convex topological vector space $Y_{f}$ every $\mathrm{C}$ -fixed $l.s.c$ . map-
ping $\varphi$ : $Xarrow \mathcal{K}(Y)$ is of fifinite character

(c) for every locally convex topological vector space $Y$ , every $\mathrm{C}$ -fixed $l.s.c$ . map-
ping $\varphi$ : $Xarrow \mathcal{K}(Y)$ of infinite character admits a continuous selection;

(d) for every Banach space $Y_{:}$ every C-fifixed $l.s.c$ . mapping $\varphi$ : $Xarrow \mathcal{F}_{c}(Y)$ of
infifinite character admits a continuous selection.

To prove Theorem 5 we need some preparation. Let $X$ be a topological space.
For a subset $S$ of $X$ , $\mathrm{c}1_{X}(S)$ stands for the closure of $S$ in $X$ . Let us denote
$C(X)$ the set of all real-valued continuous functions on $X$ . For $f\in C(X)$ , set
$Z(f)=\{x\in X|f(x)=0\}$ and Coz(f) $=\{x\in X|f(x)\neq 0\}$ . A family
$\{p_{\lambda}|\lambda\in\Lambda\}$ of continuous functions $p_{\lambda}$ : $Xarrow[0,1]$ is called a partition of unity
on $X$ if $\sum_{\lambda\in\Lambda}p_{\lambda}(x)=1$ for each $x\in X$ . A partition of unity $\{p_{\lambda}|\lambda\in\Lambda\}$ on
$X$ is said to be locally fifinite if the cover {Coz(p $\lambda$ ) $|\lambda\in\Lambda$ } of $X$ is locally finite.
For an open cover $\mathcal{U}$ of $X$ , a partition of unity $\{p\lambda|\lambda\in\Lambda\}$ on $X$ is subordinated
to 14 if the cover {Coz(p $\lambda$ ) $|\lambda\in\Lambda$ } refines $\mathcal{U}$ . Let $\mathrm{R}$ and $\mathrm{N}$ be the set of all
real numbers and the set of all natural numbers, respectively. For a set $A_{1}l_{1}(A)$

means the Banach space of all functions $y:Aarrow \mathrm{R}$ such that $\sum_{a\in A}|y(a)|<\infty$

with the norm $||y||= \sum_{a\in A}|y(a)|$ . For $a\in A$ , let $\pi_{a}$ : $l_{1}(A)arrow \mathrm{R}$ be the a-th
projection.

Lemma 6 (Michael [4]). Let $\mathcal{U}$ be an open cover of a topological space $X$ Let
$\varphi$ : $Xarrow 2^{l_{1}(\mathcal{U})}$ be a mapping defifined by

$\mathrm{C}(\mathrm{X})=\{y\in 1\mathrm{C}(\mathrm{Y})|||y||=1$ , $y(U)\geq 0$ for every $U\in \mathcal{U}$ ,
and $y(U)=0$ for all $U\in \mathcal{U}$ with $x\not\in U$ },

for $x\in X$
‘ then $\varphi$ is $l.s.c$ . and closed-and-convex-valued. $Fu\# hermore$ , if $\varphi$ has

a continuous selection, then there exists a locally finite partition of unity on $X$

subordinated to $\mathcal{U}$ .

For a Tychonoff space $X$ , $\beta X$ and $\mu X$ stand for the $\mathrm{S}\mathrm{t}\mathrm{o}\mathrm{n}\mathrm{e}-\check{\mathrm{C}}$ech compactifi-
cation of $X$ and the Dieudonn\’e completion of $X$ , respectively.

Theorem 7 (Tamano [5]). For a Tychonoff space $X$ and a point $a\in\beta X$ , $a\in$

$\beta X\backslash \mu X$ if and only if there exists $a$ {locally finite) $pa\hslash ition$ of unity $\{p_{\lambda}|\lambda\in\Lambda\}$

on $X$ such that $a\in \mathrm{c}1_{\beta X}(Z(p_{\lambda}))$ for each $\lambda\in\Lambda$ .

Proposition 8 ([6]). Let $X$ be a Tychonoff space. If $X$ is the union of a compact
subspace and a Dieudonn\’e complete subspace, then $X$ is Dieudonn\’e complete.
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Proof of Theorem 5. Proof of the implication $(a)\Rightarrow(b)$ is the same as [2, Then
rem 2]. Implications $(b)\Rightarrow(c)$ and $(c)\Rightarrow(d)$ are obvious. To see $(d)\Rightarrow(a)$ , let
$X$ be a Tychonoff space satisfying that, for every Banach space $Y$ , every C-fixed
l.s.c. mapping $\varphi$ : $Xarrow \mathcal{F}_{c}(Y)$ of infinite character admits a continuous selection.
Assume that $X$ is not Dieudonn\’e complete and take $a_{0}\in\mu X\backslash X$ . We will
deduce a contradiction. Put $\mathcal{U}=\{\mathrm{C}\mathrm{o}\mathrm{z}(p)|p\in C(X), a_{0}\in \mathrm{c}1\beta X(Z(p))\}$ . Then

$\mathcal{U}$ is an open cover of $X$ . Let $Y=l_{1}(\mathcal{U})$ and define a mapping $\varphi$ : $Xarrow 2^{Y}$ as in
Lemma 6. Then $\varphi$ is l.s.c. and $\varphi(x)\in F_{c}(Y)$ for each $x\in X$ .

The mapping $\varphi$ is $\mathrm{C}$-fixed. To prove this, let $C\in \mathrm{C}$ . Then $C=\mathrm{C}\mathrm{o}\mathrm{z}(h)$

for some $h\in C(X)$ as $C$ is a cozer0-set. Since Coz(h) is Dieudonn\’e complete
and $\mathrm{c}1_{\beta X}(Z(h))$ is compact, by Proposition 8, $\mathrm{C}\mathrm{o}\mathrm{z}(h)\cup \mathrm{c}1_{\beta X}(Z(h))$ is Dieudonn\’e

complete and contains $X$ . Thus we have $\mu X\subset \mathrm{C}\mathrm{o}\mathrm{z}(h)\cup \mathrm{c}1_{\beta X}(Z(h))$ , and hence
$a_{0}\in\mu X\backslash X\subset \mathrm{c}1_{\beta X}(Z(h))$ . Thus $C=\mathrm{C}\mathrm{o}\mathrm{z}(h)\in \mathcal{U}$. Let $y\in l_{1}(\mathcal{U})$ be the element
defined by

$y(U)=\{$
1, if $U=C$ ,
0, if $U\neq C$ ,

for each $U\in \mathcal{U}$ . Then $y\in\cap\{\varphi(x)|x\in C\}$ , so that $\varphi$ is C-fixed.
The mapping $\varphi$ is of infinite character. $\mathrm{F}\mathrm{o}\mathrm{r}_{7}$ let $V=\{y\in l_{1}(\mathcal{U})|||y||<1\}$ and

take $y_{1}$ , $y_{2,)}\ldots y_{k}\in Y$ arbitrarily. It suffices to show the collection $\{\varphi^{-1}(y_{i}+V)|$

$i=1_{\backslash }2$ , $\ldots$ , $k$ } does not cover $X$ . Put $\mathcal{U}’=\{U\in \mathcal{U}|y_{i}(U)\neq 0$ for some $i\in$

$\{1,2, \ldots, k\}\}$ . Then Card $\mathcal{U}’$ is countable, so that we may denote $\mathcal{U}’=\{U_{i}|$

$i\in \mathrm{N}\}$ . We show that $\mathcal{U}’$ does not cover $X$ . Suppose that $\cup \mathcal{U}’=X$ . By the
definition of $\mathcal{U}$ , for $i\in \mathrm{N}$ there exists a continuous mapping $f_{i}$ : $Xarrow[0,1]$ such
that $W_{i}=\mathrm{C}\mathrm{o}\mathrm{z}(f_{i})$ and $a_{0}\in \mathrm{c}1_{\beta X}Z(f_{i})$ . Then the mapping $f$ : $Xarrow \mathrm{R}$ defined
by $f(x)=\Sigma_{i=1}^{\infty}f_{i}(x)/2^{i}$ for $x\in X$ is continuous and $f(x)>0$ for every $x\in X$ .

Define $p_{x}$ : $Xarrow \mathrm{R}$ by $p_{i}(x)=f_{i}(x)/(2^{i}f(x))$ for $x\in X$ . Then $\{p_{i}|i\in \mathrm{N}\}$

is a partition of unity on $X$ such that $a_{0}\in \mathrm{c}1_{\beta X}(Z(p_{\iota}))$ for each $i\in \mathrm{N}$ . By
virtue of Theorem 7, $a_{0}\in\beta X\backslash \mu X$ . That contradicts the choice of $a_{0}$ . Thus $\mathcal{U}’$

does not cover $X$ . Choose $x\in X\backslash \cup \mathcal{U}’$ and $y\in\varphi(x^{\backslash })$ . Then $y(U)=0$ for each
$U\in \mathcal{U}’$ , so that $||y-y_{l}||=\Sigma u\in u|y(U)-y_{i}(U)|=\Sigma U\in \mathcal{U}\backslash \mathcal{U}’|y(U)|+\Sigma u\in u’|y_{i}(U)|\geq$

$\Sigma_{U\in \mathcal{U}\backslash \mathcal{U}’}|y(U)|=||y||=1$ , and hence $y\not\in y_{l}+V$ for each $i\in\{1,2, \ldots, k\}$ . Thus
$\varphi(x)\cap(y_{\mathrm{z}}+V)=\emptyset$ for each $i\in\{1,2, \ldots, k\}$ , which implies $x\not\in\cup\{\varphi^{-1}(y_{i}+V)|$

$i=1,2$ , $\ldots$ , $k$ }. Therefore $\varphi$ is of infinite character.
By hypothesis, $\varphi$ admits a continuous selection $f$ : $Xarrow Y$ Put $p_{U}=\pi_{U}\mathrm{o}f$

for $U\in \mathcal{U}$ . Then $\{p_{U}|U\in \mathcal{U}\}$ is a partition of unity on $X$ such that $\mathrm{C}\mathrm{o}\mathrm{z}(pu)\subset$

$U$ , and hence $a_{0}\in \mathrm{c}1_{\beta X}(Z(p_{U}))$ for each $U\in \mathcal{U}$ . Thus $a_{0}\in\beta X\backslash \mu X$ due to
Theorem 7, that contradicts the choice of $a_{0}$ . Hence $X$ is Dieudonn\’e complete. $\square$

A topological space satisfies the discrete countable chain condition (DCCC
$\mathrm{f}\mathrm{o}1^{\cdot}$ short) if every discrete collection of non-empty open sets is countable. Every
Lindel\"of $T_{1}$ -space and every separable space satisfy the DCCC. We also note that
every metrizable space satisfying the DCCC is second countable.
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Theorem 9. For a Tychonoff space X the following are equivalent

(a) $X$ is realcompact;

(b) for every locally convex topological vector space $Y_{j}$ every B-fifixed $l.s.c$ . map-
ping $\varphi$ : $Xarrow \mathcal{K}(Y)$ of infifinite character admits a continuous selection
fsuch that $f(X)$ is DCCC;

(c) for every Banach space Y. every B-fifixed $l.s.c$ . mapping $\varphi$ : $Xarrow F_{c}(Y)$ of
infifinite character admits a continuous selection $f$ such that $f(X)$ is sepa-
rable.

Proof. Due to [2, Theorem 2], the implication $(a)\Rightarrow(b)$ of Theorem 2 is valid
without assuming that $X$ is of non-measurable cardinal. Thus $(a)\Rightarrow(b)$ holds.
The implication $(b)\Rightarrow(c)$ is clear. For the proof of $(c)\Rightarrow(a)$ , see the proof of
the “if” part of [6, Theorem 1.3]. $\square$

Remark 10. Note that Theorem 9 holds for Tychonoff spaces $X$ of any cardinal.
Due to Theorem 9, the implication $(b)\Rightarrow(a)$ of Theorem 2 also holds for a
Tychonoff space $X$ of any cardinal.
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