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Observation of spin-exchange dynamics between itinerant and localized 171Yb atoms
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We report on the observation of the spin-exchange dynamics of 171Yb atoms in the ground state 1S0 and
in the metastable state 3P0. We implement the mixed-dimensional two-orbital system using near-resonant and
magic-wavelength optical lattices, where the 1S0 and 3P0 atoms are itinerant in a one-dimensional tube and
localized in three dimensions, respectively. By exploiting an optical Stern-Gerlach method, we observe the spin
depolarization of the 1S0 atoms induced by the spin-exchange interaction with the 3P0 atom. Our work could pave
the way to the quantum simulation of the Kondo effect.

DOI: 10.1103/PhysRevA.103.L041303

I. INTRODUCTION

Strongly correlated systems with orbital degrees of free-
dom exhibit interesting phenomena, with the Kondo effect [1],
which is the many-body phenomenon arising from an antifer-
romagnetic interaction between a conduction electron and a
localized magnetic moment, as a prominent example. It was
originally studied in the context of the enhancement of the
resistivity in magnetic alloys at low temperature, and it is now
a ubiquitous problem in condensed-matter physics. Also, the
Kondo lattice model, where the localized spins are aligned pe-
riodically, is a paradigmatic model of a heavy fermion system.
Its phase diagram, called the Doniach phase diagram [2], con-
tains the paramagnetic phase due to the Kondo screening in
the strong-coupling regime and the Ruderman-Kittel-Kasuya-
Yoshida (RKKY) ordered phase in the weak-coupling regime.

Although the Kondo effect has been intensively studied in
solid-state and mesoscopic systems, by exploiting its novel
possibilities in the control of system parameters and the de-
tection, ultracold atomic gases in an optical lattice allow one
to study the Kondo system in a unique manner, which is
challenging to investigate in other systems [3]. In particular,
alkaline-earth-like atoms have received much attention due
to the presence of the metastable states 3P0 and 3P2 as well
as the ground state 1S0. Taking advantage of the long-lived
states, the quantum simulator with orbital degrees of freedom
using the 1S0 and 3P0 or 3P2 atoms has been proposed, and the
Kondo system using the two-orbital system has been studied
theoretically [4–11]. To implement the Kondo system with
cold atoms, an antiferromagnetic spin-exchange interaction
between mobile and immobile atoms is required. The clock
transition spectroscopy in the state-independent optical lat-
tice, called the magic-wavelength optical lattice, reveals that,
in contrast to a ferromagnetic coupling of 173Yb and 87Sr
[12–14], the fermionic isotope of 171Yb has an antiferromag-
netic coupling between the 1S0 atom and the 3P0 atom [15].
This suggests that the two-orbital system using 171Yb is a
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promising natural candidate for the quantum simulator of the
Kondo effect in contrast to the tuning of the spin-exchange
coupling via confinement-induced resonances [16]. Another
feature of 171Yb is the weak interatomic interaction of 1S0

atoms, suggesting that the 1S0 atoms in an optical lattice can be
described as a noninteracting metallic state, which is suitable
for the exploration of the Kondo physics. Motivated by these
unique properties of the two-orbital system using 171Yb, the
numerical simulation of the dipole oscillation of the 1S0 atoms
in the presence of the localized 3P0 atom is performed [11],
showing that the Kondo effect manifests itself in such a way
that the center-of-mass motion of 1S0 atoms is suppressed
as the temperature is lowered due to the antiferromagnetic
spin-exchange interaction.

In this Letter, we report on the observation of the spin-
exchange dynamics between 171Yb atoms in the ground state
|g〉 = |1S0〉 and in the metastable state |e〉 = |3P0〉. Using a
two-orbital lattice system consisting of a two-dimensional
(2D) magic-wavelength optical lattice and a 1D near-resonant
optical lattice giving strong confinement to the |e〉 atom alone
and no net effect to the |g〉 atom, the quasi-(0+1)D system is
implemented, where the |g〉 atom behaves as the quasi-1D free
fermion interacting with the |e〉 atom mimicking a localized
magnetic moment. By exploiting the optical Stern-Gerlach
method, we observe the relaxation of the spin polarization
caused by the interorbital spin-exchange process and the sup-
pression of the spin depolarization in a high magnetic field.
The rate of spin-exchange dynamics is also controlled by the
excited-state population. These observations are an important
first step toward the quantum simulation of the Kondo effect.

II. METHODS

We first explain how we implement the quasi-(0+1)D sys-
tem using a near-resonant optical lattice. An optical dipole
potential V (r) is proportional to the laser intensity I (r):

V (r) = −1

4
αI (r). (1)
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FIG. 1. Schematic diagram of experiment. (a) Relevant energy diagram of a Yb atom. (b) Schematic illustration of beam configuration.
The polarization of the clock excitation light is perpendicular to the quantization axis defined by the magnetic field, and it amounts to an equal
mixture of σ+ and σ− polarization. The circularly polarized OSG light propagates along the quantization axis. (c) Schematic illustration of the
experimental procedure. (1) Initially, some fraction of the atoms in the |g ↓〉 state (a green ball) are excited to the |e ↑〉 state (a yellow ball) in a
magnetic field of 30 G. The upper figure shows the schematic representation of the optical lattice potentials for the |g〉 atom (a green curve) and
the |e〉 atom (a yellow curve). (2) After the excitation, a magnetic field is lowered to 0.5 G, and the spin-exchange dynamics is started. (3) After
the hold time, the population of the atoms in |g ↑〉 and in |g ↓〉 is detected with an OSG technique. The upper figure shows the spin-dependent
optical gradient potential to spatially separate the |g ↑〉 atom and the |g ↓〉 atom. The lower figure shows a typical example of the simultaneous
observation of both spin states in the false color TOF image of the 171Yb gas in the |g〉 state subjected to the OSG light.

The coefficient α is called polarizability:

α =
∑

i

6πc2

ω3
i

(
�i

ωi − ω
+ �i

ωi + ω

)
, (2)

where ω is the laser angular frequency and c is the speed
of light. Here ωi and �i correspond to the resonant angular
frequency and the natural linewidth of the ith state, respec-
tively. The wavelength of the near-resonant optical lattice is
chosen to be 650.7 nm, which is close to the 3P0–3S1 transition
wavelength of 649.1 nm, resulting in the large polarizability
for the |e〉 atom αe [see Fig. 1(a) for relevant energy levels].
Using Eq. (2), the polarizability is obtained as αe/h = 1.4
kHz/(mW/cm2), h being the Planck constant. In this calcula-
tion, we assume that the 3P0–3S1 transition makes the dominant
contribution and the other transitions are negligible. Similarly,
the polarizability for the |g〉 atom αg due to the 650.7 nm light
is also calculated as αg/h = 39 Hz/(mW/cm2). As a result,
the near-resonant optical lattice has the large polarizability
ratio αe/αg = 36, while a similar experiment in Ref. [16] uses
a state-dependent lattice with αe/αg = 3.3. In our experiment,
the |e〉 atom is deeply confined by the near-resonant lattice
while the lattice potential is regarded as the continuum system
for the |g〉 atom. A natural concern of using near-resonant
light is the possibly non-negligible photon scattering loss rate
γsc of the |e〉 atoms. By using narrow-linewidth band-pass
filters with less than 0.1 nm to suppress the 649.1 nm resonant
frequency component in the single-mode narrow-linewidth
650.7 nm laser, we obtain the loss rate of the |e〉 atom in the
absence of the |g〉 atom γsc = 5.0 Hz. Although this is larger
than the theoretically estimated value of 0.59 Hz obtained by
assuming only the off-resonant excitation, the corresponding
lifetime is long enough to clearly observe the spin-exchange
dynamics (see Sec. III). A state-independent optical lattice is
obtained with the magic wavelength of 759.4 nm.

Figure 1(b) illustrates the schematic diagram of the beam
configuration. The 2D array of the tube traps is produced
using the 2D magic-wavelength lattice (x and z), and the 1D
near-resonant optical lattice is superimposed along the axis

of the tubes (y). As a result, the |e〉 atom is localized by
the 3D confinement while the |g〉 atom is mobile along the y
direction in the tube potential. The maximum potential depth
for the |e〉 atom due to the near-resonant lattice amounts to
27ER, with ER = kB×96 nK being the recoil energy for the
magic wavelength. Here kB is the Boltzmann constant. The
corresponding trap frequency of the lattice site at the trap
center is 24 kHz, and the residual harmonic trap frequency
due to the Gaussian beam shape is estimated as 24 Hz from
the beam radius.

The near-resonant lattice depth is calibrated using diffrac-
tion of the |e〉 atoms by a pulsed optical lattice technique
with the near-resonant lattice [17]. We use the 171Yb atom for
the calibration of the lattice depth since the bosonic isotopes
would suffer from the severe inelastic loss in the 3P0 states,
in addition to another technical merit that the Rabi frequency
of the clock transition for the fermionic isotopes is larger than
that for bosonic isotopes. After the excitation to the |e〉 state in
the 3D magic-wavelength lattice, the remaining atoms in the
|g〉 state are blasted with the resonant light with the 1S0–1P1

transition. Then the magic-wavelength lattice potential along
the y axis is ramped down in 1 ms, and the pulsed lattice
is irradiated along the y axis immediately after switching
off the remaining magic-wavelength lattice potentials along
the x and z axes. During the time-of-flight (TOF), the atoms
are repumped into the |g〉 state using the resonant light with
the 3P0–3D1 transition, and the diffraction pattern is probed
by absorption imaging with the 1S0–1P1 transition. From the
oscillatory behavior of the diffraction pattern, we can calibrate
the near-resonant lattice depth.

Our experiments start with the preparation of the quantum
degenerate gas of 171Yb using the sympathetic evaporative
cooling with 173Yb [15]. During the evaporative cooling,
the optical pumping into the |g ↓〉 state is performed with
the 1S0–3P1 (F ′ = 1/2) transition, where |↑〉 = |mF = +1/2〉,
|↓〉 = |mF = −1/2〉 denote the projections of the nuclear spin
F onto the quantization axis defined by a magnetic field.
The number of atoms N and the temperature scaled by the
Fermi temperature T/TF are N � 2×104 and T/TF � 0.3,
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respectively. After the removal of 173Yb atoms using the res-
onant light associated with the 1S0–3P1 (F ′ = 7/2) transition,
the atoms are loaded into the optical lattices, where the ini-
tial depths of the magic-wavelength optical lattice and the
near-resonant optical lattice for the |e〉 atom are set to 30ER

and 6.8ER, respectively. Figure 1(c) shows the experimental
procedure after loading atoms into an optical lattice. (i) Some
fraction of the atoms are coherently transferred to the |e ↑〉
state in a magnetic field of 30 G by a stabilized clock laser [18]
with a typical linewidth of a few Hz. To localize the |e〉 atom,
the near-resonant optical lattice is then ramped up to 27ER

in 1 ms, which is longer than the inverse of the lattice-site
trap frequency, regarded as an adiabatic ramp. To reduce the
spatial inhomogeneity of the clock transition frequency due to
the residual harmonic trap created by the near-resonant optical
lattice, the |g〉 atoms are coherently transferred to the |e〉 state
in the shallower optical lattice. A moderate lattice depth is re-
quired for the sideband-resolved excitation, on the other hand,
which allows one to prepare |e〉 atoms in the lowest band.
We thus perform the clock excitation with the lattice depth
of 6.8ER. The hopping energies between the nearest-neighbor
tubes J⊥ and between the adjacent sites of the near-resonant
optical lattice Jy are estimated as J⊥ = h×1.0 Hz and Jy =
h×7.0 Hz for the |e〉 atom, indicating that the hopping energy
is negligible within the experimentally relevant timescales.
(ii) After the clock excitation, the magnetic field is rapidly
lowered to 0.5 G with about 3 ms settling time, and the spin-
exchange dynamics is initiated. (iii) After the hold time, the
spin polarization of the |g〉 atoms is detected with the optical
Stern-Gerlach technique (OSG) [19], which enables one to
separately observe the atoms in the |g ↑〉 and |g ↓〉 states
using a spin-dependent optical potential gradient. The OSG
light is blue-detuned by 875 MHz from the 1S0–3P1 (F ′ = 1/2)
transition.

III. RESULTS

Figure 2(a) shows the time evolution of the spin polariza-
tion of the |g〉 atoms, defined as �Ng/Ng. Here �Ng denotes
the atom number difference between the |g ↑〉 and |g ↓〉 states,
and Ng is the total number of the |g〉 atoms. The result clearly
shows the spin depolarization due to the spin-exchange in-
teraction with |e〉 atoms. We note that we did not observe
the depolarization in the case of no |e〉 atoms. Also, the
relaxation rate of the spin polarization is controlled by the
clock excitation rate r, which is associated with the number
of |e〉 atoms. The spin polarization less than unity at the initial
time could be ascribed to the imperfect optical pumping and
the photon-scattering of the OSG light. It is noted that the
remaining unwanted spin component is not removed after the
optical pumping.

The observed relaxation dynamics is quantitatively ana-
lyzed with the following two-body rate equations [13]:

ṗg↑(t ) = 	ex[pg↓(t )pe↑(t ) − pe↓(t )pg↑(t )]

− �egpg↑(t )[pe↑(t ) + pe↓(t )]

+ γsc

2
[pe↑(t ) + pe↓(t )], (3)

| ↑ >| ↓ >

FIG. 2. Observation of spin-exchange dynamics. (a) Time evo-
lution of the spin polarization of the |g〉 atoms �Ng/Ng with the
different excitation rates to the |e〉 state: r = 0.56, 0.49, 0.41, and
0.31. Error bars show the standard deviations of the mean values
obtained by averaging 10 measurements. Solid lines represent fits
to the data with Eqs (3)–(6). False color time-of-flight images of
the |g〉 atoms after the spin-exchange dynamics with r = 0.56 are
shown. The left and right figures correspond to the hold time of 3
and 68 ms, respectively. (b) Spin-exchange rate 	ex as a function of
the excitation rate. Error bars are 1σ confidence intervals of the data
fits. The solid line represents linear fits to the data.

ṗg↓(t ) = 	ex[pe↓(t )pg↑(t ) − pg↓(t )pe↑(t )]

− �egpg↓(t )[pe↑(t ) + pe↓(t )]

+ γsc

2
[pe↑(t ) + pe↓(t )], (4)

ṗe↑(t ) = 	ex[pe↓(t )pg↑(t ) − pg↓(t )pe↑(t )]

− �egpe↑(t )[pg↑(t ) + pg↓(t )]

− γsc pe↑(t ), (5)

ṗe↓(t ) = 	ex[pg↓(t )pe↑(t ) − pe↓(t )pg↑(t )]

− �egpe↓(t )[pg↑(t ) + pg↓(t )]

− γsc pe↓(t ). (6)
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Here pασ (t ) = n̄ασ (t )/n̄0 denotes the relative population of
the atom in the |ασ 〉 state (α = g, e, σ =↑,↓), where n̄ασ and
n̄0 denote the mean density of the atom in the |ασ 〉 state and
the mean density of the total atoms in the initial state, respec-
tively. Also, 	ex and �eg correspond to the spin-exchange rate
and the two-body loss rate between the |g〉 atom and the |e〉
atom, respectively, and they are proportional to n̄0. In addition,
γsc is the one-body loss rate of the |e〉 atom. We assume that
the inelastic collision between the |e〉 atoms is ignored since
the hopping rates J⊥ and Jy are much smaller than the spin
depolarization rate. In addition, �eg is assumed to be indepen-
dent of the spin state and is estimated from the measurement
of the lifetime of the |e〉 atom during the spin-exchange dy-
namics, resulting in �eg = 10 Hz. On the other hand, using
the inelastic loss-rate coefficient βeg± � 2.6(3)×10−16 cm3/s
obtained by the measurement of the lifetimes of the |eg+〉
and |eg−〉 states in the 3D magic-wavelength optical lattice
[20], the two-body loss rate is calculated as 2.3×10−2 Hz,
where |eg+〉 and |eg−〉 correspond to the spin-singlet state and
the spin-triplet state, respectively. Although the origin of the
discrepancy is not known, here we note that the analysis using
Eqs. (3)–(6) does not depend sensitively on the value of �eg,
due to the existence of photon scattering loss γsc = 5 Hz, and
in fact �eg = 10 Hz and �eg = 0 give almost the same results.
In the following analysis, we adopt �eg = 10 Hz. It should
be noted that the two-body loss between the |e〉 atoms via a
tunneling process is suppressed due to the on-site repulsive
interaction and the two-body dissipation via a quantum Zeno
effect [21,22]. In our experiment, this effective loss rate is
estimated as 0.28 Hz, suggesting that the inelastic loss be-
tween the |e〉 atoms would not occur during the spin-exchange
dynamics. Solid lines in Fig. 2(a) represent the fits to the data
using the two-body rate equations (3)–(6) by treating 	ex as
a free parameter. Figure 2(b) shows the spin-exchange rate
obtained from the data fits in Fig. 2(a) as a function of the
excitation rate to the |e〉 state, exhibiting an enhancement of
the spin-exchange rate with the increase of the number of
atoms in the |e〉 state. The linear dependence of the spin-
exchange rate 	ex on the excitation rate r is expected when no
correlation between the |e〉 atoms is considered. The validity
of this assumption is related to the characteristic energy of
the RKKY interaction V 2

ex/εF [23], where Vex and εF are the
spin-exchange energy and the Fermi energy, respectively. In
our experiment, this is estimated as kB×1.4 nK, which is
much smaller than the atomic temperature. Thus, the RKKY
correlation is negligible. In addition, this linearity is expected
for a small excitation rate, and the investigation of the spin-
exchange dynamics with a higher excitation rate will be an
interesting future study.

Also, we investigate the magnetic-field dependence of the
spin-exchange dynamics. The interorbital spin-exchange in-
teraction energy Vex can be estimated as

Vex = 4π h̄2

m

a+
eg − a−

eg

2

∫
d3r ng(r)|ψe(r)|2, (7)

where m denotes the mass of the atom and ψe(r) is the single-
particle wave function of the |e〉 atom. The spin-exchange is
characterized by the difference between the spin-singlet scat-
tering length a+

eg = 240(4)a0 and the spin-triplet scattering

FIG. 3. Magnetic-field dependence of spin-exchange dynamics
with the 3P0 excitation rate r = 0.56. Error bars show the standard de-
viations of the mean values obtained by averaging 10 measurements.
In this experiment, the initial state of the exchange dynamics is
prepared by the excitation |g ↑〉 → |e ↑〉 of the spin-balanced 171Yb
atoms using π -polarized light since this scheme results in reduced
uncertainty.

length a−
eg = 389(4)a0 [20], resulting in an antiferromagnetic

coupling Vex < 0. Here a0 denotes the Bohr radius. In the
central tube, Vex is estimated to be Vex/h = −0.25 kHz. On
the other hand, the differential Zeeman shift between the |g ↑〉
state and the |e ↑〉 state amounts to −200.0(6) Hz/G [15].
Figure 3 shows a comparison between the spin relaxation
dynamics in a magnetic field of 0.5 G and that in a magnetic
field of 150 G, where the Zeeman energy is two orders of
magnitude larger than Vex. The result shows that the spin depo-
larization dynamics is frozen in a higher magnetic field, which
is consistent with the fact that the spin-exchange process is
energetically costly.

IV. CONCLUSIONS

In conclusion, we successfully realized the quasi-1D
fermion system in the presence of immobile spin using the
2D magic-wavelength optical lattice and the 1D near-resonant
optical lattice. Using this system, the spin-exchange dynamics
between the itinerant |g〉 atom and the localized |e〉 atom is
observed. Our work can pave the way to the quantum simu-
lation of the Kondo effect. Although the near-resonant lattice
causes the one-body loss of the |e〉 atom, which is detrimental
to the exploration of many-body physics, the scattering rate
γsc will be reduced by using a far-detuned laser source with,
for example, a wavelength of 652 nm. It will be interest-
ing in future work to compare the observed spin-exchange
rates with theoretical calculations [24–26]. The Kondo effect
manifests itself as a many-body singlet state, resulting in the
screening of a localized spin by an itinerant fermion, which
is called Kondo screening. The screening cloud of itinerant
fermions could be observed in the two-orbital system using
a Yb quantum gas microscope [27,28], as in a quantum dot
system [29]. In addition, it is interesting to detect the spin
correlation between the excited-state atoms as a signature of
the RKKY interaction [4].
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